
Memory-Efficient Symbolic Online Planning for Factored MDPs

Aswin Raghavan
School of EECS

Oregon State University
Corvallis, OR, USA

nadamuna@eecs.orst.edu

Roni Khardon
Department of Computer Science

Tufts University
Medford, MA, USA

roni@cs.tufts.edu

Prasad Tadepalli
School of EECS

Oregon State University
Corvallis, OR, USA

tadepall@eecs.orst.edu

Alan Fern
School of EECS

Oregon State University
Corvallis, OR, USA
afern@eecs.orst.edu

Abstract

Factored Markov Decision Processes (MDP) are
a de facto standard for compactly modeling se-
quential decision making problems with uncer-
tainty. Offline planning based on symbolic oper-
ators exploits the factored structure of MDPs, but
is memory intensive. We present new memory-
efficient symbolic operators for online planning,
prove the soundness of the operators, and show
convergence of the corresponding planning algo-
rithms. An experimental evaluation demonstrates
superior scalability on benchmark problems.

1 INTRODUCTION

The success of online planning in Markov Decision Pro-
cesses (MDPs) depends crucially on the extent to which
the information gathered from search is generalized to un-
seen states. In the absence of generalization and heuris-
tic guidance, the planner must explore the entire reachable
state space. In factored MDPs, the size of the state and
action spaces is exponential in the number of state and ac-
tion variables, causing algorithms that are polynomial in
the number of states and/or actions to be impractical. The
current state-of-the-art online algorithms based on e.g. ,
Real-Time Dynamic Programming (RTDP) (Barto et al.,
1995) and UCT (Kocsis & Szepesvári, 2006), search in
terms of atomic or “flat” states. They are unable to take
advantage of the factored structure present in the MDP de-
scriptions which allows strong generalization among states
(Boutilier et al., 1999).

In contrast, symbolic decision theoretic planners, such as
SPUDD (Hoey et al., 1999), do take advantage of the fac-
tored structure. These algorithms interleave Dynamic Pro-
gramming (DP) (Bertsekas & Tsitsiklis, 1996) updates with
steps of model minimization (Givan et al., 2003) in a se-
lected representation such as Algebraic Decision Diagrams
(ADD) (Bahar et al., 1993). These offline planners some-

times scale to large MDPs, but depend on compactly repre-
senting the optimal value function of the entire MDP (Hoey
et al., 1999). Due to this requirement, these algorithms ex-
ceed practical memory and time limits in many problems
of interest.

Symbolic Real-Time Dynamic Programming (sRTDP)
(Feng et al., 2002; Feng & Hansen, 2002) aims to com-
bine the benefits of the symbolic methods and online plan-
ning by incorporating symbolic state generalization into the
computation of the online planner. This effectively im-
poses state constraints capturing reachability from the cur-
rent world state into the symbolic computation. However,
sRTDP is a general framework, and its performance is sen-
sitive to the definition of generalized states. Existing defini-
tions in prior work lead to algorithms that exceed memory
limits in many cases. Despite the aim for generalization,
the resulting planner is often inferior to the corresponding
algorithms working in the flat state space (e.g. RTDP).

Our main contribution is the introduction of new symbolic
generalization operators that guarantee a more moderate
use of space and time, while providing non-trivial general-
ization. Using these operators, we present symbolic online
planning algorithms that combine forward search from an
initial state with backwards generalized DP updates. The
first algorithm, Path Dynamic Programming (PDP) (Sec-
tion 3.1), samples fixed-length trajectories by acting greed-
ily and refines one path in an ADD for each visited state. It
uses either an operator based on value invariance (PDP-V)
or one based on policy invariance (PDP-π). Both operators
yield anytime algorithms that guarantee convergence to the
optimal value and action for the current world state, while
maintaining bounded growth in the size of the symbolic
representation.

In spite of the slow growth of the value function repre-
sentation, intermediate computations in PDP leading to
that representation can potentially exceed memory limits.
This motivates our second operator that performs a more
careful control of space in its generalization. The result-
ing planning algorithm, Pruning Path Dynamic Program-
ming (pPDP) (Section 4), applies the pruning procedure of

Raghavan et al. (2013) to control the size of intermediate
results. The algorithm is convergent and provides general-
ization only when it does not increase space requirements
compared to flat state search. Thus, it is guaranteed not be
worse than flat state space search. It is the first symbolic al-
gorithm to yield a sound generalization while guaranteeing
not to use more memory than flat RTDP.

We empirically demonstrate (Section 5) the performance
of PDP and pPDP on three benchmark domains from the
recent International Probabilistic Planning Competitions
(IPPC), where the proposed algorithms scale significantly
better than previous results.

2 PROBLEM FORMULATION

2.1 Algebraic Decision Diagrams (ADD)

An Algebraic Decision Diagram (ADD) (Bahar et al.,
1993; Bryant, 1992) represents a real-valued function
Bn → R over n boolean variables compactly in the form
of a rooted Directed Acyclic Graph (DAG), where each in-
terior node has an associated test variable and two outgoing
edges labeled by true or false that lead to its children. An
example ADD is shown on the right of Figure 1. Every as-
signment of variables to truth values traces a unique path
to a leaf from the root. Each leaf node contains the value
of the ADD function for all assignments x that reach that
node. IfD is the ADD,D[x] represents its evaluation on x.
In the example, the assignment reboot c1=0, running c1=0,
and running c1’=0 leads to the value 0.95. A Binary Deci-
sion Diagram (BDD) is an ADD with 0/1 leaves.

We assume that the ADD is ordered in that there is a fixed
total ordering on the variables that all directed paths in the
ADD follow. Ordered ADDs have a canonical representa-
tion for any function (although their compactness depends
on the ordering) and they support polynomial time opera-
tions over the functions they represent. The unary “restrict
operator” fixes the value of a variable x to x or x̄ in ADD
D and returns a new ADD denoted by D↓x. In general, a
binary ADD operation C = A op B gives an ADD such
that C[x] = A[x] op B[x] for every x. The result C is
computed symbolically and in polynomial time in the size
of the ADDsA andB. Any binary operation can be used as
op, for example, {+,−,×,÷,max,min}. Marginalization
operations such as maxV D,minV D,

∑
V D are defined

naturally over all possible restrictions of D over values of
variables in the set V , e.g. maxxD ≡ max(D↓x, D↓x̄).
We also use the operator ⊕C for ADDs, where A⊕C B =
(1− C)A+ CB, for a binary valued ADD C. That is, the
result takes the values from B if C is true and otherwise
from A. This is similar to the ITE(C,B,A) notation in the
BDD literature. This operation can cause merging of paths
within the ADD due to reduction, e.g. if A and B agree on
many values.

A partial assignment is a truth assignment to a subset of
variables in D. An assignment is full if it assigns values
to all variables. An extension of a partial assignment is a
full assignment which is consistent with it. Every path in
the ADD from the root to the leaf defines a partial assign-
ment over the internal variables in that path. For example,
the path to 0.95 traversed in the example above, defines a
partial assignment to three of the variables but leaves other
variables, for example running c2, unspecified.

The path function for an ADD D maps a full assignment x
to the partial assignment defined by the path traced by x in
D and is denoted by Φ(D,x). The path function is repre-
sented as an ordered BDD that returns 1 for all assignments
consistent with the partial assignment and 0 otherwise. For
an assignment x, ADD D and φ = Φ(D,x), let ε(φ) de-
note the set of all extensions of φ.

Two additional transformations are useful. The first con-
verts a BDD B to an ADD D by mapping the 0-leaf in B
to −∞, denoted by D = B. The second, a complementing
operation, converts an ADD D to a BDD B by mapping
the 0-leaf in D to 1 and all other real-valued leaves to 0,
denoted by B = D.

2.2 Factored State and Action MDPs

An MDP (Puterman, 2014) is a tuple (S,A, T,R) where
S is a finite state-space, A is a finite action space, T :
S × A × S → [0, 1] denotes the transition function
T (s, a, s′) = Pr(s′|s, a), R : S × A → R denotes the
immediate reward of taking action a in state s. In this pa-
per, we focus on finite-horizon planning where the goal is
to maximize the expected cumulative reward over a speci-
fied horizon H . A non-stationary policy π = (π1, . . . , πH)
is a sequence of mappings such that each πi : S → A
determines the action to take in a state when there are i
steps-to-go. The value function of a policy π with i steps-
to-go is denoted by V πi (s), which gives the expected total
reward of following π starting in state s for i steps. The
value function of the optimal i-horizon policy is denoted
by V ∗i (s).

In a factored MDP (Boutilier et al., 1999) the state space
S and action space A are specified by finite sets of state
variables X = (X1, . . . , Xl) and action variables A =
(A1, . . . , Am). We will assume that the variables are dis-
crete and binary so that |S| = 2l and |A| = 2m.

The transition and reward functions are defined in terms
of state and action variables using a Dynamic Bayesian
Network (DBN), a two-time-step graphical model that cap-
tures the variables at time t that influence the value of each
X ′i at time t + 1 via the conditional probability functions
P (X ′i|Parents(X ′i)). The reward function is represented as
a node at time t+1. Following Hoey et al. (1999), the func-
tions are represented using ADDs (Bahar et al., 1993) to

Figure 1: Example of a Factored MDP with Factored Ac-
tions. The ADD on the right shows the conditional proba-
bility distribution for running c1.
compactly capture sparsity and context-specific dependen-
cies often found in factored MDPs (Boutilier et al., 1999).

For example, Figure 1 shows a DBN for the SysAdmin
problem (Guestrin et al., 2001) (see Section 5). The DBN
encodes that the computers ‘c1’, ‘c2’ and ‘c3’ are arranged
in a directed ring so that the running status of each is in-
fluenced by its reboot action and the status of its prede-
cessor. The ADD (right panel) shows that the proposition
‘running c1’ cannot become false if it is ‘rebooted’, and
otherwise the next state depends on the status of the neigh-
bors. If currently running, it fails w.p. 0.3 if its neighboring
computer ‘c3’ is not operational, and w.p. 0.05 otherwise.
A failed computer becomes operational w.p. 0.05.

In previous work we generalized the symbolic approach of
SPUDD (Hoey et al., 1999) and introduced algorithms that
handle factored states and factored actions. This includes
Factored Action Regression (FAR) (Raghavan et al., 2012),
a symbolic version of Value Iteration (VI). By leveraging
ADD operations (near-)optimal value functions/policies
are deduced in propositional logic without enumerating the
states and actions. Symbolic VI using FAR works by iter-
ating Equation 1,

Q = [R+ γ
∑
X′

1

PX′
1 × . . .

∑
X′

l

PX′
l × (Vn)′] (1)

with V0 = 0 and Vn+1 = maxA1...Am
Q. Here (Vn)′

swaps the state variables X in the diagram Vn with next
state variables X ′, each summation computes the expecta-
tion over one X ′i and marginalizes (and removes) X ′i from
the ADD. Therefore, the ADD Vn+1 is the result of one
backward DP update for all states.

Below we also use a decision diagram representation of
policies. Following (Raghavan et al., 2013) the policy is
represented as a BDD over state and action variables and
evaluates to 1 on the policy action for a given state. This
can be calculated using diagram operations as πn+1 =
maxAQ−Q, where D is the complementing operator
(Section 2.1). Since maxAQ−Q ≥ 0 everywhere and> 0
on paths that include suboptimal actions this identifies the
greedy policy with respect to Q. Below we slightly abuse
notation and denote this operation as πn+1 = arg maxAQ.

Unlike other approaches to factored MDPs based on func-
tion approximation (Guestrin et al., 2001; Koller & Parr,
2000), the symbolic algorithms do not require engineered
basis functions but rely on compactly representing value
functions and policies. FAR and Opportunistic Policy It-
eration (Raghavan et al., 2013), a memory-efficient sym-
bolic variant of Modified Policy Iteration (Puterman &
Shin, 1978) using FAR, are currently the most effective
symbolic algorithms for factored MDPs. As mentioned
above, in many cases these methods fail due to the mem-
ory exhaustion caused by progressively larger ADDs Vn as
n increases. Symbolic Online Planning aims to reduce the
memory usage by restricting to the state space reachable
from the current world state.

2.3 Symbolic Online Planning

In order to facilitate the presentation of online symbolic
methods we next consider an update that explicitly controls
which states are updated. Let X be a BDD representing
some set of states, and let X be the corresponding con-
straint ADD mapping states in X to 1, and states not in X
to −∞. The operator B∗(V,X) performs an exact update
(a Bellman backup) for the values of states inX and copies
the values from V for other states using ⊕. This operator
can be implemented via the ADD expression:

B∗(V,X)
∆
= V ⊕X [max

A
(R+ γEX′

1
. . . EX′

l
(X × V ′))] (2)

where multiplication by X is not necessary for correct-
ness but it helps control space. The product of V ′ with X
fixes the value of states that are not in the set X to −∞.
Therefore, the sum and product operations also result in
−∞ without increasing the size of ADDs for these states.
The constraint X can be pushed inside the summations due
to the distributive property of ADD operations (Raghavan
et al., 2013). Note that sRTDP uses an operator equivalent
to B∗(V,X) via a more memory intensive ADD expres-
sion.

We can now explain more general algorithms. Let X de-
note a set of states or “a generalized state” and s denote
an atomic state or “flat state”. FAR (Equation 1) uses the
backup of Equation 2 with X = 1, which means it updates
the values of all states.

Real-Time Dynamic Programming (RTDP) (Barto et al.,
1995) is an online planning algorithm that only updates the
values of reachable states. RTDP works by simulating tra-
jectories from a starting state and setting X = s for each
encountered flat state s. While each update is time and
space-efficient, convergence can take a long time in fac-
tored MDPs.

sRTDP (Feng et al., 2002) generalizes RTDP updates, uses
an update similar to Equation 2 by setting X to an arbi-
trary set of states. The set X is defined by an equivalence
relation over states (e.g. the bisimulation relationship (Gi-
van et al., 2003)), which is in practice, heuristically chosen

to trade off the efficiency of the update with the benefit of
generalization. An unwise choice of X in Equation 2 can
lead to unreasonable space (or time) requirements. Despite
its goal of generalization, the performance of sRTDP can
be inferior to RTDP in the online setting where both space
and time are limited.

Next we describe our formulations of generalized states
X that lead to efficient updates both in time and space.
Convergence of RTDP (and sRTDP) can be retained if X
includes state s. Efficiency comparable to RTDP can be
achieved if the generalized value functions and policies can
be captured with about the same amount of memory. We
give equivalence relationships that are more restricted than
bisimulation (Li et al., 2006), and lead to efficient symbolic
online algorithms.

3 PDP

Our algorithms are instantiations of Trial-Based Real Time
Dynamic Programming (RTDP) (Barto et al., 1995; Keller
& Helmert, 2013) with a particular generalized backup
function and a fixed trial length. They have two parameters
: a lookahead integer H > 0 that is the length of trajecto-
ries and a real valued ε that controls approximation error in
the values of states.

In contrast to most online planners which use a tabular rep-
resentation, we maintain one value ADD V d, d ∈ [0, H−1]
per level of the lookahead tree. We chose this over a global
ADD (as in sRTDP) because it allows representing non-
stationary policies and value functions compactly, as well
as allowing different levels of approximation per level, e.g.,
for increasingly coarse representations of the future . In ad-
dition, to simplify the presentation, we explicitly maintain
a policy BDD πd, for each level d.

Our algorithms start from an initial state and sample a tra-
jectory 〈s0, a0, . . . , aH−2, sH−1〉 by following the greedy
policy π0, . . . , πH−1. Then, the ADDs are updated in the
backward direction: V H−1 is updated from the ADD 0,
V H−1 is used to update V H−2 and so on till V 0, which
includes s0 but may be more general.

The general pseudocode for all the algorithms is shown
in Figure 2. They have an update of the form V =
V ⊕M maxAQ. The algorithm requires three properties:
(A) M is a path over state variables (hence the name Path
Dynamic Programming), (B) Q is an ADD over state and
action variables with updated values for a super-set of the
states in M . (C) The current state si is included in path M .

Proposition 1. Any instance of the PDP algorithm (Figure
2) satisfying properties B and C converges to the optimal
value (and action) for s0.

Proof (sketch): The proof directly follows from the con-
vergence of Trial-Based RTDP (Barto et al., 1995). First,

Algorithm 3.1: (ADDs V 0, . . . , V H−1, π0, . . . , πH−1)

Initialize each V i ← (H − i+ 1)Rmax, πi ← NoOp.
Sample trajectory 〈s0, a0, . . . , aL−1, sL〉 using π.
for i← L− 1 downto 0

do


if PDP-V then (Q,M)← Equations 4, 5
if PDP-π then (Q,M)← Equations 6, 8
if pPDP then (Q,M)← Equations 9, 11
V i ← V i ⊕M maxAQ
πi ← πi ⊕M arg maxAQ

if beyond time or trajectory budget
then return π0(s0)

Figure 2: Pseudocode for Path Dynamic Programming
(PDP). A⊕X B = (1−X)A+XB.

it can be shown that PDP maintains the invariants Vi ≥ V ∗i
for all i. Second, it uses greedy action selection to sample
trajectories and each trajectory always includes the state s0.
Hence if each update is equivalent to DP update on some
states, the value and policy at s0 converge to their optimal
values.

3.1 PDP-V

The main idea for PDP is to restrict the update to one path
in the ADD, instead of one state in RTDP, and PDP-V uses
one path in the value ADD. However, this requires a careful
control of the set M as shown below.

B(V, s) = V ⊕M max
A

Q (3)

Q = R+
∑
X′

1

P1 × . . .
∑
X′

l

Pl × (Φ(V, s)× V ′)

(4)

M = Φ(max
A

Q, s) ∧ Φ(V, s) (5)

For a given state s and value ADD V , the values of all states
that are extensions of the current path Φ(V, s) are updated
in the ADD Q (Equation 4). The ADD maxAQ has up-
dated values for the path extensions of Φ(V, s) and −∞
otherwise. But using this update with M = Φ(V, s) might
lose compactness if many of the extensions of Φ(V, s) have
different values. Additionally, the new path Φ(maxAQ, s)
can be shorter than Φ(V, s) whereas only the extensions
Φ(V, s) have correctly updated values. Sound generaliza-
tion and compactness are both achieved by restricting the
update to the path refinement of Φ(V, s) by setting M to
be the intersection of the set of states that share the same
path as state s before and after the update. This is the main
difference between PDP and sRTDP. It guarantees that the
updated V has the same number of leaves as the flat state
update, an important guarantee for a symbolic method.

Proposition 2. Let V be an ADD, s a state, W = B(V, s)

and M the path according to Equation 5.
(a) For all states q ∈ ε(M), W [q] = B∗(V, q)[q].
(b) W grows by at most one leaf node over V .

Proof (sketch): (a) follows because ADD Q is a sound
update for states in Φ(V, s) (because the constraint Φ(V, s)
can be pushed inside the summation as in Raghavan et al.
(2013)). The BDD M represents a subset of states that
satisfy Φ(V, s) due to Equation 51. (b) is true because the
path M leads to a leaf in maxAQ. For paths in 1−M the
values are copied from V and do not add leaves to W .

The first part of Proposition 2 guarantees the convergence
of PDP-V according to Proposition 1. In practice, it is
observed that the paths in symbolic VI often remain un-
changed between consecutive iterations while the values
have not converged. PDP-V updates these efficiently and
succinctly, gaining a speedup proportional to the number
of states in the path. However, in order to find the mask
M in PDP-V we have to calculate updated values for all
extensions of Φ(V, s) in Equation 4, and in some cases this
preparatory step exceeds memory limits. Section 4 gives
an algorithm that does not have this disadvantage.

3.2 PDP-π

PDP-π similarly restricts the update to one path. However,
is appeals to the notion of policy irrelevance (Jong, 2005;
Li et al., 2006; Hostetler et al., 2014), that captures states
having the same optimal action. Recall that PDP main-
tains a policy representation in addition to the value ADDs.
PDP-π updates states that share a path in π before and after
a DP update to the policy. The memory efficiency of path
refinement is retained with respect to the policy represen-
tation.

PDP-π starts with a trivial policy (e.g. NoOp) and refines
the policy for generalized states visited by trajectories. In
this way, PDP-π behaves more like a policy search method.
It is well known that in some cases paths in the policy BDD
remain unchanged during iterations of symbolic VI even
though the values keep changing. PDP-π captures these
succinctly (Section 5).

Let π(s) be the policy action, i.e., a complete assignment
to action variables for state s according to BDD π, π(s) =
arg maxA π↓s. In case of a tie, some action variables are
set to false (including the case when they are unspecified by
π↓s). Let Φπ(s) be the path over state variables according
to the greedy action in π, Φπ(s) = Φ(π, s ∧ π(s)). The
update is similar to PDP-V except it uses Φπ and arg max

1Note that the proposition does not hold for the path Φ(W, s)
(rather than M) due to the ⊕ operator which might merge an up-
dated path with a path that was not updated.

instead.

Q = (R+
∑
X′

1

P1 × . . .
∑
X′

l

Pl × (Φπ(s)× V ′)) (6)

µ = arg max
A

Q (7)

M = Φµ(s) ∧ Φπ(s) (8)

The ADD Q contains updated values for the states in
Φπ(s) rather than Φ(V, s) as in PDP-V. The mask M uses
µ = arg maxAQ to denote the greedy policy BDD ex-
tracted from Q. Finally, the policy BDD is updated as
π = π ⊕M arg maxAQ. Clearly, the property in Proposi-
tion 2 (a) holds here as well and therefore by Proposition 1
the algorithm PDP-π converges.

4 pPDP

The idea in pPDP is to repeatedly prune the intermediate
ADDs of Equation 4 so that the ADD Q has space com-
plexity no larger than the DP update of a flat state. We use
the pruning operator proposed in (Raghavan et al., 2013)
to control the size of the ADD. Briefly, the pruning opera-
tor denoted by P(D,C) for an ADD D and a constraint C
represented as a BDD returns an ADD which is no larger
than D. The result of pruning removes some of the paths
from D that violate the constraint C but not all.

Lemma 1. (Raghavan et al., 2013). Let G = P(D,π)
then
(1) Every path in G is a sub-path of a path in D.
(2) If a path p in G does not lead to −∞, then for all ex-
tensions y ∈ ε(p), G(y) = D(y).
(3) If a path p inG does lead to−∞, then for all extensions
y ∈ ε(p) either π(y) = −∞ or D(y) = −∞.

Part (1) gives a strong memory guarantee thatG is no larger
than D. Pruning accomplishes this by leaving some paths
in G unchanged if only some (not all) of their extensions
violate the constraint. pPDP uses the flat state C = s as the
constraint. Let Ps(D) denote P(D, s) for any ADD D and
a flat state s.

Q = Ps(R+ Ps(
∑
X′

1

P1 × . . .Ps(
∑
X′

l

Pl × V ′))) (9)

As the expectation is computed over X ′i , state and action
variables are introduced into the paths of V ′. The paths that
do not cover the current state are pruned and point to −∞.
Hence it is efficient to compute the ADD Q in memory.

Proposition 3. (1)Q containsO(2m) paths over state and
action variables that do not lead to −∞.
(2) Every path p that does not lead to −∞ is a DP update
for the Q-value of all states and actions in p.

Proof (Sketch) : (1) is due to using the state s as the con-
straint. Any path that has assignments to state variables

Figure 3: Example illustrating the mask M in pPDP. V is
set to Rmax initially. Q is computed using Equation 9 for
the state s1 = 1, s2 = 1. The ADD maxAQ gives an
incorrect value for s1 = 1, s2 = 0, compared to W , the
update using PDP-V (Equation 3).

differing from s is pruned and leads to −∞. The paths
that do not lead to −∞ have different assignments to ac-
tion variables for a maximum of O(2m) paths. (2) is due
to part two of Lemma 1 because the pruning operator does
not alter the paths that are consistent with state s.

The pruning operator removes portions of the diagram in
subtle ways and therefore we have to be careful in choosing
the mask M . Consider using the path M = Φ(maxAQ, s)
which at first appears to be a natural choice. Unfortunately,
this path does not give sound generalization because of the
maximization.

To illustrate this, consider the hypothetical diagram Q
shown on the left of Figure 3 where the state s assigns
s1 = 1 and s2 = 1 and paths disagreeing with this assign-
ment have been replaced with −∞. The diagram maxAQ
is shown on the right and gives a value of 10 for state
s1 = 1 and s2 = 0. This is incorrect since the true value
of Q from the path s1 = 1, a = 1, s2 = 0 can be larger
than 10. In maxAQ the true value of the states on this path
is ignored and assumed to be −∞, and therefore the value
calculated for the partial assignment s1 = 1 is not correct
for all extensions.

To guarantee correctness we require that all the values in
the sub-diagram below the node to be different than −∞.
Therefore, states whose values are valid in maxAQ are
those where for all actions A, (Q 6= −∞), denoted by the
BDD ∀A(Q 6= −∞). In this example, (Q 6= −∞) when
{s1 = 1, A = 0} ∨ {s1 = 1, A = 1, s2 = 1}, and quantifi-
cation yields the mask M = {s1 = 1, s2 = 1}. Note that
the BDDs (Q 6= −∞) and ∀A(Q 6= −∞) cannot be zero
because all actions are updated in state s. Therefore, in the
worst case, the mask M is equal to the state s and the step
degenerates to a flat RTDP update. Formally, the operator
used in pPDP is

B̂(V, s) = V ⊕M Ps(max
A

Q) (10)

M = Φ(∀A(Q 6= −∞), s) (11)

Proposition 4. Given an ADD V and state s, let W =
B̂(V, s) as in Equation 10, and let M be the path from 11.

Then, ∀q ∈ ε(M), W [q] = B∗(V, q)[q].

The proof follows from the soundness of pruning (Lemma
1) and the fact that all path extensions of M lead to a value
not equal to −∞ in Q. Therefore, by Proposition 1 pPDP
converges as well. In cases where PDP exceeds memory
limits pPDP can capture some of the sound generalizations,
precisely those that can be captured without increasing the
size of intermediateQADD. The only overhead in pPDP is
the time required for the pruning operations which is neg-
ligible.

5 EXPERIMENTS

We now evaluate the empirical impact of our proposed
generalization operators within the family of RTDP-syle
algorithms. To do this we compare our algorithms
PDP-V, PDP-π, and pPDP to the following baselines:
1) RTDP(Table) is a simple table-based implementa-
tion of RTDP with state values initialized to Rmax. 2)
RTDP(ADD) is like RTDP(Table) (i.e. no state general-
ization), except that each state backup is done symbolically
using the FAR operator. This can be more efficient for fac-
tored actions compared to enumerating actions. 3) sRTDP
(Feng et al., 2002), where our implementation uses FAR for
updates in order to exploit factored actions. 4) LR2TDP
(Kolobov et al., 2012) is an extension of RTDP(Table) to
solve finite horizon MDPs using iterative deepening and
labeling, which was successful in recent planning competi-
tions. 5) FAR (Raghavan et al., 2012) as described above.
FAR is limited to 500 minutes of offline planning and then
the resulting policy is executed online. This algorithm is
only applicable to some of the small problem instances in
our experiments and is included to give an optimal baseline
value when possible.

All planners were implemented in a common framework,
except for LR2TDP, for which we used the publicly avail-
able code. For PDP-V and pPDP, we initialized each V i

with Rmax (scaled by i). For PDP-π, we initialized πi to
the NoOp policy. Planning domains and problems are spec-
ified in the Relational Dynamic Influence Diagram Lan-
guage (RDDL) (Sanner, 2010), which we convert to an
ADD-based representation. The ADD variable ordering
puts parents(X ′i) above X ′i , where the X ′is are ordered
(ascending) by the number of parents that are action vari-
ables. Note that the parents include current state variables
and action variables so that this defines an ordering over all
variables. In all experiments, our symbolic operators allow
an approximation error of ε = 0.1 with the upper bound
merging strategy (St-Aubin et al., 2001).

Our experiments below are on 5 problem instances of vary-
ing sizes from three domains of the 2011 and 2014 Inter-
national Probabilistic Planning Competitions (IPPCs). A
memory limit of 4G is imposed to restrict the size of the

ADDs, beyond which the planner can no longer proceed
which we denote as “EML”(Exceeded Memory Limit). A
planner is evaluated on a problem by running 30 trials of
horizon 40 and averaging the total reward across the trials.
We report the averages and 95% confidence intervals for
each problem. Planners use a specified time limit per deci-
sion and we give results for different time limits. The value
functions and policies are reinitialized after each decision.

Academic Advising Problem: The Academic Advising
domain (Guerin et al., 2012), from IPPC 2014, is a stochas-
tic cost minimization problem that models the process of
selecting the courses for a student in order to complete de-
gree requirements, where the courses have complex pre-
requisite structure. The state space encodes which courses
have been taken and whether they were passed or not. The
actions at each step correspond to selecting one or more
courses to take next. We consider two variants of the do-
main, a non-concurrent variant, which only allows a single
course to be selected at each decision point, and a concur-
rent version, which allows multiple courses to be selected.
The dynamics encode the probability that a course is passed
if taken. Missing requirements and retaking of courses are
penalized.

Figure 42 shows the performance vs. time for the differ-
ent planners on IPPC 2014 problem instances for the non-
concurrent and concurrent variants. All algorithms use
a planning lookahead horizon of 16 steps. In the non-
concurrent variant and shortest time limit (top left panel),
we see that sRTDP fails to scale beyond the two smallest
problems, and that FAR is able to solve these two prob-
lems as well. In larger instances both of these methods
EML. In contrast, PDP-V, PDP-π and pPDP are able to
give good performance across problem sizes. Moreover,
for the smallest instances where FAR is able to compute
an optimal policy, these algorithms yield near optimal per-
formance. This result demonstrates the importance of us-
ing update operators that attempt to trade-off generalization
and memory usage.

The flat search methods RTDP(Table), RTDP(ADD), and
LR2TDP do not perform well. For the largest three in-
stances, these methods have a return no better than that of
a NoOp policy. This shows the importance of generaliza-
tion across states in order to achieve good performance in
reasonable time.

Comparing performance across time limits (increasing time
from left to right) we see the following. The flat search
methods are not able to improve by much as the time limit
is increased. PDP-V, PDP-π and pPDP also do not improve
significantly with more time.Importantly they are able to
avoid EML as more trajectories are sampled with larger
time limits. PDP-V shows the most improvement on the
largest instance as time increases. This shows that, in this

2Charts best viewed in color.

domain, the use of generalization by our methods is the
dominating factor in improving performance, and is even
more effective than increasing the time limit.

Figure 4 (bottom) shows results for the same problem in-
stances, but with concurrency (of 5 for the first instance
and 2 for others). Here, both sRTDP and FAR (not shown)
EML even for the smallest instances. The flat search
methods degrade quickly as the problem instances become
larger. Our proposed methods (with one exception) outper-
form the competitors, especially for the larger instances.
The exception is PDP-π on the largest instance, which re-
sults in EML after 18 seconds of planning due to the size
of the intermediate ADDs in Equation 6. If we increase
the time further (not shown here), PDP-V also does EML.
On the-other-hand pPDP does not result in EML due to its
guarantees on bounding the diagram size (including inter-
mediate diagrams), possibly at the expense of less aggres-
sive generalization.

SysAdmin Problem : SysAdmin (Guestrin et al., 2001)
models a computer network with n computers. Comput-
ers can fail with some probability, which requires a reboot
action to correct. Neighbors of a failed computer have a
higher probability of failing. The reward is based on the
number of running computers with a cost associated with
a reboot action. Unlike the academic advising domain, the
number of reachable states in this domain is practically the
entire state space. To allow sRTDP to produce non-EML
results we consider networks of 10 computers connected
in a star network. Following Raghavan et al. (2012), we
consider problems that vary the maximum number of com-
puters that can be rebooted per decision (1, 3, 5, 7, or 10),
which gives a progressively growing factored action space.

Figure 5 gives results for three different time-limit settings.
Due to the highly random nature of the problem, we used a
short lookahead of four steps for all algorithms. The curve
above the bar graphs shows the performance of the optimal
policy found by FAR.

sRTDP exhibits interesting behavior in this domain. It
performs worse than using no state generalization (i.e.
RTDP(ADD)) in the first four instances and then optimally
for the largest instance. The increased complexity of the
sRTDP backup causes poor performance in the smaller ac-
tion spaces—sRTDP samples fewer trajectories than our al-
gorithms. On the largest instance as the value ADD be-
comes more compact (more states have similar values),
sRTDP is able to exploit generalization. This shows the
difficulty of predicting apriori how much space and time
the sRTDP generalization operator may require. In this do-
main, PDP-V and pPDP scale similarly to RTDP(ADD),
because the reward function involves counting the number
of computers, which makes the path formula Φ(R, s) the
same as s. This means that these algorithms achieve very
little state generalization in this domain. However, they

Figure 4: Academic Advising Problem : Performance vs. Time for time limits 6, 12 and 18 seconds per decision without
(with) concurrency in the top (bottom) panels respectively. Error bars show 95% confidence intervals. The state space is
22x, x is the number of courses shown on the x-axis.

do outperform RTDP(Table) due to the use of the factored
FAR backup compared to a backup based on action enu-
meration.

In this domain, PDP-π clearly outperforms PDP-V and
pPDP. In this case, policy irrelevance is able to capture
abstract states more succinctly. For example, in the first
instance, any state in which the computer at the center
of the network is down has the same path formula : ∼
running c1 ⇒ reboot c1. Note that the values of these
states are not equal and depend on the status of other com-
puters. As parallelism increases, nodes near the center get
added to these rules regardless of the status of nodes farther
away. Clearly, in this domain, generalization based on pol-
icy irrelevance is more appropriate than value irrelevance.

Finally we see that as the time limit increases there is a
small improvement in performance for most algorithms. It
is clear that the increase in performance due to larger time
limits is not as significant as using the appropriate general-
ization mechanism, in this case policy irrelevance.

Crossing Traffic Problem: This IPPC 2011 domain mod-
els the arcade game Frogger, where the agent moves in a
2-D grid to cross a road to reach a goal location, while
avoiding right-to-left moving cars that enter the road ran-
domly from the rightmost column. The reward is -1 for
each move and -40 for collision.

The boolean encoding of this domain has |S| = O(22(n2))
for an n × n grid, with two bits per cell for the presence
of the agent and car respectively. However, depending on
the current location of the agent, many of these bits can be
ignored for predicting the optimal value and action.

Figure 6 shows the results for different time limits and
problem instances involving 3x3, 4x4, and 5x5 grids. There
is larger variance in this domain, compared to the others,
due to collisions. We see that sRTDP performs well in the

first three instances and is able to improve with more time
per decision. However, in instances 4 and 5 sRTDP exceeds
memory limits when given more time. PDP-V and PDP-π
scale to these instances and times without EML. PDP-π
performs better than PDP-V initially but PDP-V is able to
improve more than PDP-π with more time per decision. We
see that these algorithms outperform RTDP(ADD), show-
ing that generalization is clearly useful in this domain.
Again we see that generalizing appropriately is the dom-
inating factor toward performance compared to increasing
the time limit. pPDP never performs worse than the flat
search methods RTDP(Table) and RTDP(ADD), and out-
performs them in some cases. Its less aggressive general-
ization, however, leads to overall worse performance com-
pared to our other algorithms.

Large instances : The preprocessing of translating RDDL
to propositional logic does not scale for the large instances
from the IPPC. For the purpose of showing the scaling
of our algorithms, we refactored the RDDL domain - by
decomposing the “robot-at(x,y)” propositions into two in-
dependent propositions “robot-at(x)” and “robot-at(y)” be-
cause the actions’ effects are independent along x and y di-
mensions. Figure 8 shows the performance of PDP, PDP-π,
pPDP and sRTDP for grids of sizes 6× 6 and 7× 7.

The algorithms are given much more time per decision to
demonstrate the comparative scaling. The charts show the
percentage out of 30 trials that the agent reached the goal.
We see that in the 6x6 grid (left panel) PDP-V outperforms
sRTDP by a large amount. sRTDP is able to scale with
time without EML and slowly converges to optimal perfor-
mance. By comparison, sRTDP does not perform well in
the 7 by 7 problem (right panel) whereas PDP-V is able
to make progress. PDP-π performs worse (better) than
sRTDP in the former (latter) instance. The flat search meth-
ods are not able to make any progress in this problem due

Figure 5: SysAdmin Problem vs. concurrent actions : The state space is 210 and action space is O(2x), x is the maximum
number of parallel actions.

Figure 6: Crossing Traffic Problem : The odd numbered instances have 3× 3, 4× 4, and 5× 5 grids arrival probability of
30%. The even numbered instances have the same grid sizes but with arrival probability of 60%.

Performance vs. Time for 6, 12 and 18 seconds per decision. Error bars show 95% confidence intervals.

Figure 8: Crossing Traffic (large instances) : Performance
vs. Time with 30, 60, 90 and 120 seconds per decision.
Error bars show 95% confidence intervals.

Figure 9: A generalized state discovered by PDP-V in the
Crossing Traffic problem. The grid denotes a flat state s0

and the tiles in blue denote the generalized state Φ(V0, s0).

to the large stochastic branching factor. pPDP is able to
improve on the flat search in the first instance but falls back
to the flat method in the larger problem.

Finally, we present a generalized state found by PDP-V to
illustrate the effectiveness of generalization in these prob-
lems. Figure 9 shows an instance of the Crossing Traffic
problem. All the cells in the grid, including the location
of the agent and each car, constitute a flat state. The cells
within blue denote the cells that appear in the path formula
Φ(V0, s0) after running PDP-V from s0. We see that PDP-

V is able to ignore the assignments to many cells that are
irrelevant for optimal online planning.

6 SUMMARY

We presented the first fully symbolic planning algorithms
for factored MDPs that generalize simulated experience
soundly and efficiently. This work is orthogonal to re-
search on improving the anytime performance of RTDP al-
gorithms via smart sampling (McMahan et al., 2005; Walsh
et al., 2010) and heuristics (Kolobov et al., 2012; Keller
& Helmert, 2013). There were several observations from
our experimental results. First, in all domains, we saw that
using the appropriate form of generalization was the dom-
inating factor towards good performance compared to in-
creasing the time-limit for algorithms without state gener-
alization. Second, we saw that the most appropriate form
of generalization can differ across domains and sometimes
problem instances within a domain. This suggests that it
is fruitful to investigate mechanisms for tuning or select-
ing among generalization methods. Third, pPDP never
exceeded memory limits, while other generalization ap-
proaches did occasionally. Further, previous versions of
sRTDP, very frequently exceeded memory limits. This sug-
gests that pPDP is perhaps the safest choice for generaliza-
tion, especially for large problems and short time limits.

Acknowdgements

This work was supported by NSF under grants IIS-0964705
and IIS-0964457.

References
Bahar, R Iris, Frohm, Erica A, Gaona, Charles M, Hachtel,

Gary D, Macii, Enrico, Pardo, Abelardo, & Somenzi, Fabio.
1993. Algebraic Decision Diagrams And Their Applications.
In: Computer-Aided Design.

Barto, Andrew G, Bradtke, Steven J, & Singh, Satinder P. 1995.
Learning To Act Using Real-Time Dynamic Programming. Ar-
tificial Intelligence, 72(1).

Bertsekas, Dimitri P., & Tsitsiklis, John N. 1996. Neuro-Dynamic
Programming.

Boutilier, Craig, Dean, Thomas, & Hanks, Steve. 1999. Decision-
Theoretic Planning: Structural Assumptions And Computa-
tional Leverage. Journal Of Artificial Intelligence Research
(JAIR), 11(1).

Bryant, Randal E. 1992. Symbolic Boolean Manipulation With
Ordered Binary-Decision Diagrams. ACM Computing Surveys
(CSUR), 24(3).

Feng, Zhengzhu, & Hansen, Eric A. 2002. Symbolic Heuristic
Search for Factored Markov Decision Processes. In: Eigh-
teenth National Conference on Artificial Intelligence.

Feng, Zhengzhu, Hansen, Eric A, & Zilberstein, Shlomo. 2002.
Symbolic Generalization For Online Planning. In: Proceed-
ings of the Nineteenth Conference on Uncertainty in Artificial
Intelligence (UAI).

Givan, Robert, Dean, Thomas, & Greig, Matthew. 2003. Equiv-
alence Notions And Model Minimization In Markov Decision
Processes. Artificial Intelligence, 147(1).

Guerin, Joshua T, Hanna, Josiah P, Ferland, Libby, Mattei,
Nicholas, & Goldsmith, Judy. 2012. The Academic Advising
Planning Domain. WS-IPC 2012.

Guestrin, Carlos, Koller, Daphne, & Parr, Ronald. 2001. Mul-
tiagent Planning With Factored MDPs. Advances In Neural
Information Processing Systems (NIPS).

Hoey, Jesse, St-Aubin, Robert, Hu, Alan, & Boutilier, Craig.
1999. SPUDD: Stochastic Planning Using Decision Diagrams.
In: Proceedings Of The Fifteenth Conference On Uncertainty
In Artificial Intelligence (UAI).

Hostetler, Jesse, Fern, Alan, & Dietterich, Tom. 2014. State Ag-
gregation In Monte Carlo Tree Search. In: Twenty-Eighth
AAAI Conference on Artificial Intelligence (AAAI).

Jong, Nicholas K. 2005. State Abstraction Discovery From Irrel-
evant State Variables. In: Proceedings of the Nineteenth Inter-
national Joint Conference on Artificial Intelligence (IJCAI).

Keller, Thomas, & Helmert, Malte. 2013. Trial-Based Heuristic
Tree Search For Finite Horizon MDPs. In: Twenty-Third Inter-
national Conference on Automated Planning and Scheduling
(ICAPS).

Kocsis, Levente, & Szepesvári, Csaba. 2006. Bandit Based
Monte-Carlo Planning. In: Proceedings of the 17th European
Conference on Machine Learning (ECML).

Koller, Daphne, & Parr, Ronald. 2000. Policy Iteration For Fac-
tored MDPs. In: Proceedings of the Sixteenth Conference on
Uncertainty in Artificial Intelligence (UAI).

Kolobov, Andrey, Dai, Peng, Mausam, Mausam, & Weld,
Daniel S. 2012. Reverse Iterative Deepening for Finite-
Horizon MDPs with Large Branching Factors. In: Twenty-
Second International Conference on Automated Planning and
Scheduling (ICAPS).

Li, Lihong, Walsh, Thomas J, & Littman, Michael L. 2006. To-
wards a Unified Theory of State Abstraction for MDPs. In:
Proceedings of the Ninth International Symposium on Artifi-
cial Intelligence and Mathematics (ISAIM).

McMahan, H Brendan, Likhachev, Maxim, & Gordon, Geof-
frey J. 2005. Bounded Real-Time Dynamic Programming:
RTDP with Monotone Upper Bounds and Performance Guar-
antees. In: Proceedings of the 22nd International Conference
on Machine Learning (ICML).

Puterman, Martin L. 2014. Markov Decision Processes: Discrete
Stochastic Dynamic Programming.

Puterman, Martin L, & Shin, Moon Chirl. 1978. Modified Policy
Iteration Algorithms for Discounted Markov Decision Prob-
lems. Management Science.

Raghavan, Aswin, Joshi, Saket, Fern, Alan, Tadepalli, Prasad,
& Khardon, Roni. 2012. Planning in Factored Action Spaces
with Symbolic Dynamic Programming. In: Twenty-Sixth AAAI
Conference on Artificial Intelligence (AAAI).

Raghavan, Aswin, Khardon, Roni, Fern, Alan, & Tadepalli,
Prasad. 2013. Symbolic Opportunistic Policy Iteration for
Factored-Action MDPs. In: Advances in Neural Information
Processing Systems (NIPS).

Sanner, Scott. 2010. Relational Dynamic Influence Diagram Lan-
guage (RDDL): Language Description. Unpublished ms. Aus-
tralian National University.

St-Aubin, Robert, Hoey, Jesse, & Boutilier, Craig. 2001. APRI-
CODD: Approximate Policy Construction using Decision Di-
agrams. Advances in Neural Information Processing Systems
(NIPS).

Walsh, Thomas J, Goschin, Sergiu, & Littman, Michael L. 2010.
Integrating Sample-Based Planning and Model-Based Rein-
forcement Learning. In: Twenty-Fourth AAAI Conference on
Artificial Intelligence (AAAI).

