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ABSTRACT:  Recent studies have indicated that the uplift load-displacement behavior of helical 

anchors installed and tested within the same soil deposits and depths has exhibited a significant amount 

of variability.  Appropriate estimates of displacement should consider the uncertainty associated with 

both the inherent soil variability and the uncertainty associated with the selected load-displacement 

model.  This paper uses a load test database of uplift loading tests of helical anchors within fine-

grained plastic soils to estimate and assess the uncertainty associated with inherent soil variability and 

model error for the purposes of simulating load-displacement behavior.  Two load-displacement 

models are calibrated and their statistical performance quantified using normalized displacement and 

normalized load.  Fitting of the model curves to the empirical data resulted in highly correlated model 

parameters.  Thereafter, bivariate probability distribution functions were generated to allow adequate 

joint simulation of the load-displacement model parameters.  Calibrated copula models were shown to 

provide superior estimates of load-displacement model parameters, and the resulting load-displacement 

curves suitably replicate the observed joint displacement uncertainty. 

 

 

INTRODUCTION 

 

The need to estimate displacement of foundation elements under service and strength limit states is 

increasing to meet the demand for improved design efficiency.  Simultaneously, efforts are being 

focused on the calibration of probabilistic methods to estimate performance, such that serviceability 

and strength limit states can be tied to a particular acceptable probability of achieving the limit state.  

Central to these design movements is the characterization of the effect of natural or inherent soil 

variability and model error in the resulting uncertainty in displacement estimates of foundation 

elements.   

 

Uncertainty in load-displacement behavior of helical anchors, despite similarities in geologic 

setting, loading protocols, and anchor geometry between tests has been well-documented.  Clemence 

(1983) and Mooney et al. (1985) report the results of eight loading tests on multi-helix anchor 

constructed within marine clay.  The helical anchors were installed to depths of 4 to 12 plate diameters.  

The anchor capacity varied about 20 percent, and the correlation with depth of embedment appeared 

weak.  Lutenegger (2008) described the results of nine uplift load tests of single helix anchors in 

varved clay.  The anchors had diameters that ranged from 203 to 406 mm and were installed to depths 
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ranging from 7.5 to 23 plate diameters.  Lutenegger (2008) showed that the load-displacement data 

appeared to follow a common curve when the displacements were normalized by plate diameter D and 

the anchor capacity was normalized by the uplift resistance at a displacement 0.1D.  Nonetheless, the 

resulting data exhibited variability on the order of 25 percent.  Additionally, Stuedlein and Young 

(2013) describe the results of seven uplift loading tests of helical anchors in Beaumont clay, the results 

of which indicated significant uncertainty in load-displacement performance. 

 

This paper assesses the uncertainty in the load-displacement behavior of helical anchors 

installed within cohesive soils and loaded in uplift by evaluating a load test database.  Load-

displacement models are fitted to the observed load-displacement data, and the performance of the 

models to represent load-displacement behavior is quantified.  Following fitting of statistical 

distribution functions to the empirical load-displacement models, bivariate probability distributions are 

calibrated and evaluated for their ability to adequately replicate correlated load displacement model 

parameters for simulation purposes.  This paper shows that the uncertainty in uplift load-displacement 

response of helical anchors can be appropriately simulated for the purposes of determining the upper 

and lower bounds of possible behavior as well as for calibration of future probabilistic serviceability 

limit state design procedures. 

 

LOAD TEST DATABASE 

 

A database of thirty-seven helical anchor uplift loading tests was compiled from seven sources, 

as indicated in Table 1. The tests were performed in soil profiles consisting of predominantly fine-

grained plastic soils (i.e., anchors derived their support from cohesive soils).  Criteria used to evaluate 

the suitability of the load test information included: (1) satisfactory characterization of soil profile, (2) 

satisfactory understanding of load-test procedures and anchor geometry, (3) relatively uniform 

conditions in proximity to anchor failure zone, (4) relatively rapid shearing of soil such that undrained 

conditions could be assumed, and (5) whether the development of sufficient displacement was 

achieved.  Table 1 summarizes the geometry of the 18 single helix and 19 multi-helix anchors 

comprising the database.  The anchor plate widths ranged from 76 to 406 mm in diameter, D, and the 

average plate diameter was 265 mm.  The embedment ratio, H/D, describes the depth, H, to the 

shallowest helical anchor plate normalized by the plate diameter, and ranged from 0.12 to 48, with an 

average value of 14.  In practice, H/D is generally limited to 5 or greater (Mooney et al. 1985, Seider 

2012); however, lower values were included in this analyses conducted herein in order to account for 

the load-displacement behavior of possible shallow anchors.  The undrained shear strength, su, ranged 

from 5 kPa to 239 kPa, and adequately spans the range in su possible for soil.  The load test database, 

though limited to 37 tests, provides a suitable range in geometry and soil conditions typical in 

engineering applications of helical anchors. 

 

CONDITIONING OF LOAD-DISPLACMENT DATA 

 

Serviceability limit state (SLS) design presents a desirable performance evaluation framework 

owing to the ability to predict displacement, s, directly.  Phoon and Kulhawy (2008) and Lutenegger 

(2008) have determined that the dispersion in experimentally observed load-displacement, or Q-s, 

behavior can be decreased by considering normalized behavior, for example, Q divided by a reference 

capacity versus s divided by D.  Lutenegger (2008) selected the capacity at 10 percent of the plate 

diameter, an admittedly arbitrary value, but appropriate in light of the lack of observed sensitivity of 

Q-s performance when normalized at other reference capacities.  This study followed the work of 

Lutenegger (2008) by representing the displacement using the normalized anchor displacement,  =  
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Table 1.  Helical anchor database used to calibrate generalized load-displacement data for uplift 

of helical anchors in clays. 

 

Test 

Designation 
H/D S/D 

Dave 

(mm) 

Ultimate 

Resistance, 

Qult  

(kN) 

Slope 

Tangent 

Capacity, 

QSTC 

(kN) 

su   

 

(kPa) 

k1 k2 Reference 

A1 0.12 - 76 0.09 0.09 5 0.003 1.010 1 

A2 0.33 - 76 0.15 0.12 5 0.018 0.735 1 

A3 1.09 - 76 0.22 0.18 5 0.014 0.767 1 

A4 3 - 76 0.29 0.21 5 0.023 0.675 1 

A5 3 - 76 0.29 0.23 5 0.015 0.757 1 

C1 4 3.76 248 53.2 42 24 0.016 0.723 2 

C2 4 3.76 248 53.2 42.5 24 0.015 0.746 2 

C3 8 3.76 248 49.4 45 24 0.007 0.883 2 

C4 8 3.76 248 51.7 44 24 0.010 0.813 2 

C5 10 3.76 248 49.3 44 24 0.006 0.869 2 

C6 10 3.76 248 47.2 41.5 24 0.007 0.856 2 

C7 12 3.76 248 49.6 47 24 0.005 0.926 2 

C8 12 3.76 248 46.9 41.5 24 0.007 0.856 2 

H1 10.5 3.6 254 134 128 79 0.006 0.887 3 

LA-1 7.5 - 203 - 8.3 55 0.115 0.280 4 

LA-2 5.0 - 305 - 23.3 55 0.099 0.334 4 

LA-3 3.7 - 406 - 47 55 0.038 0.564 4 

LA-4 15.0 - 203 - 21.9 191 0.050 0.486 4 

LA-5 10.0 - 305 78 47 191 0.033 0.612 4 

LA-6 7.5 - 406 - 49 191 0.084 0.341 4 

LA-7 22.5 - 203 - 17 75 0.076 0.349 4 

LA-8 15.0 - 305 - 39 75 0.048 0.498 4 

LA-9 11.3 - 406 - 55 75 0.043 0.428 4 

LB-1 27.8 0.75 200 - 13 31 0.041 0.513 5 

LB-2 23.3 3 200 36.7 21 31 0.041 0.565 5 

S3 18.97 3 330 364 295 97 0.021 0.704 6 

S5 18.97 3 345 395 375 97 0.012 0.846 6 

S6 18.97 3 345 310 270 86 0.046 0.579 6 

S7 18.97 3 330 516 445 85 0.021 0.695 6 

TC1 35.0 
 

279 359 221 168 0.032 0.601 7 

TC2 18.0 
 

356 158 115 120 0.019 0.726 7 

TC3 20.6 
 

356 216 149 168 0.022 0.691 7 

TC4 26.0 
 

279 284 181 168 0.028 0.638 7 

TC5 26.0 
 

254 286 197 168 0.023 0.688 7 

TC6 22.3 
 

305 454 290 168 0.029 0.639 7 

Lo1 48.0 - 203 277 175 239 0.024 0.592 7 

Lo2 21.0 - 356 250 178 239 0.030 0.619 7 

 
1
 Ali (1969)  

2
 Clemence (1983)  

3
 Handojo (1997)  

4
 Lutenegger (2008)   

 
5
 Lutenegger (2009)  

6
 Stuedlein and Young (2013)   

7
 Seider (2012) 
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s/Dave, where Dave equals the average plate diameter.  The uplift capacity at each observed 

displacement value was normalized by the slope tangent capacity (QSTC, Phoon and Kulhawy 2008) 

defined  = s/Dave = 0.05 (Figure 1).  The slope tangent capacity at 5 percent displacement was 

selected to represent levels of capacity and displacement commonly achieved in production anchors, 

and is not intended to represent an ultimate resistance, QULT, associated with continuous pullout.  

However, QULT is strongly correlated to QSTC, as illustrated in Figure 2, indicating that if the ultimate 

resistance can be satisfactorily estimated, the entire load displacement curve can be estimated if a 

suitable load-displacement model is referenced. 

 

 

Figure 2.  Correlation of ultimate resistance, QULT, and slope tangent capacity, QSTC.  Only 

those load tests that exhibited a true ultimate resistance, or could be reliably extrapolated to 

an ultimate resistance, were used to generate this relationship (see Table 1). 

 

Figure 1.  Definition of the slope tangent capacity, QSTC; load test data for Anchor C4, with 

average plate diameter of 248 mm.  Note: initial slope tangent determined through hyperbolic 

model fitting. 
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LOAD-DISPLACMENT MODEL SELECTION 

 

Uncertainty generally arises from aleatory and epistemic sources.  Aleatory uncertainty stems 

from the natural or inherent variability of soil properties, in the present case, undrained shear strength.  

Epistemic sources of uncertainty range from variability in material fabrication (e.g., stiffness of the 

steel anchor), testing and measurement errors, model errors and transformation errors in model 

parameters.  The possibility of reducing the epistemic uncertainty is non-zero upon improvement of the 

general knowledge of testing and measurement processes, correlations, and models.  In the assessment 

of the load-displacement model selected for representing the uplift helical anchor data, aleatory 

uncertainty, transformation error, and model error are considered in a lumped sense; however, 

measurement uncertainty is not directly treated.  Two load-displacement models were considered for 

this study: the hyperbolic model and power law model, based largely on their performance in previous 

studies on footings (e.g., Akbas and Kulhawy 2009; Uzielli and Mayne 2011a; 2011b), augered cast-

in-place piles (e.g., Phoon and Kulhawy 2008), and other geotechnical elements.  The hyperbolic 

model is given by: 

 

21 kkQ

Q

STC 





           [1] 

 

where the Q = the applied load, QSTC = the slope tangent capacity (defined below),  = the normalized 

displacement, defined as the displacement divided by the average plate diameter, and k1 and k2 are 

hyperbolic model parameters fitted using least squares regression.  The power law model is given by: 

 

4

3

k

STC

k
Q

Q 
             [2] 

 

where k3 and k4 equal an empirical fitting coefficient and exponent, respectively.  Each of the uplift 

load-displacement curves were fit to the models represented by Eq. (1) and (2) using generalized least 

squares regression over the entire range in Q-s performance, resulting in the fitting parameters plotted 

in Figure 3.  The model parameters cluster tightly and exhibit a distinct correlation.  The Pearson 

product-moment correlation coefficient, , was calculated for each model, and resulted in a value of -

0.92 and 0.94 for the hyperbolic and power law models, respectively.  These large correlation 

coefficient values indicate the existence of statistical dependence between model parameters. 

Operationally, this suggests that stochastic simulation of the load-displacement data should incorporate 

a bivariate model parameter distribution with dependent marginals in order to adequately capture the 

range in possible Q-s performance.   

 

The model performance was assessed quantitatively using the average bias, , defined as the 

ratio of measured to calculated load ratio (i.e., Q/QSTC), for each of the Q-s curves.  Additional 

performance metrics included the root mean squared error (RMSE), the coefficient of determination 

(R
2
), and the coefficient of variation (COV), defined as the ratio of the standard deviation in bias to 

the mean bias.  The goodness-of-fit parameters for each of the models are shown in Table 2.  Based on 

the goodness-of-fit parameters, both the hyperbolic model and the power law model appeared to 

satisfactorily capture the Q-s data.  The power law model parameters provide the mean bias values 

closest to unity, indicating an overall accurate fit, and low dispersions around the mean values; this is 

largely due to better fits near the initial portion of each load-displacement curve as compared to the 
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hyperbolic model.  However, the hyperbolic model best approximates the curvature of the load 

displacement curves through the higher coefficients of determination and lower overall average error, 

indicating that the hyperbolic model may better represent the entire load-displacement behavior.  

Although it is likely the power law model could provide a good representation of the Q-s data, the 

hyperbolic model was selected for further probabilistic modeling. 

 

Table 2.   Summary of statistical goodness-of-fit parameters for hyperbolic (k1, k2) and power 

models (k3, k4) fit to the helical anchor load-displacement curves. 

 

 Fitted Model Parameter Goodness-of-Fit Parameters 

 
k1 k2 Mean  COV R

2
 RMSE 

Mean 0.032 0.647 1.083 0.207 0.972 0.053 

COV 0.809 0.264 0.214 1.318 0.033 0.500 

 
k3 k4     

Mean 2.729 0.408 0.984 0.165 0.923 0.084 

COV 0.388 0.446 0.084 0.849 0.086 0.500 

 

 

The uplift load-displacement behavior of 

helical anchors in clays can be simulated through 

randomly sampling hyperbolic model parameters 

k1 and k2 from marginal distributions that 

suitably replicate sample data.  Beta-type 

distributions were selected to model k1 and k2 

because they allow the specification of upper and 

lower bounds, which is critical in light of 

physical soil behavior (e.g., Najjar and Gilbert 

2009).  The probability density function of the 

Beta distribution for a continuous random 

variable  is given by 

 

 
 
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     [3] 

 

where B(1,2) equals the beta function with 

parameters 1 and 2,   luR    is the 

difference between the upper-bound value, u, 

and the lower-bound value, l, of the continuous 

random variable. 

 

Figure 3.  Scatter plots of fitted model parameters for 

(a) the hyperbolic model, and (b) the power model. 



 

302 
 

Empirical 
Distribution

Fitted Beta 
Distribution (b)(a)

Beta distribution parameters were obtained by maximum likelihood estimation based on the 

empirical sample distribution, resulting in 1 = 1.14, 2 = 4.86, l = 0.004 and u = 0.145 for k1, and 1 

= 3.33, 2 = 2.67, l = 0.18 and u = 1.02 for k2.  Figure 4 shows the cumulative distribution functions 

(CDFs) of the fitted beta distributions with the empirical CDFs of k1 and k2.  The continuous beta 

distributions, set within an appropriate bivariate distribution model, can be used to simulate random 

estimates of hyperbolic model parameters in light of their observed correlation.  Note that the empirical 

CDFs of k1 and k2 could be represented by lognormal and normal distributions, respectively; however, 

these distribution types could provide unrealistically small values of the hyperbolic model parameters, 

and could therefore result in very large estimates of normalized load due to the location of the model 

parameters in the denominator of Eq. (1).  Therefore, constrained Beta distributions are preferred for 

modeling the load-displacement model parameters. 

 

 

SELECTION OF BIVARIATE PROBABILITY DISTRIBUTION FUNCTIONS 

 

The two-parameter load-displacement models clearly exhibit statistical correlation, indicating 

that any subsequent simulation should incorporate the correlation to adequately capture the possible 

range load-displacement behavior.  Pairs of k1 and k2 can be represented by a calibrated bivariate 

probability distribution function, provided independence or randomness in marignals can be 

confirmed.  Typically, randomness can be assessed through the comparison of model parameters k1 and 

k2 against geometrical factors, like the average plate diameter, or soil parameters, for instance the 

undrained shear strength.  Non-parametric dependence statistics, such as Kendall’s tau (Daniel 1990), 

are suited for the evaluation of model parameter randomness.  Kendall’s tau was calculated as D,k1 = 

0.13, D,k2 = -0.12 for the correlation to average diameter, and su,k1 = 0.20, and su,k2 = -0.21 for  

correlation to undrained shear strength, and produced p-values of 0.32, 0.36, 0.14, and 0.13, 

respectively.  These p-values indicate that no correlation exists for k1 and k2 and the average diameter 

and undrained shear strength at the 0.05 significance level.   Several approaches are available to 

simulate the bivariate distribution of the load-displacement model parameters, including the translation 

model (e.g., Phoon and Kulhawy 2008) and the more powerful copula model (e.g., Nelsen 1999), each 

of which can accommodate various distribution types (e.g., normal, lognormal, etc.) with varying 

degrees of sophistication. The performance of these models is assessed herein to demonstrate the 

 

Figure 4.   Empirical cumulative distribution functions of the sample hyperbolic model 

parameters and fitted CDFs for (a) k1 and (b) k2. 
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importance of satisfactorily modeling highly correlated bivariate uplift load-displacement data for 

helical anchors in uplift. 

 

Simulation of Hyperbolic Model Parameters using the Translation Model  

Model parameters k1 and k2 can be simulated using a bivariate probability distribution model 

that translates randomly generated uncorrelated standard normal random variables Z1 and Z2 with mean 

= 0 and standard deviation = 1.0 to correlated random variables X1 and X2: 

 

11 ZX             [4] 

 

2

ln2ln12 1   ZZX          [5] 

where ρln represents the equivalent-normal correlation coefficient for lognormally distributed 

parameters (Phoon and Kulhway 2008): 

 

  
2 2

1 2

ln

1 2

ln 1 1 1e e
 


 

 
   

  


        [6] 

 

and where λ1, ζ1 and λ2, ζ2 are the approximate lognormal mean and standard deviation of k1 and k2, 

respectively, both of which were calculated from the sample mean, k i, and standard deviation, σi.  For 

the lognormal case, the lognormal mean and standard deviation is calculated as: 

 
2

111 5.0)ln(   k           [7] 

 

)/1ln( 2

1

2

11 k            [8] 

 

For the present case, k1 may represented by the lognormal distribution, but k2 is more appropriately 

modeled using a normal distribution.  The corresponding equivalent-normal correlation coefficient for 

the mixed normal-lognormal distributions can be computed using:  

 
2

1

ln

1

1e





 
           [9] 

 

Assuming model parameters k1 and k2 can be modeled using lognormal and normal marginal 

distributions, the model parameters can be simulated using: 

 
 111

1

 


X
ek            [10a] 

 

2222   Xk           [10b] 

 

where 2 and 2 are the normal mean and standard deviation of k2, respectively, as long as the bounds 

of the equivalent-normal correlation coefficient (i.e., -1 to 1) are not encountered prior to achieving the 

empirical normal correlation coefficient, ρ, for the vector (k1, k2).  Figure 5a shows the relationship of ρ 

to ρln for the lognormal statistics of k1 and k2, and that the effective maximum value of ρ that can be 
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modeled is -0.877.  Because the actual correlation between k1 and k2 equals -0.92, the translation model 

is an inappropriate tool for modeling the empirical bivariate data representing the uplift load-

displacement curves of helical anchors in clay.  The inability to model the empirical k1 and k2 is evident 

in Figure 5b, which shows pairs of (k1, k2) resulting from 500 simulations assuming ρln equal to -0.9 

and -1.0.  For the case of ρln equal to -0.9, the scatter modeled near the middle of the data cloud is too 

dispersed.  When ρln is set equal to -1.0, a lognormal function results, exhibiting no scatter, and is 

entirely unacceptable.  Thus, another approach for modeling the highly correlated bivariate hyperbolic 

model parameters must be evaluated. 

 

Simulation of Hyperbolic Model Parameters using the Copula Model 

Copulas are becoming increasingly popular for modeling multivariate data, and specifically for 

producing the joint distribution of load-displacement data and correlated load-displacement model 

parameters. Li et al. (2011) employed copula theory for modeling the displacement of pile foundations. 

Uzielli and Mayne (2011a; 2011b) used copula theory for simulating the load-displacement 

performance of footings on sands.  Nelson (1999) provides a general overview of copula theory; 

practical geotechnical application of copula theory, including fitting of copula model parameters, is 

provided by Li et al. (2011) and Uzielli and Mayne (2011a; 2011b). 

 

Bivariate distributions of hyperbolic model parameters were evaluated in this study using 

copula models.  Two kinds of copula were evaluated, including the Gaussian-type elliptical copula and 

the Frank-type Archimedean copula.  Copula model parameters were generated in light of the 

correlation, modeled using Kendall’s tau (= -0.92), between hyperbolic model parameters for the 

Gaussian and Frank copulas and resulted in values of -0.98 and -47.63, respectively.  Bivariate 

Gaussian and Frank copulas were produced using the respective copula model parameters, and the 

beta-distributed marginal distributions were obtained through the inverse transformation of the beta 

distributions.  Figure 6a and 6c presents the load-test derived hyperbolic model parameters and the 

results of 1,000 random simulations resulting from the Frank and Gaussian copula models, 

respectively.  Compared to the results of the translation model (Figure 5b), the copulas appear to 

 

Figure 5.  Performance of translation model to simulate empirical bivariate hyperbolic model 

parameters: (a) relationship between equivalent-normal correlation coefficient and empirical 

Pearson correlation coefficient, and (b) comparison of simulated hyperbolic model parameters to 

empirical model parameters for various equivalent normal correlation coefficients. 
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represent the scatter in hyperbolic model parameters quite well.  Figures 6b and 6d present the 

normalized load-displacement curves (Q/QSTC vs ) of the 37 uplift loading tests compared against 

1,000 simulated load-displacement curves for each copula model type.  The simulated normalized 

load-displacement curves represent the aleatory uncertainty of loading tests inherent in saturated clay 

deposits (i.e., the “real” variability in load-displacement behavior) and the transformation error 

associated with the selected normalization procedure.  Due to the selected normalization procedure, 

uncertainty in load-displacement behavior is medium for small normalized displacements, large for 

large normalized displacements, and smallest near Q/QSTC = 1.0.  However, probabilistic modeling of 

any load-displacement data will necessarily entail non-zero transformation uncertainty. 

 

  

  

Figure 6.  Results of 1,000 copula-based simulations of: (a) empirical and simulated k1 and k2 

assuming the Frank copula model, (b) comparison of empirical and simulated uplift load-

displacement curves resulting from the Frank copula model, (c) empirical and simulated k1 and k2 

assuming the Gaussian copula model, (d) comparison of empirical and simulated uplift load-

displacement curves resulting from the Gaussian copula model.  Note, q,sim represents the load 

ratio Q/QSTC. 

(a) (b) 

(c) (d) 
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In practice, the best-performing copula model should be selected to represent the possible 

uncertainty in uplift load-displacement performance.  The best-fitting copula type was determined by 

comparing the Euclidean distance between the empirical multi-dimensional CDFs and the simulated 

CDFs in terms of the discrete norm as proposed by Durrleman et al. (2000).  Although it appears that 

both copula models appear to model the data appropriately, the Gaussian copula model quantitatively 

yields the best-fit copula.  Serviceability limit state design procedures can be generated for uplift of 

helical anchors in light of the observed and estimated level of uncertainty in soil strength, capacity 

models, and displacement behavior through probabilistic simulation of the load-displacement 

performance, as illustrated herein. 

 

CONCLUDING REMARKS 

 

The uncertainty in the uplift load-displacement performance of helical anchors installed within 

clayey soils was investigated in this paper.  A database of thirty-seven uplift loading tests on single and 

multi-helix anchors was assembled, and the data conditioned such that displacement was normalized 

with respect to the average plate diameter and load normalized with respect to the slope tangent offset 

capacity.  Hyperbolic and power law model load-displacement curves were fit to the normalized load-

displacement data, and their goodness-of-fit quantified.  The load-displacement model parameters were 

found to exhibit a very high degree of correlation, indicating that the stochastic simulation of load-

displacement curves would require modeling of bivariate distributions.  Based on the observed load-

displacement performance, both the hyperbolic and power law models were largely satisfactory; 

however, the hyperbolic model was selected for simulation purposes due to better goodness-of-fit 

statistics.  Two methodologies available for the simulation of correlated bivariate data were evaluated, 

including the translation model and copula models.  Hyperbolic model parameters simulated using the 

translation model assuming lognormal marginal distributions were not adequately simulated, as the 

degree of correlation in the translated normal distribution space could not be modeled.  Bivariate 

distributions of the hyperbolic model parameters simulated using the Frank and Gaussian copula 

models and appropriate marginal Beta distributions resulted in a satisfactory representation of the 

observed scatter, and the resulting uncertainty in the load-displacement curves was appropriately 

bounded.  Based on a quantitative comparison of database and simulated load-displacement curves, it 

was assessed that stochastic simulation of the load-displacement behavior of helical anchors loaded in 

uplift can be best achieved, for the available dataset, using the Gaussian copula model calibrated as 

described herein. 
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