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Abstract
Intelligent user interfaces increasingly employ
machine-learning components in order to learn
about individual users and optimize the interface
accordingly. In all of these cases, the learning tasks
must be defined before deployment and a machine-
learning expert must be involved in the develop-
ment process. Unfortunately, this methodology sig-
nificantly limits the potential utility of machine-
learning in intelligent user interfaces since there is
no way for a user to create new learning compo-
nents that serve specific needs as they arise. Our
work addresses this shortcoming by developing a
framework for user-initiated learning (UIL), where
the end user is able to define new learning tasks in
a natural way, after which the system automatically
generates a learning component, without the inter-
vention of a machine-learning expert. In particular,
we consider a UIL scenario where the user is able to
define learning problems for predicting when cer-
tain activities are forgotten by the user (e.g. en-
crypting an email message), upon which the sys-
tem can generate warnings. We describe the knowl-
edge representation and reasoning mechanisms re-
quired to replace the machine-learning expert, so
as to automatically generate training examples, la-
bel the examples, select legal and relevant features,
and finally learn the required concept. We present
an implementation of this approach in the context
of a popular email client and give initial experimen-
tal results.

1 Introduction
There is an increasing push toward making user interfaces
more customizable and adaptive to the specific needs and ten-
dencies of a user. A common way to achieve this is to inte-
grate one or more machine learning components into the in-
terface that are tuned to learn about particular aspects of a
user’s behavior and environment. The learned knowledge can
then be used for customization. As an example, the Computer
Assistant that Learns and Organizes (CALO) project, which
our work is part of, has developed many machine learning
components for tasks such as predicting the email recipient

list, the importance of a message, the folder a user wishes to
navigate to, and the project a file is associated with.

The current development paradigm for such adaptive in-
terfaces is to define all learning tasks before deployment and
to employ machine learning experts to develop the associ-
ated learning components. Unfortunately, this paradigm lim-
its use of machine learning to a relatively small number of
learning tasks that are believed to be the most generally use-
ful across a user base. This precludes the user from exploit-
ing the potential benefits of machine learning for their spe-
cific needs as they arise after deployment. Furthermore, even
if the user could plug in their own machine learning com-
ponents after deployment, the development would require a
machine-learning expert.

The goal of this research is to empower the end-user to de-
fine new learning tasks as the need arises and to solve those
tasks without the intervention of a machine-learning expert.
We call this new functionality user-initiated learning (UIL),
and in this work we focus on a class of UIL problems where
the user is able to define learning tasks for predicting when
specified activities have been forgotten by the user. For ex-
ample, the user might be interested in having the system learn
to predict when they are likely to attach a file to an email and
to warn them before an email is finally sent if the system be-
lieves the user forgot an attachment.

At a high-level the development of a UIL system requires
solving two key problems. First, we must give the end-user
a natural interface for defining new learning tasks, and also
for providing the system with any hints that they might have
about solving the task more effectively. Second, we must au-
tomate the reasoning processes performed by the machine-
learning expert in deciding what constitutes legitimate train-
ing data for the learning component. In this paper, we de-
scribe specific solutions to these problems that we imple-
mented in a prototype UIL system for a popular email client.

In what follows, in Section 2 we define the UIL problem
followed by an overview of our system and the UIL process
in Section 3. Sections 4-9 describe the key components of
the UIL system, followed by experimental results using email
data from a real user in Section 10. Finally in Section 11 de-
scribes the path toward deployment of our current prototype.



2 Problem Description
To help motivate our problem, consider a scenario where a
scientist is collaborating on a classified project where sensi-
tive emails are often exchanged with collaborators. The pro-
tocol for indicating the sensitivity of an email is to set the
sensitivity flag to confidential before sending it out. How-
ever, most emails are not sensitive, even for this project, and
as a result the scientist often forgets to set the sensitivity flag
when warranted. In this scenario, it would be desirable for
the scientist to be able to instruct the system to detect when
such a mistake is about to be made and to interrupt the send
process with a reminder in such cases. Unfortunately, there
is currently no natural way for an end user to extend the user
interface to support such a functionality.

In the simplest of cases, a sophisticated user might be able
to write a macro to solve the problem. However, the situation
just describe can not necessarily be addressed using simple
macros since the desired functionality requires that the sys-
tem be able to predict when an outgoing email should be set
to confidential. This can be a non-trivial prediction problem,
which requires reasoning about a combination of factors such
as the email text, subject, recipient list, etc. While sophisti-
cated machine learning software might be able to learn such
a predictor from observations of the user, the end user has
no natural way of employing this technology. Currently all
machine learning mechanisms in software applications, e.g.,
spam filters, are developed by machine-learning experts be-
fore deployment, and hence are limited to only those mecha-
nisms that are believed to be the most generally useful.

We seek to build the capability of user-initiated learn-
ing (UIL), which gives the end user the power to extend
the user interface in ways that require specialized machine
learning mechanisms, but does so naturally without requir-
ing machine-learning expertise. This paper will focus on a
particular class of UIL problems, where the user is able to
request that the system learn to predict when they have for-
gotten a particular activity (e.g., setting the sensitivity flag)
and to post a reminder when that happens. In our system,
the user will communicate such a request by demonstrating a
procedure of interest (e.g., email composition) and indicating
which steps of the procedure he may forget to execute. Note
that often the indicated actions will be conditional in the sense
that they are only executed during some instances of the pro-
cedure (e.g., only for confidential emails), which is a primary
reason that the user may forget them. This gives rise to a pre-
diction problem where the system will attempt to learn the
conditions under which the conditional actions are typically
executed, or in other words, predict when the user intended
to perform those actions. The learned predictor can then be
used by the UIL system to issue reminders when appropriate.

3 UIL System Overview
We implemented our UIL system as part of the Computer
Assistant that Learns and Organizes (CALO) desktop, which
provides a variety of infrastructure support that is used by our
system as well as other components useful in building intel-
ligent user interfaces. The key aspects of this infrastructure
relevant to the UIL are described further in Section 4. Figure

Figure 1: UIL architecture

1 depicts the basic architecture and process flow of the UIL
system which is composed of five main components: the task
demonstration component, the feature guidance component,
the training instance reasoner, the machine learning compo-
nent, and the reminder component. Below we overview the
basic steps of the UIL process and the role that each com-
ponent plays. Later sections of the paper will describe each
component in greater detail. A video of the UIL process is
available which depicts the process from the user’s perspec-
tive.1

Step 1: Demonstrating the Learning Task (Section 5).
The UIL process begins with the user demonstrating a pro-
cedure, or sequence of UI events (e.g., sending a confiden-
tial message in Microsoft Outlook). All of the events of the
demonstration are captured by the task demonstration compo-
nent, which displays the captured steps to the user in an easy
to read text format. The demonstration component then al-
lows the user to highlight a subsequence of the demonstrated
steps (e.g., the step of setting the sensitivity flag) and marks it
as a conditional action sequence that the system should learn
to predict. Finally the user is allowed to select a reminder
point in the procedure where the system should issue a re-
minder to the user if they forget the conditional steps (e.g.,
when the send button is pressed). The demonstration com-
ponent then gives the training instance reasoner a program in
the SPARK procedural reasoning language [Morley and My-
ers, 2004] that represents the newly created conditional pro-
cedure.

Step 2: Feature Guidance (Section 6). In addition to al-
lowing a user to initiate a learning task via demonstration,
our system also allows the user to provide useful hints about
how to solve the associated prediction problem. In particular,
through the feature guidance component the user is able to
navigate through a graphical display of the ontology related
to the learning task and to highlight the pieces of information
that they believe will be most useful in making predictions.
For example, in many prediction tasks involving email, the

1http://web.engr.oregonstate.edu/ irvine/uil.wmv



user would likely indicate that the words in the email body
are important and even provide a number of specific key-
words. This information, if provided by the user, is given
to the machine learning component to serve as a learning bias
and ideally reduce the number of training examples required
to achieve a particular accuracy.

Step 3: Training Instance Generation (Section 7). The
job of the training instance reasoner is to create labeled train-
ing examples corresponding to the demonstrated SPARK pro-
cedure. The training instance reasoner extracts instances
from the CALO knowledge base, which stores all past and
newly arriving desktop information such as emails, docu-
ments, projects, contacts, etc. For example, if the learning
task involves email, then every email is a potential training
instance. For each potential instance, this reasoner uses SAT-
based inference to perform two tasks. First, it must reason
about the training instance and SPARK procedure to deter-
mine the correct target label, which will be treated as the de-
sired output of the learned predictor on that training instance.
Second, the reasoner must determine the set of system in-
formation (e.g., words in email body) that can be used as
possible features by a predictor. For each instance these two
reasoning steps combine to produce a training instance com-
posed of a set of features and a target label, which is then
forwarded to the machine learning component.

Step 4: Learning a Predictor (Section 8). The job of the
machine learning component is to produce a predictor based
on the sequence of training examples, while taking into ac-
count any available feature guidance provided by the user.
Our UIL system utilizes a logistic regression model for pre-
diction, which has the advantage of providing probabilistic
predictions and allows for the specification of priors on the
feature weights that can take the user’s feature guidance into
account. However, with this flexibility comes the problem
of choosing the precise values for the prediction threshold
and prior parameters, which can dramatically impact perfor-
mance. Thus, a key aspect of our learning component is the
automatic selection of these parameters via cross-validation
techniques. The resulting predictor along with estimates of
its accuracy are passed on to the UIL reminder component.

Step 5: Reminding the User (Section 9). The job of the
reminder component is to monitor the UI activity and to issue
a reminder to the user whenever it is detected that the user
might have forgotten an action sequence. The reminder com-
ponent uses the prediction of the learned predictor and the
SPARK program to drive a SAT-based reasoning process that
attempts to infer whether the user forgot a learned action se-
quence or not. If it is determined that the user did forget, then
the reminder component sends an appropriate signal to the
UI and prompts the user with a message, which interrupts the
normal UI flow. This provides the user with an opportunity
to carry out missing actions if they were actually forgotten.
Otherwise, the user simply dismisses the reminder.

4 CALO Infrastructure
CALO is an adaptive, personalized assistant designed to as-
sist users in office-based electronic desktop environments
[Cheyer et al., 2005; Myers et al., 2007]. CALO is intended

to provide intelligent assistant capabilities across standard ap-
plications on the Windows platform, supported by various
learning and reasoning modules to support management and
prioritization of information and tasks. Before detailing UIL
system components, we provide an overview of CALO in-
frastructure relevant to our UIL system, including the CALO
ontology and the Microsoft Outlook instrumentation.

4.1 CALO Ontology.
In order for CALO components to interoperate they need a
shared source of information about system events, the user,
his/her colleagues, meetings, e-mails, projects, documents
etc. For example, our UIL system needs to be able to cap-
ture events from applications such as Microsoft Outlook and
also access information related to email messages. In support
of these needs the CALO ontology [Chaudhri et al., 2006a]
serves as the representational foundation for a centralized
knowledge base (KB). The KB provides background knowl-
edge and serves as a target for the information generated by
a collection of engineered harvesters and learned extractors
and classifiers that interoperate with the CALO framework.

The ontology, implemented in OWL [Chaudhri et al.,
2006b], represents a variety of classes and relationships.
Some of the classes correspond to actual entities found in
traditional operating system such as files, folders, snf -mail
messages. Other classes such as Person or Project cor-
respond to entities that are abstract from the point of view of
an operating system but quite salient to a human user. In-
stances of these classes are inter-related via a large number of
semantic properties. The ability to easily access all of these
properties is important to the UIL system, since all predic-
tions will ultimately be based on this information. Of particu-
lar importance to UIL is the ontology of possible user actions
and system events. Examples of classes representing generic
or abstract actions include Modify or Open

Importantly, in order for CALO to observe user actions, op-
erating system applications must be instrumented. The ontol-
ogy serves as an interlingua supporting communication about
instrumented actions. Such messaging is implemented in the
form of a publish / subscribe framework. This component is
known as the task interface registry. Agents may subscribe
to messages about certain classes of actions and in so doing,
take advantage of the ontology’s subsumption hierarchy. For
example, our UIL system, which is currently focused on the
Microsoft Outlook email application, can be alerted to any
email related event by subscribing to all messages that are
about instances of the class EmailTask.

5 Initiating Learning via Demonstration
We employ the Integrated Task Learning (ITL) component of
CALO as a means for capturing user demonstrations of target
learning tasks. The ITL component is a general mechanism
that integrates a number of independently developed compo-
nents for learning user workflows [Spaulding et al., 2009] and
supports a number of capabilities for acquiring procedures,
including learning from demonstration and procedure edit-
ing. Although originally designed to support the user-driven
acquisition of automated procedures, it was straightforward



{defprocedure do_rememberSensitivity
....
[do: (openComposeEmailWindow $newEmail)]
[do: (changeEmailField $newEmail "to")]
[do: (changeEmailField $newEmail "subject")]
[do: (changeEmailField $newEmail "body")]
[if: (learnBranchPoint $newEmail)

[do: (changeEmailField $newEmail "sensitivity")]]
[do: (sendEmailInitial $newEmail)]
....
}

Figure 2: An example of a SPARK procedure produced by
ITL based on a user demonstration.

to extend the ITL component to serve as UIL’s demonstration
capture component.

ITL supports UIL’s demonstration needs via two sub-
components. First, the LAPDOG sub-component [Gervasio
et al., 2008] transforms an observed sequence of instrumen-
tation events, into a SPARK procedure [Morley and Myers,
2004] that captures and generalizes the dataflow between the
actions. Given a captured procedure, ITL then allows for pro-
cedure editing capabilities through the Tailor sub-component
[Blythe, 2005b; 2005a]. For UIL, Tailor was extended to pro-
vide the ability to add a condition to one or more steps in
a procedure—where, in this case, the condition correspond-
ing to the new learning task. The resulting annotated SPARK
procedure can then be utilized by later components to create
training instances and identify situations where reminders are
required.

Figure 2 shows an example of a SPARK procedure pro-
duced by the demonstration process for a task where the user
wishes to teach the system to learn to predict when the sen-
sitivity field should be changed. The original procedure cap-
tured by LAPDOG did not include the if: conditional. Rather,
this conditional was added by the user via the Tailor interface,
which directs the learner to learn a classifier that can predict
whether the branch is taken or not.

6 Feature Guidance Interface
In order to speed up learning, the system allows the user to
provide additional knowledge in the form of feature guidance,
although the user can easily skip this part of the UIL process
if desired. The interface presents to the user a view of the
portion of the ontology that is relevant to the current learning
task. For example, in our email-related tasks this includes the
class of EmailMessage along with other related objects like
Project, Sender, ToRecipient, CCRecipient etc. The user is
allowed to navigate through the ontology in order to select
attributes that are believed to be useful for solving the task.
For example, the user might indicate as important the set of
recipient email addresses, the subject text, or the body text.
Furthermore, in addition to being able to indicate that certain
fields are important, the user can answer questions specific
to each field that further specialize the advice. For example,
when the user navigates to the body text attribute they will
have the option of entering any number of keywords that they
believe will be useful as features. Figure 3 shows an example
of this, where the user has highlighted in the left panel a num-
ber of attributes, and in the right panel entered more specific
information about the attributes.

The result of the user guidance process is a set of user

Figure 3: Feature guidance interface.

selected features that are forwarded to the machine learning
component. It is important to note that the fact that the user
selects certain features does not mean that other features will
not be considered by the system. Rather, our system uses the
user selections only to bias the machine learning system in
favor of the selected features. Other features are also consid-
ered but with more caution. The details of how this bias is
implemented are in Section 8.

7 Training Instance Generation
The UIL system employs the training instance reasoner to au-
tonomously generate labeled training instances for consump-
tion by the machine learning component. First, the reasoner
must determine which objects of interest represent valid train-
ing examples and for those objects assign a label to them,
which will serve as the target output for the predictor. In our
case, the objects of interest will always be emails, but in gen-
eral the types of the objects to be considered can be inferred
from the Spark program. Second, the reasoner must deter-
mine which properties of the training instances are valid for
use as features during learning.

An important aspect of our system is that it is able to au-
tomatically extract training instances from relevant objects in
the CALO knowledge base. This allows for prior user data to
be leveraged for new learning tasks when appropriate, rather
than only using newly arriving examples. However, this poses
poses some challenges since objects in the CALO ontology
are not necessarily annotated with the user actions used to
create them. Thus, it becomes necessary to make inferences
about those actions in order to relate those objects to the
Spark procedures which define the learning tasks. To accom-
plish this in a general way, below we describe a SAT-based
reasoning process that employs a simple domain model of the
UI actions and the ways they effect the system attributes.

7.1 Domain Model.
Our domain model needs to capture the interactions among
email related actions and properties. We utilize a proposi-
tional logic for this, were we define a proposition for each
email action that can appear in a Spark program and one
proposition for each email property. Some example action
propositions include: ComposeNewMail, ForwardMail, Re-
plyToMail, ModifyToField, ModifyCC, ModifySubject, and



ModifyBody. Action propositions are defined to be true rel-
ative to the current email under consideration iff their corre-
sponding UI action was taken during the creation of the email.
Some example property propositions include: NewCompo-
sition, ForwardedComposition, HasCCField, and HasBody.
These propositions are defined to be true relative to an email
being considered iff the email satisfies the corresponding
property. For example, the HasBody is true if the email has
a non-empty body. Note that it is straightforward to compute
the truth values of property propositions given an email, but is
less direct for action propositions since the knowledge based
does not store the actions that were used to create an email.

To provide a link between actions and email properties we
specifying a domain theory, which includes a single axiom
for each property proposition that defines the possible ways
that the proposition can be made true. Some example axioms
include:

NewComposition ⇐⇒ ComposeNewMail

ReplyComposition ⇐⇒ ReplyToMail

HasAttachment ⇐⇒ (AttachFile ∨ ForwardMail)

HasSubject ⇐⇒ (ModifySubject ∨ ReplyToMail ∨ ForwardMail)

....

This domain theory is only a crude approximation to reality
but is sufficient for our purposes.

7.2 Inferring Class Labels.
Given an email from the CALO knowledge base and a
demonstrated Spark program we now wish to assign a label to
the email. We do this by first constructing a formula called the
Label Analysis Formula (LAF) that captures key constraints
arising from the Spark program and domain axioms. The
LAF involves all of the domain propositions plus three new
propositions: Label, which is represents the truth value of
the branch condition in the Spark procedure, or equivalently
whether the user intended to select the conditional actions;
Forget, which indicates whether the user intended to execute
the conditional steps but forgot to do so; and ProcInstance,
which indicates that the current email corresponds to an in-
stance of the Spark procedure. Here we say that an email
is an instance of the Spark procedure whenever the action
sequence that generated the email includes all of the uncon-
ditional actions in the procedure, possibly including other ac-
tions. Any such email can be used as a possible training in-
stance.

Given these new propositions the LAF is constructed by in-
cluding all domain axioms in addition to two new Spark ax-
ioms related to the Spark procedure. In particular, the new
axioms place constraints on the ProcInstance, Forget, and
Label propositions. To do this, let U1, ..., Un be the set of
propositions corresponding to the unconditional actions in the
SPARK procedure and C1, ..., Cm be the propositions corre-
sponding to conditional actions. The Spark axioms are then
given by:

ProcInstance ⇐⇒ (U1 ∧ U2 ∧ ... ∧ Un)

(¬ Forget ∧ Label) ⇐⇒ (C1 ∧ C2 ∧ ... ∧ Cm)

The first constraint allows one infer that an email is an in-
stance of the procedure iff it can be proven that all of the
unconditional actions were taken. The second constraint in-
dicates that the conditional actions are taken by the user iff

they intended to perform the conditional actions and did not
forget to do so.

Given an email we can use the LAF to label it as follows.
First, for each property proposition P we compute its truth
value by inspecting the email and then add the clause P to
the LAF if it is true and add ¬ P otherwise. Second we add
the unit clause ¬ Forget to the LAF resulting in a formula E,
which encodes all of the information we have about the email
domain, the Spark program, the current email, and encodes
the assumption that the user was not forgetful. To produce a
label for the email, we first attempt to prove that the query
ProcInstance ∧ Label is entailed by E. If it is then we have
proven that, under the assumption that the user did not forget
any intended steps, the email is an instance of the procedure
and is a positive example of the learning task. Otherwise we
attempt to prove the query ProcInstance ∧ ¬ Label and if we
are successful the email is a negative instance of the learning
task. Otherwise, either the email was not an instance of the
procedure and/or there was not enough information to con-
clusively infer the label of the instance. In this later case we
ignore the email and do not create a training instance. In our
current UIL system we use the YICES SAT-solver [?] as our
reasoning engine, which is able to solve our relatively small
problems almost instantaneously. It can be proven that any
training instance generated by this reasoning process is guar-
anteed to have the correct labels under the assumption that the
user was not forgetful for the instance. Thus, the rate of label
noise produced by our reasoning engine is related to the level
of forgetfulness of the user, which will typically low enough
for machine learning mechanisms to overcome.

7.3 Inferring Feature Legality.
When generating training examples, one must carefully con-
sider which features the learning algorithm to allowed to use
for making predictions to avoid generating useless learning
problems. As a simple illustration of this consider the task of
learning to predict whether the user intended to attach a file
to an email. The reasoning process described above will label
emails according to whether or not they have an attachment.
If, however, we provide the machine learning algorithm with
a feature that indicates whether a email includes an attach-
ment, then the learned predictor will be able to achieve 100%
accuracy by simply returning the value of that feature. How-
ever, the predictor would be useless in the context where we
wish to remind the user that they have forgotten an email,
since in all cases where the user forgets there would be no
attachment, causing the predictor to predict that nothing was
forgotten. The general problem encountered here is that one
must avoid the use of features that are deterministically re-
lated to the branch condition via the domain theory and hence
not valid for use by the predictor. It is possible to perform
a reasoning process involving he LAF to determine the set
of email properties that are legal to use, however, space pre-
cludes the details.

8 Machine Learning Component
This section presents the details of the machine learning com-
ponent employed in UIL. The objective is for this component



to fully automate the creation of a predictor given the training
examples produced by our system and the feature guidance,
if any, provided by the user.

8.1 Learning Algorithm.
We use logistic regression as our basic learning algorithm [?].
This algorithm learns a linear discriminant function over a
feature vector x that represents the probability that the label y
is positive given x as follows, P (y = 1|x,w) = 1

1+exp(−w·x)

where w is the weight vector to be learned, which weights
the features against one another. Logistic regression algo-
rithms, typically learn a weight vector w by optimizing the
log-likelihood of the training data, which is a convex opti-
mization problem that can typically be solved quite effec-
tively via gradient methods. However, just optimizing the
log-likelihood can often lead to overfitting of the training
data, particularly when there are a large number of features.
For this reason, weight regularization is often incorporated
into the learning process by assuming a prior distribution on
the weights that assigns higher probability mass to weight
vectors with small magnitudes. At typical prior, and the one
we use, is to assume that each weight is distributed according
to a zero mean Gaussian distribution with a specified vari-
ance σ2, where smaller variances correspond to more extreme
regularization. The problem of optimizing the weights given
such a prior is still convex and can be easily solved via gradi-
ent methods.

8.2 Incorporating Feature Guidance.
Feature guidance from the user is incorporated by setting a
significantly larger variance for the priors on the user selected
features compared to the unselected features features. By
specifying a large variance for user selected features, we are
essentially telling the learner that there is a high prior proba-
bility that the corresponding weight values are not near zero
and thus should contribute significantly toward predictions.
This allows the learner to be more aggressive about assigning
non-negligible values to those weights, requiring less statisti-
cal evidence for doing so than if the variances were smaller.

8.3 Autonomous Parameter Tuning.
When making predictions with the logistic regression classi-
fier it is typical to select a probability threshold τ such that a
prediction of 1 is returned if P (Y = 1|x,w) ≥ τ , and other-
wise a prediction of 0 is returned. The selection of τ can dra-
matically impact the usefulness of the predictions. In order to
fully automated the learning process, it is important that both
the variance parameters and τ be tuned automatically to opti-
mize performance. To do this, we implemented a search over
the parameter space, using leave-one-out cross-validation to
estimate the performance under each parameter setting. Our
current system uses the κ criterion, a standard statistical met-
ric, as a measure of prediction performance, which tends to be
a more meaningful metric than accuracy when the label dis-
tribution of the training data is skewed, which we find is often
the case in UIL scenarios (e.g. most emails are not marked
as sensitive). For the variance parameter of unselected fea-
tures, we search over a range of 0.01 to 100 in step sizes of
0.1, while keeping the variance for selected features equal to

1000. For the threshold parameter we consider a range from
0 to 1 in linear steps. Logistic regression algorithms are quite
fast, which made this search tractable, however, for slower
algorithms or larger data sets there are many more sophisti-
cated search strategies that could be used rather performing
an exhaustive search.

9 Reminding the User
The reminder component is responsible for monitoring user’s
activities and alerting him if he forgets to execute some condi-
tional actions from previous learning tasks. To do this when-
ever the user reaches a reminder point, as specified in the
demonstrated SPARK procedure, the reminder unit attempts
to infer whether or not the user has forgotten the conditional
steps. This is straightforward when instrumentation is avail-
able that allows for constant monitoring of the user actions.
However, our current instrumentation support does not allow
us to easily do this for all actions and thus we again resort to
the use of automated reasoning to help infer the actions that
are not directly observable.

The reasoning process starts with the LAF formula from
Section 7, which encodes constraints about the SPARK pro-
gram and domain model. We add to this formula a set of
unit clauses that represent the observed properties of the cur-
rent email under consideration, again as described in Section
7. We then use the learned predictor to make a prediction,
which is assumed to be a correct prediction of the user’s in-
tention to perform the conditional actions. Recalling that the
proposition Label in the LAF corresponds to the user’s in-
tention we then add the unit literal Label to the formula if
the prediction is positive and otherwise add the unit literal
¬Label. Given the resulting formula we then ask if the query
ProcInstance ∧ Forget is entailed, and if it is the assistant is-
sues a warning to the user that they might have forgotten the
conditional steps. It can be shown that this process will only
issue warnings when the user actually has forgotten the steps
under the assumption of a perfect predictor. Thus, the qual-
ity of the assistance provided by the reminder component is
primarily related to the quality of the predictor.

10 Empirical Evaluation
We evaluated our system on two email related learning tasks.
First, we consider the attachment prediction task, which in-
volves learning to predict when the user intends to attach a
file to an email. Second, we consider the importance predic-
tion task, which involves learning to predict when the user
intends to set the importance of an email to either high or
low as opposed to not setting importance. Both of these are
easily specified via our demonstration interface. For both of
these learning tasks we used a knowledge base that contained
340 real emails authored by a single desktop user. The user
provided 18 features as guidance to our learner for each task,
which here were all key words in the body text.

We conducted experiments by first dividing the dataset into
a training set of 256 instances and a test set of 84 instances.
To simulate the effect of a growing email knowledge base, we
further divide the training set to create multiple training sets
of increasing sizes: 64 non-overlapping training sets of size



4, 32 sets of size 8, 16 sets of size 16 and so forth. For each
training set size, we train on individual training set and use
the learned classifier on the test set to compute the Kappa
coefficient, which is a common evaluation metric in cases
when the labels have a skewed distribution, which is the case
for us (positive class percentages are 26% and 10% for our
data). Finally, we compute the mean Kappa coefficient for
each training set size, which allows us to plot learning curves.
In order to evaluate the relative impact of the user-provided
features and our automated parameter tuning, we generated
learning curves for 4 different configurations of our system:
A) No Feature Guidance + No Parameter Tuning, B) Feature
Guidance + No Parameter Tuning, C) No Feature Guidance
+ Parameter Tuning, and D) Feature Guidance + Parameter
Tuning.

10.1 Basic Learning Curves.
For the attachment prediction problem, Figure 4(a) shows the
learning curves for each of our 4 configurations. We see that
except configuration A, which did not include user guidance
or tuning, the other three configurations exhibit positive learn-
ing curves of similar quality. This indicates that in large part
the feature guidance can compensate for lack of parameter
tuning and vice versa. We do see that for larger training set
sizes that including both feature guidance and tuning results
in the best performance. We can also observe a slight edge
for configurations that include feature guidance for small data
sets compared to just using parameter tuning. A likely rea-
son for this is that the variance of cross-validation, our tuning
method, is higher for small data sets, making it less effective.
We obtained similar trends for the importance prediction task
as shown in Figure 5(a). For this task, however, there ap-
pears to be a much more significant benefit for using both
tuning and feature guidance for the larger data sets.

10.2 Robustness to Bad Guidance.
In order to evaluate the potential impact of bad feature guid-
ance to our system, we ran some additional experiments. To
generate bad feature guidance, we restricted our attention to
features corresponding to key words in the email body text.
We then use SVM based feature selection in Weka to produce
a ranking of the user selected features/words in terms of their
predictive utility. Finally, we replaced the top 3 words in the
ranking with randomly selected words with the resulting set
representing “bad” feature guidance/advice.

The learning curves in Figure 4(b) shows learning curves
for good and bad advice both with and without parameter tun-
ing. First we observe that without parameter tuning, the in-
clusion of the bad advice results in a dismal learning curve.
By incorporating parameter tuning, however, we see that even
with the bad advice the learning curve is quite good. This
shows that the use of parameter tuning can be critical when
there is a possibility of obtaining bad advice. For importance
prediction the corresponding experiment is shown in Figure
5(b). Here we see that learning is more robust to bad advice
for the smaller training sets but degrades performance signif-
icantly later on. Again for the larger training sets we see that
parameter tuning is critical to overcoming bad advice, but for

this task, even with parameter tuning the bad advice results in
significantly worse performance than with good advice.

10.3 Estimating Utility of the Predictors.
Here we investigate whether the reminder assistant using our
learned predictors might be able to decrease the overall UI
cost to the user. There are two types of user costs: 1) the cost
of forgetting, which for example, in the attachment scenario
involves potential delays for recipients and the need to resend
an email, 2) the cost of interruption by the system with a re-
minder in cases when the user did not really forget anything.
If we knew these costs for the user, we could easily compute
the expected cost using our reminder assistance versus not us-
ing it. However, we do not know the values of these costs and
cost elicitation is beyond the scope of this paper.Rather, we
assess the utility of our predictor by measuring a new metric
that we call the critical cost ratio (CCR).

To understand CCR, consider the ratio of the forgetting
cost to the interruption cost, which will typically be greater
than one. Given a fixed predictor, it is possible derive an ex-
pression for the minimum value of this ratio such that the cost
of using the reminder assistant is equal to the cost without it.
We define the CCR for the predictor to be this minimum ratio.
Thus, if the CCR for a predictor is 10 then the cost of forget-
ting must be more than 10 times the cost of interruption for
the reminder assistant to provide a net benefit. The expression
for the CCR is given by CCR = (1−CR)×FPR

PR×FR×TPR where FPR
and TPR are the false positive and true positive rates of the
predictor, FR is the frequency that the user forgets the condi-
tional actions when they intend to take them, and CR is the
frequency that the user intends to take the conditional actions.

Figures 4(c) and 5(c) give the learning curves plotted in
terms of CCR for our prediction tasks. We have graphs for
two forgetting rates (FR=0.1 and 0.05) and for each we give
results both with and without feature guidance with parameter
tuning always on. The first observation is that for the largest
training set sizes the values of CCR are quite reasonable for
natural cost models. In particular, for the attachment scenario
the CCR drops to about 2 when advice is used, which means
that a net benefit would be apparent when the cost of forget-
ting is just a factor of 2 larger than the cost of interruption.
For the importance task the CCR drops to about 10 when ad-
vice is used, and surprisingly even lower without advice. For
smaller training sets the CCRs grow to be quite large, but are
less than 100. Whether these CCR ratios would be adequate
depends on the particular user and scenario. In many cases
such high values would indicate that the predictor should not
be used for that amount of training data.

11 Towards Deployment
During the course of the UIL development, we realized
that there are many challenges in developing user-extensible
learning systems. These challenges included building in-
strumented end user applications, translating accurate models
of user behavior into an ontology, and designing self-tuning
learning components that were capable of handling a wide
range of learning tasks. Our UIL prototype faced these chal-
lenges successfully and provided a first approximation of a
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Figure 4: Learning curves for attachment prediction.

(a) (b) (c)

Figure 5: Learning curves for importance prediction.

solution to extensible learning systems that adapt themselves
to learning tasks defined by the user. However, although the
prototype UIL system we developed is fully functional, we
would need to improve the system’s reliability, performance,
and usability before wide scale deployment in the field.

11.1 Reliability.
UIL is a set of components that runs both inside and out-
side of the CALO environment. In order to function properly,
not only do these components need to work in harmony with
each other, they must also interface with CALO in a consis-
tent manner. While we were able to make sure all the com-
ponents of the system worked coherently for the attachment
and importance cases, we would need to test a wider range
of supported learning tasks and fix the issues that arise. This
testing would mainly focus on ensuring that all components
interface with the ontology in the same way and checking that
the ”harvesting” of user activity data is properly encoded into
ontological constructs. Once we are confident our packaged
system works as desired in our development environment, we
would have to test it against the proposed deployment envi-
ronment.

11.2 Performance.
Beyond the UIL system working properly in the deployment
environment, it must also perform adequately on a wide vari-
ety of end-user machines. The CALO system itself is a com-
plex large footprint Java application with many components.
To achieve adequate performance, we would have to engineer
and test a small footprint subset of CALO that would pose a
minimal performance impact on the end-user. Once CALO
is optimized for a small low impact footprint, we would also

optimize the UIL components to use a minimum of RAM and
CPU cycles.

11.3 Usability.
In our UIL prototype, we’d want to be sure that terminology
oriented towards the AI researcher is translated into terms that
the typical end user can understand. For example, in the ITL
application, we would want to replace ”Add Learned If” but-
ton with something simpler such as ”Help me remember”.
Also in the existing UIL prototype, not all user demonstrable
actions are supported as learning tasks. We may wish to add
additional user interface constructs to show the user visually
what ”help me remember” learning tasks are valid, i.e. sup-
ported by the task demonstration component and the rest of
the UIL system.
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