
Learning and Transferring Roles in Multi-Agent Reinforcement

Aaron Wilson and Alan Fern and Soumya Ray and Prasad Tadepalli
School of Electrical Engineering and Computer Science

Oregon State University, USA

Abstract

Many real-world domains contain multiple agents that
play distinct roles in achieving an overall mission. For
instance, in tactical battle scenarios, a tank fulfills a
much different role than a foot soldier. When learn-
ing an overall multi-agent strategy, it is clearly advan-
tageous to have knowledge of the agent roles and the
typical behavioral characteristics associated with each
role. The goal of this paper is to learn and transfer
information about agent role structure in the setting of
multi-task reinforcement learning. We present a hierar-
chical Bayesian framework for representing and learn-
ing a distribution over the unknown set of agent roles
and policies from a sequence of related multi-agent RL
problems. This knowledge is then transferred to new
problems by treating the distribution as an informative
prior over the roles and policies of individual agents.
In particular, in this work, the prior is used to initialize
policy-gradient search. We demonstrate the effective-
ness of this role transfer method on a real-time strat-
egy game in the context of a sequence of tactical battles
each involving different numbers and types of individ-
ual units. The results show that our approach is able to
find a set of underlying roles and use them to signifi-
cantly speed up learning on novel problems.

Introduction
In most real-world domains, there are multiple units or
agents that play different roles in jointly accomplishing a
task. For example, in a military battle, a tank might engage
the enemies on the ground while an attack aircraft provides
the air cover. In a typical hospital, there are well-delineated
roles for the receptionists, nurses, and the doctors. Restau-
rants have cooks, waiters, and cashiers with similarly well-
defined roles. In this paper, we consider the general prob-
lem of discovering the roles of different agents through re-
inforcement learning and transferring that knowledge to ac-
celerate learning in other similar tasks.

We consider the setting of multi-task reinforcement learn-
ing, where we are faced with solving a sequence of related
learning tasks by taking actions and receiving reinforcement.
Just as in the real-world, no two tasks are exactly the same,

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

although they share some similarities. In this work, we as-
sume that the roles of the units in all of these tasks are drawn
from the same mixture distribution where there is one mix-
ture component for each role, so that units of the same role
have similar policies. Importantly, we further assume that
the role assigned to a unit by this distribution can depend on
observable unit features. For example, unit features might
reflect intrinsic unit properties such as speed and power,
along with contextual unit properties such as physical lo-
cation and proximity to other entities in the initial state.In-
tuitively the availability of this mixture distribution could
speed up learning, e.g. by intelligently initializing unitpoli-
cies by drawing role assignments and corresponding policy
parameters from the mixture distribution based on the unit
features in the initial state. Our goal in this work is to learn
such a mixture distribution from previous tasks and to then
transfer it to new tasks in order to obtain such speedups.

It is important to note that the underlying unit roles
are never observed by our system, but must be discovered
through learning in prior tasks. Furthermore, we do not as-
sume knowledge of the number of underlying unit roles. For
the purpose of learning and transferring an unknown num-
ber of roles we utilize an Dirichlet Process model. Given
the set of unit policies from previous tasks the model auto-
matically clusters the policies into an appropriate numberof
role components and learns a distribution over policies for
each component. For example, the model might learn that
units with “tank-like” unit features typically have policies
that focus on battling heavily-armored ground units, and ve-
hicles that fly are good for rescue missions in hard-to-reach
locations. Given such a model and a new problem, the units
can either be assigned to existing unit roles, or to a new role
in cases where a unit does not appear to fit any component.
Thus, the use of the infinite mixture model allows us to be
robust to the discovery of new roles as tasks are encountered,
rather than forcing all units in future problems to fit into the
fixed set of previously discovered roles.

Our experiments are based on tactical battle scenarios in
a real-time strategy domain called Wargus. In this domain
each side owns certain types of units such as towers, archers,
knights and lumber mills and tries to destroy the other side’s
units. The learning agent controls one of the sides, while the
other side is controlled by the game engine’s built-in AI. In
one of the experiments we trained the learner on a simpler

scenario and transferred the knowledge to a more complex
scenario with many more units on each side. In the second
experiment we also included a new type of unit which is
not present in the source task. Each agent was trained using
policy-gradient descent, and in the transfer case had the pol-
icy parameters initialized according to the transferred role
mixture model. In both experiments, the system was able
to discover useful roles for different units and successfully
transfer them to the target scenario with significant jump
start in performance.

The use of roles has been explored in several multi-agent
domains including robot soccer and wargames ((Martinson
and Arkin 2003; Stone and Veloso 1999; Marsella et al.
1999)). It is noted in (Marsella et al. 1999) that individ-
ual agents in robocup soccer tend to specialize their policies
towards specific roles. Our own work seeks to find the un-
derlying set of roles describing the various kinds of special-
izations in order to speed learning in new scenarios. Much
work in both soccer domains and war domains is dedicated
to the problem of discovering a switching policy between
known roles. In (Stone and Veloso 1999) agents communi-
cate directly during play to choose a set of roles for play,
and in (Martinson and Arkin 2003) a Q-learning algorithm
is employed to learn a dynamic role assignment function. In
both of these cases roles can be reassigned during play. In
this work role assignment only takes place at the beginning
of a task. Thereafter, individual agents are left to adapt their
action selection decisions to the new environment. We con-
sider it an important area of future work to learn and transfer
such dynamic role switching knowledge.

Multi-Task Reinforcement Learning
In this section, we introduce the Multi-Task Reinforcement
Learning problem, which is based on the framework of
Markov Decision Processes (MDPs).

An MDP M is defined by a 5-tuple(S,A,C, T), where
S is a set of states andA is a set of actions.C(s, a) is the
immediate cost of executing actiona in states, and the tran-
sition functionT (s, a, s′) is the probability of reaching state
s′ given that actiona is taken in states. A policy π for M
is a stochastic mapping fromS to A. Every policyπ ex-
ecuted from a starting state incurs a sequence of costs. In
this paper, we seek to optimize the long-term average cost
of the policy over the infinite horizon. In particular, we seek
to find a least average-cost policy among a set of parameter-
ized policies. Under reasonable conditions, the average cost
is independent of the starting state and is only a function of
the policy parameters.

We are interested in multi-agent MDPs (MMDPs), which
consist of multiple agents or units taking actions and in-
curring costs. This can be formalized by treating the ac-
tion spaceA in the MDP framework as the product space
A1×. . .×Am, whereAj is the action set of thejth agent and
there arem agents. The immediate costsC and the transition
probabilitiesT are now functions of all agents. We consider
the policy space defined by choosing policy parametersπu

for each unitu. Since, the overall policy and its expected
average cost is determined by the policy parameters of all
units, the goal is to find the set of policy parameters,πu, that

minimize the average cost per time step. In this work, we
take the policy gradient approach, which consists of starting
with some initial parameter values and adjust them in the
direction of the gradient to decrease the cost.

In this work, we focus on the problem ofmulti-task re-
inforcement learning (MTRL). An MTRL problem is de-
fined by a distributionD over a potentially infinite set of
MMDPs. Given an MTRL problem a multi-task learnerL
is provided with a potentially infinite random sequence of
MMDPs M1,M2, . . . drawn i.i.d. fromD and is allowed to
act in it.

Intuitively our objective is to develop a multi-task learn-
ing algorithm that is able to leverage experience in previ-
ous MMDPsM1, . . . Mn to more quickly learn an optimal
policy in a newly drawn MMDPMn+1 compared to a al-
gorithm that ignores the previous MMDPs. Naturally, if
the MMDPs drawn from a multi-task distribution are com-
pletely unrelated, a multi-task learner will have no advantage
over simply solving each MMDP in isolation. However, if
the MMDPs share common structure, a multi-task learner
might be able to learn and exploit this structure, to outper-
form learners that solve each MMDP independently.

In our work, we consider a class of MTRL problems over
MMDPs, where the multiple agents to be controlled have a
shared role structure and units of the same role have simi-
lar policies. In particular, we assume that the units in each
MMDP are associated with observable unit features that re-
flect intrinsic and contextual properties of a unit and that
these features are related to the role assignment of a unit
and hence its policy. Our goal is to learn a model from
previous tasks that captures the underlying set of unit roles,
along with information about how unit features are related
to role assignments and what types of policies are associ-
ated with each role. This model can then be used for fu-
ture tasks to speed up learning, e.g., by providing a way
to intelligently initialize unit policies. In our setting,the
number of unit roles is unknown and must be inferred by
the multi-task learner. Furthermore it is not assumed that
each MMDP contains units from each of the possible roles.
Thus, our multi-task learner must remain open to the possi-
bility that the current MMDP has units with roles that were
not encountered in prior MMDPs. Our infinite component
Dirichlet process model described in the following sections
provides a Bayesian framework for dealing with this uncer-
tainty.

Roles in Multi-Agent Reinforcent Learning
We are interested in cooperative multiagent RL where agents
can be thought to fulfill particular roles as part of fulfilling
global objectives. Such domains include many sports such
as soccer or football where players have specific objectives
during play. Playing fullback in soccer is a much different
role than center forward, which is even more strongly con-
trasted by the role played by the goalie. Similarly, in foot-
ball, players follow carefully predesigned plays each having
a different role in completing the overall objective. Exam-
ples arise naturally in most team sports. Here we take a role
based view Wargus; we are interested in direct tactical con-
flicts in the Wargus domain.

Roles arise naturally in stratagus because the so called
”units” in the game, our agents, have different characteris-
tics which determine how apt they are to a particular task.
Each unit has a set of attributes measuring such things as
their speed, the range and power of their attack, and their
durability. Like real people in a sports match these attributes
predispose units to particular uses. For instance, Knights
in the game are good at attacking ranged units due to their
speed, and the catapult is best used to siege powerful defen-
sive structures thanks to its extensive range. Other features
such as the units inital locations and distances to targets in-
troduce contextual attributes which also influence which role
an agent elects to take. For instance, nearness can determine
which initial targets are the best.

In the cooperative multiagent setting each agent follows
a parameterized policyπ which it optimizes independent of
the other agents decisions. We represent the joint probabilis-
tic policy as the product of individual agent policies as given
by Equation 1.

P (A|s) =
∏

u

P (au|gu(s), wu) (1)

There are a number of ways to parameterize each agents
policy. We choose the simple representation shown in Equa-
tion 2. Heregu(s, a) are a set of features for states and
actiona, andwu are the policy parameters.

P (au|gu(s), wu) =
exp(wu · gu(s, a))

∑

a′ exp(wu · gu(s, a′))
(2)

Several issues arise. First, as proposed above we expect
units to optimize their behavior towards specific and inde-
pendent roles. Given a set of learned policiesπu and fea-
tures representing the agents attributes and initial context,
fu, {(πu, fu)}, we want to discover a set of roles that de-
scribe the policies, and transfer to new scenarios. For in-
stance, that there are roles for destroying particular mobile
units like archers, and roles for sieging large defensive struc-
tures like towers. Second, we want to learn how to assign ap-
propriate units (or players) to each role. Fast mobile ranged
units should be used to handle knights, very long range units
should be used to kill defensive structures like towers, and
so on. We describe how this is done in the next section.

Learning Role-Based Distributions over
Policies

After learning in the training scenerio we have a collection
of data{(πu, fu)} where eachπu are the converged policy
parameters for agentu, and eachfu is a set of unit features
for u. Eachfu includes unit attributes and contextual fea-
tures based on the initial state (such as distances to targets).
The goal of our inference procedure will be to discover a
small set of roles which explain the set of observed policies.
For each policy we encode to which role it belongs in a vari-
ablecu. We say that an agent fulfilled rolej, (defense, siege,
etc.) whencu = j. All knowledge about roles is stored in
two sets of parameters: 1) A set of parametersθj whereθj is
the parameters over policies for thej’th role, and 2) A set of

parametersφ that determines the probabilistic assignment of
agents to roles based on unit parameters. Parametersθj are
a mean vectorµ and covariance matrixΣ of a multi variate
Gaussian distribution. We define a Gaussian Wishart prior
distribution from which allθj are drawn. The parametersφ
are assumed to have a Gaussian prior distribution. Further-
more, we require that the function ofφ has knowledge about
which unit features strongly influence role assignment. For
instance, with two underlying roles, siege and defense, we
would like this function to learn that the unit feature ”range”
strongly determines whether a unit should be used for siege
or defense. Knowledge of these important agent similarities
are stored in a kernel function parameterized by assignment
parametersφ.

We presume that agent roles are drawn from an infinite
mixture of Gaussian components. Similar to our previous
work we represent this mixture as a Dirichlet Process (DP)
(Neal 2000). However, the key difference between the stan-
dard is the introduction of the assignment parametersφ. In
the standard DP model the probability with which a role be-
longs to a particular component depends only on the num-
ber of data points already assigned to the component. In this
work this distribution will depend onfu andφ; a necessary
change for effective transfer. Below we introduce our modi-
fications and outline the inference algorithm.

Similar to (Rasmussen and Ghahramani 2002) we seek
to represent an infinite mixture of components using a DP
model, but our component distributions, which generate
policiesP (π|c, f , θ), are represented as conditional Gaus-
sians with conjugate prior distributions (described above).
Also like (Rasmussen and Ghahramani 2002), we define the
assignment functionP (c|f , φ) by specifying a kernel which
encodes the similarity between unit types and contexts (ex-
plained below).

P (π|f ,Ψ) =
∑

c

P (π|c, f , θ)P (c|f , φ)

P (π|f ,Ψ) =
∑

c

[
∏

u

P (πu|cu, fu, θcu
)P (θcu

)]P (c|f , φ) (3)

In Equation 3πu is the policy associated with unitu, cu is
a role assignment for unitu’s policy, andfu are a set of unit
features. Our goal is to estimate the posterior distribution
over the parameters{c, θ, φ}. To estimate the posterior dis-
tribution given a set of{(πu, fu)} pairs we construct a sam-
pling algorithm using a Gibbs sampling procedure described
in (Neal 2000) for the parameters{c, θ}, and metropolis up-
dates for the assignment parameters{φ}. The requirement
for the Gibbs sampling procedure are conditional distribu-
tions for the parametersc andθ. In our case, the conditional
distributions forθ are simple (see the algorithm outlined be-
low). However, we have to modify the standard conditional
distribution over the role assignment variables.

Sampling Role Assignments: In algorithm 8 of (Neal
2000) the role assignment variables for each unit,cu, are
sampled from the standard conditional distribution Equa-
tion 4 which depends on the MCMC statec at each sampling
step.

P (cu = j|c−u, α) =

{ n−u,j

n−1+α
|n−u,j > 0

α
n−1+α

|otherwise (4)

Thus, in the standard DP Gibbs sampling framework the
conditional probability of the assignmentcu = j depends
principally on the number of policies currently assigned to
componentj after removingu, i.e., n−u,j . In this equa-
tion it is worth noting that with probability α

n−1+α
the algo-

rithm samples a completely new component. In this way a
properly constructed sampling procedure can stochastically
change the number of inferred components. The dependence
solely on thec, andα means that sampling from this dis-
tribution will be independent of the available unit features
fu. However, the corresponding conditional distribution in
Equation 3,P (c|f , φ), depends on both the unit features and
assignment parameters. To make Equation 4 depend on the
unit features and assignment parameters we modify the con-
ditional distribution by approximatingn−u,j using a para-
meterized kernelKφ. The approximation is defined in Equa-
tion 5.

n−u,j = (n − 1)

∑

u′ 6=u Kφ(fu, fu′)δ(cu′ = j)
∑

u′ 6=u Kφ(fu, fu′)
(5)

In Equation 5 the numerator determines the weighted sum
of distances between the unit in question and all units in role
j and divides by the sum of distances betweenu and all other
units. By approximatingn−u,j in this way we insure that
the conditional distribution, Equation 4, biases the assign-
ment ofcu to roles fulfilled by units similar tou. We choose
to use the kernel below which allows the role assignment
parameters to determine the relevance of features.

Kφ(fu, fu′) = exp(−
1

2

∑

d

(fu,d − fu′,d)
2/φ2

d) (6)

This kernel measures the distance between unit feature
vectors and weights the relevance of individual features
to the role classification problem. We choose this kernel
because it can decide when contextual features are irrele-
vant, and when differences in innate features such as ’range’
strongly influence which role it belongs to.

We can use this modified conditional distribution
P (cu|fu, φ, c−u, α) to sample new assignments from
P (c|f , φ) in the Gibbs sampling algorithm as is described
below.

Full Sampling Algorithm: Given conditional distribu-
tions for the assignmentscu, and role parametersθj we can
define a sampling algorithm for posterior inference. The in-
ference algorithm is outlined below:

1. Define the initial MCMC state to be{c, θ, φ}. Set initial
values for these parameters.

2. Updatec: Sample an assignment for each unit policyπu.
For each unitu = 1 : N sample from the conditional
distributionP (cu = j|fu, φ, c−u, α). Update the statec
with the new samples (Neal 2000). The new assignment
c is now drawn fromP (c|f , φ).

3. Updateθ: Sample new parametersθ for each Gaussian
component from the posteriorP (θj = (µj ,Σj)|c,π) us-
ing only the policies assigned to componentj and update
θ (Neal 2000). This is the probability of thejth role pa-
rameters given the policies assigned toj. Given fixed role
assignment variablesc the component posteriors are in-
dependent Gaussian Wishart distributions for which stan-
dard sampling algorithms exist.

4. Updateφ: Use metropolis hastings to update the para-
metersφ given the new state for{c, θ} using a Gaussian
proposal distribution (Rasmussen and Ghahramani 2002).
When sampling from the pseudo posterior the kernel para-
meters play a role in determining the values of the pseudo
likelihood.

5. Repeat the sampling routine (steps 2,3,and 4) un-
til samples are drawn from the posterior and then
select the sample maximizing the pseudolikelihood
maxc[

∏

u P (πu|cu, fu, θcu
)P (θcu

)].

Additional details for the inference procedure can be
found in (Neal 2000; Rasmussen and Ghahramani 2002).

The state{c, θ, φ}, the fixed prior parameters, and the
data are transferred to new tasks. What has been learned is
a hierarchical prior distribution over policy parameters that
can be used to initialize policies of units in new scenarios.

Role Transfer
Given the posterior sample,{c, θ, φ}, transfer is a simple
matter. Each units policy parameters are sampled, indepen-
dently, from the new prior distribution. The respective set
of policies is then used as a starting point for learning. To
sample a policy for an individual agentu we simply sample
from the conditional distributionP (cnew|fnew, φ) and then
generate a policy from the gaussian component associated
with label cnew, P (πnew|cnew, fnew, θcnew

). Policies rep-
resent the best guess as to the mapping from unit features
fnew to optimal policies. This highlights how crucial the as-
signment parametersφ are to successful initialization. With-
out the additional feature information initialization would be
matter strictly of popularity. In general the sampled policies
may not be optimal for the current task and must be opti-
mized. Each agents behavior is optimized using OLPOMDP
an online policy gradient optimization technique (Baxter and
Bartlett 1999) using the sampled policy as an initial starting
point.

Results
Experiments were run in the Wargus environment. The
goal in each scenario is to destroy an enemy target struc-
ture, a lumbermill, guarded by a number of enemy forces.
In each experiment enemy forces are composed of immo-
bile towers capable of firing on units from a distance, and
knights which are strong melee combatants. The agents
forces are composed of a mixture of units including archers,
footmen, and ballistas. Each agent receives its own reward
signal. Reward is recieved for killing another unit. Posi-
tive reward for killing an enemy unit and negative reward
for killing a friendly unit. Destroying the lumbermill results

(a) Training map (b) Test map 2

Figure 1: a. Training map used in all experiments. b. Second
test map: 8 archers, 5 footmen, 2 ballista

in a very large positive reward and represents the comple-
tion of an episode (alternatively an episode ends when all
friendly units have died). Negative reward is also recieved
once the agent dies. Each agents action set includes all live
targets on the map including friendly units. Each action has
a set of features which includes information about the target
(speed, range of attack, current hit points, etc), coordination
features (how many units are currently attacking this target,
how close are units to this target, etc), and relational fea-
tures (how far is the agent from the target, etc.). The feature
vector has 180 dimensions.

In both experiments we transfer knowledge learned in a
single training map (see Figure 1(a)). In the training map
the enemy forces are composed of two towers, a knight, and
a lumbermill. The agents forces include five archers, and a
ballista. The towers are powerful enough to kill the archers,
but do not have a range sufficient to hit the ballista. The
knight can easily dispatch the ballista (their preferred tar-
get), and must be destroyed by the archers for the agents to
succeed in destroying the lumbermill. Both the archers and
ballista fulfill seperate roles to successfully storm the enemy
blockade.

In experiment one we first train the units in the training
map and then transfer to a more complicated scenerio. In
the new scenerio the number of opposing knights has been
increased to two and number of archers on the agents team
is increased to 8. Individually the knights are more than a
match for the archers. If the archers do not present a unified
front they will be quickly overwhelmed. Other unit types
remain the same. As verified in Figure 2 the transfer learn-
ing algorithm has discovered a set of roles for the underlying
set of agent types and initializing with good sampled values
gives a substantial jumpstart for learning. The archers are
initialized to be biased towards attacking the knights, and
the ballista prefers to target the immobile structures. There-
sulting behavior is that the archers successfully gang up on
the knights killing them before they can destroy the ballista,
and the ballista moves into position to kill off the unpro-
tected structures.

In experiment two the test map is complicated by a much
larger number of archers (8), the number of available ballis-
tas is increased to 2 and we introduce a new unit type foot-
men (5) (see Figure 1(b)). Additionally, the agents face 6

knights defending the target structure, as well as two towers.
Figure 3 illustrates the results. The transfer learning prob-
lem is more difficult in this case because the algorithm must
generalize across unit types assigning appropriate roles to
the footmen for which it has no prior experience. Though
the footmen cannot attack at range their other characteristics
are much closer to archers than they are to ballistas. Foot-
men are more mobile than ballistas, attack more frequently,
and are more fragile than the ballista. As a result the algo-
rithm guesses that they should be assigned a role similar to
archers, aiming to kill the defending knights. Making this
generalization is key to success in this scenario because the
large number of knights can easily destroy the archers if they
do not have support. The generalization is successful, and
the transfer algorithm has a large jumpstart in the new map.

0 2 4 6 8 10 12 14 16 18
−6000

−5000

−4000

−3000

−2000

−1000

0

1000

Number of episodes (x5)

A
ve

ra
ge

d
T

ot
al

 R
ew

ar
d

Figure 2: Transfer map 1: Transfer task 8 archers, 1 balissta
vs. 3 knights, 2 towers, 1 lumbermill.

0 2 4 6 8 10 12 14 16 18
−6000

−5000

−4000

−3000

−2000

−1000

0

1000

Number of episodes (x5)

A
ve

ra
ge

d
T

ot
al

 R
ew

ar
d

Transfer
Non−Transfer

Figure 3: Transfer map 2: Transfer task 8 archers, 5 foot-
men, 2 balissta vs. 6 knights, 2 towers, 1 lumbermill.

Discussion

The model does two things successfully. First, it automati-
cally discovers the number and kind of underlying roles that
agents fulfill. The model allows us to remain agnostic about
the types of roles that we might find. It is not immediately
obvious that this is necessary in the Wargus environment.
Wargus agents might, uninterestingly, fall into a role com-
pletely determined by the unit type. In our relatively sim-
ple experiments the algorithm found more roles than there
were unit types in the training set reinforcing the utility of
remaining agnostic of the underlying set of roles. This has
the additional benefit of allowing the library of roles to grow
as the agent has experiences in new maps. Second, the pa-
rameterized kernel allows the assignment function to gener-
alize across the unit parameter space. With its experience
limited to the policies of archers and catapults our algorithm
learned a strong bias towards using the catapults to attack
fortifications and using archers to overcome mobile defend-
ers. Generalizing the archer role to footmen could not have
been done properly without the similarity metric.

There are two crucial aspects of the algorithm that require
additional attention. First, currently each agents policyis
drawn independently from the generative model. Agents do
not explicitly coordinate. Second, given a sampled policy
we optimize the agents behavior using olpomdp.

The first limitation, independent action selection, limits
success to domains where a carefully designed reward func-
tion can be constructed to encourage cooperative play and
requires carefully encoded action features important for as-
sisting coordination (one such feature is how many agents
are currently attacking a target). When a good encoding of
the reward function is not available or the feature set is not
obvious some form of explicit communication is necessary.

In the Wargus experiments we are interested in optimal
coordination at the action level is not possible due to the
large number of agents. Potentially this problem could be
reduced by considering coordinating at the role level. By
jointly considering an assignment of roles we need only con-
sider|R||A| such role combinations for|A| agents. This can
be a considerable savings. In our Wargus domain the action
set grows with the number of opposing targets which was as
large as nine in the second experiment. Whereas the number
of discovered roles was only three. Still there remains an
exponential number of potential assignments and it would
be worthwhile, in future work, to find additional structure
which can be exploited to approximate the optimal assign-
ment.

Our second issue is limited application of the revised prior
to perform initialization in a new environment. This does
well in our experiments, but we would like to exploit the
available information during exploration of new maps. Such
a policy prior could be used to both guide a sequence of ex-
periments, sampled policies from the posterior distribution,
while simultaneously optimizing the expected returns. To
do so we need a distribution characterizing the influence of
the policy parameters on the expected return. Ideally such a
distribution would encode the relationship between similar
policies so that discovering the true optimal does not require

evaluating all policies in the set. These requirements sug-
gest that a Gaussian Process prior may be a natural candi-
date for capturing the functional relationship between poli-
cies. We would like to explore composing our policy prior
with a learned mapping from policies to expected returns to
do online policy search using the bayesian framework. Such
a policy search algorithm would replace OLPOMDP so that
the learning algorithm continues to exploit the prior distrib-
ution as it explores.

Conclusion
We have introduced a simple bayesian framework for role
transfer in multi-agent multi-task reinforcement learning.
Our approach is to learn a hierarchical bayesian prior dis-
tribution and use this learned distribution to initialize the
agents roles in new environments. Our algorithm success-
fully learns individual agent policies, automatically discov-
ers a good set of roles describing the space of learned poli-
cies, and initializes agent roles based on unit features.

We provide a successful demonstration of the proposed
transfer algorithm in large Wargus conflicts. Up to 15 units,
when initialized using the learned prior successfully perform
the target task of destroying the lumbermill. We show that
our algorithm discovers a useful set of roles and successfully
transfers role information to new Wargus scenarios. The first
experiment shows transfer is successful when the number of
units in the cooperating forces increases. The algorithm can
find roles that are specific to the unit types experienced in the
training scenario. The second experiment illustrates general-
ization across unit types. The expert function correctly iden-
tifies footman units as being similar to archer units. Initializ-
ing based on that assumption leads to a substantial jumpstart
on learning.

References
Baxter, J., and Bartlett, P. 1999. Direct gradient-based rein-
forcement learning. InTechnical report, Research School
of Information Sciences and Engineering, Australian Na-
tional University, July 1999.
Marsella, S.; Adibi, J.; Al-Onaizan, Y.; Kaminka, G. A.;
Muslea, I.; and Tambe, M. 1999. On being a teammate: ex-
periences acquired in the design of RoboCop teams. In Et-
zioni, O.; Müller, J. P.; and Bradshaw, J. M., eds.,Proceed-
ings of the Third International Conference on Autonomous
Agents (Agents’99), 221–227. Seattle, WA, USA: ACM
Press.
Martinson, E., and Arkin, R. C. 2003. Learning to role-
switch in multi-robot systems. InICRA, 2727–2734. IEEE.
Neal, R. M. 2000. Markov chain sampling methods for
dirichlet process mixture models.Journal of Computa-
tional and Graphical Statistics249– 265.
Rasmussen, C. E., and Ghahramani, Z. 2002. Infinite mix-
tures of gaussian process experts. InProceedings Neural
Information Processing Systems.
Stone, P., and Veloso, M. 1999. Task decomposition, dy-
namic role assignment, and low-bandwidth communication
for real-time strategic teamwork.Artificial Intelligence.

