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This paper presents the derivation of a novel control method for a permanent magnet
linear generator for use in wave energy applications. The control design is an extension
of optimal wave energy converter (WEC) control theory. Adaptations have been made to
account for a variety of real-world limitations. Dynamic generator loading is used to control
the motion of the WEC. The novel control presented maximizes power output while also
protecting the WEC system.

Nomenclature

Fe Hydrodynamic excitation force, N
Fgen Generator force, N
mb Buoy mass, kg
Ab Buoy added mass, kg
cb Buoy hydrodynamic damping, Ns/m
kb Buoy bouyancy, N/m
zw Water vertical position, m
zb Buoy vertical position, m
mgen Apparent generator mass, kg
cgen Apparent generator hydrodynamic damping, Ns/m
c∗gen Optimal apparent generator hydrodynamic damping, Ns/m
kgen Apparent generator bouyancy, N/m

I. Introduction

OSU’s direct-drive wave energy buoy research focuses on a simplification of energy conversion processes.
This is done by replacing systems employing intermediate hydraulics or pneumatics with direct-drive ap-
proaches to allow wave energy generators to respond directly to the movement of the ocean by employing
magnetic fields for contact-less mechanical energy transmission, and power electronics for efficient electrical
energy extraction. In order to achieve efficiency, a control method must be developed to dictate the behavior
of the buoy. It is this controller that makes decisions in real-time that governs the generator loading. Once
these decisions are made, control signals are sent to an active power converter. It is this IGBT drive that
gives us the ability to dynamically change the loading on the generator in order to affect the motion of the
heaving buoy. Figure 1 is a schematic of the entire Wave Energy Converter (WEC) control system.
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Figure 1. Schematic of WEC controller.

II. Hydrodynamics

II.A. The Morrison Model

One of the most widely accepted linearizations of a heaving body’s response to an ocean wave is the Morrison
model.1 The Morrison model utilizes the concept of an excitation force to describe how the wave acts on
the body. The excitation force depends on the incident wave and the hydrodynamic characteristics of the
floating object:

Fe = mbz̈w + cbżw + kbzw (1)

where zw is the vertical position of the water surface at the buoy, mb is the mass, cb is the linear damping
coefficient, kb is the waterplane stiffness, and Fe is the excitation force. The second governing equation is
the dynamic response of the buoy from the excitation force and any applied generator force.

Fe + Fgen = (mb +Ab) z̈b + cbżb + kbzb (2)

where zb is the vertical position of the buoy and Ab is the added mass. We have theoretically determined
the values of the coefficients mb, Ab, cb, and kb based on the dimensions of OSU’s 1 kW buoy.

III. Optimal Control of a Single-Axis Buoy

III.A. Reactive Power Requirements

The optimal control of a point absorber buoy that is constrained to motion in a single direction is well treated
in literature.2–4 Optimal control provides the highest possible power output for any single-axis buoy (i.e.
point absorber). In order to achieve optimal control the buoy needs to respond in resonance to the incident
wave. There are two ways that a buoy can be tuned for resonance. The first is to mechanically design
the buoy to have a resonant frequency equal to that of the incident wave. Equation (3) is the mechanical
resonance equation:

ω0 = 2π

√
kb

(mb +Ab)
(3)

where ω0 is the natural frequency. Designing a WEC by this equation to have a resonant frequency near
the ocean wave frequency would likely yield an impractically heavy buoy . The alternative to mechanical
optimization is to use active loading of the electromechanical generator to achieve resonance. In this case
the generator is used to simulate the presence of additional mass or reduced buoyancy. This method may
be referred to as reactive control due to the requirement of outside energy to drive the generator at various
points in the wave cycle. This occurs when the generator force is not completely in-phase with the velocity.

III.B. Optimal Control

Consider Eq. (2). Taking the Laplace transform and rearranging, the equation can be stated as

Fe(s) + Fgen(s) = (s (mb +Ab)) (szb(s)) + cb (szb(s)) + (kb/s) (szb(s)) . (4)

Under this formulation, an analogy to an electrical circuit can be drawn. Force is analogous to voltage,
and the buoy velocity szb(s) is analogous to current. The mass mb + Ab is analogous to inductance, the
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damping cb to resistance, and kb to inverse capacitance. This leads to a definition of analogous hydrodynamic
impedance in the phasor domain:

Z̄b = jω (mb +Ab) + cb +
kb

jω
. (5)

The control law for the generator force can be defined as simply producing force proportional to buoy
acceleration, velocity, and position. In this case, the generator has an analogous apparent hydrodynamic
impedance:

Z̄gen = jωmgen + cgen +
kgen

jω
= −F̄gen/ (jωz̄b) . (6)

By using this control law, the generator can act to modify the apparent mass, damping, and buoyancy of
the buoy.

Equation (4) can now be expressed in the steady state phasor domain as

F̄e = jωz̄b

(
Z̄b + Z̄gen

)
. (7)

The optimal control problem now becomes simple impedance matching at any given frequency. Under
matched impedances, the maximum power transfer from the wave to the generator is 50% of the raw wave
energy at that frequency. However, perfect impedance matching means that the generator reactive terms,
mgen and kgen, must be non-zero. This means that the generator must deliver power to the water for parts
of the wave cycle. Because of the low frequency of ocean waves, significant energy storage is required, and
is impractical for the scale of this project. If the complex parts of the impedances cannot be matched, the
next best case is to have:

cgen = |Z̄b| (8)

This condition is called c∗gen. It is assumed that under all practical operating conditions, this optimal control
condition will be maintained.

Fgen = −c∗genżb = −|Z̄b|żb (9)

IV. Operating Limitations

Generally it is ideal to use optimal control techniques whenever possible in order to maximize energy
generation. Unfortunately, system design and operation is often constrained by real-world criteria that can
prohibit the continual use of an optimal control strategy.

IV.A. Energy Storage Limit

As discussed above, true optimal control requires a significant amount of energy storage, as the generator is
required to deliver power to the water for several seconds at a time. This is impractical for the scale of this
project. The next best condition is described by Eq. (8). Although no longer the true optimal control, this
control law still yields a significant fraction of the power, as the force loss due to the mass and buoyancy
terms of Eq. (5) are small in a well-designed WEC.

IV.B. Velocity and Stroke Limit

Normally, high velocities are desired in a WEC system in order to increase the generator voltage. The
permanent magnet generator has been designed to have large diameter coils and a large number of turns
to increase the voltage. With the generator velocity being directly proportional to the voltage, caution
must be taken not to exceed the voltage capability of the windings and the power electronics. Limiting the
generator velocity is also the primary method for keeping the overall stroke under control. The system has
been design with a maximum stroke of 1 meter. Under optimal control it is expected to see buoy strokes
as large as 4 times that of the incident wave. This would mean for a 1.5 meter wave, the buoy could travel
as much as 6 meters. In such a case, optimal control, as described by Eq. (9), is no longer practical. The
situation is analogous to that of a wind turbine. For medium wind conditions, the turbine maintains an
optimal tip-speed ratio to maximize power production. However, as the wind speed increases, the turbine
must restrain its speed and feather its blades to spill the excess power.
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IV.C. Maximum Current and Power Limit

Generator conductor size and power electronics ratings limit the current and therefore generator force. This
limit must be considered in the control algorithm.

V. Novel Control Design

The proper design of an effective controller should accomplish two major goals. The first and most
important is to protect the generator from any damage that is the result of operating outside of its area of
safety. The second is to maximize power production whenever possible.

V.A. Regions of Operation

There are three regions of operation.

1. Optimal Region. Low to medium wave conditions.
The generator is controlled according to optimal control. Power extraction is maximized.

2. Limiting Region. High wave conditions.
The generator continues to operate. However, the raw wave energy available exceeds the capacity of
the system. The generator is controlled according to sub-optimal control, and the excess power is
spilled.

3. Survival Region. Storm conditions.
The generator is shut down and the system reverts to survival mode.

The Survival Region is dependent on the system. For this project, it is considered that the float is allowed to
separate from the spar, relieving the hydrodynamic forces on the system. The Optimal Region corresponds
to Eq. (9). The Limiting Region requires a modification of the optimal control law. The Limiting Region is
discussed in more detail below.

V.B. Conditional Damping Control

There are two major components to the novel control scheme presented. The first is the boundary definition
between the Optimal Region and the Limiting Region. This definition can be based on any number of inputs
from wave height, buoy position, buoy velocity, generator current or even generator temperature. For our
controller we are most interested in the buoy velocity and position. The second major component is the
control law in the Limiting Region.

V.B.1. Single Dimensional Control

Refer to Figure 2. For this system, c∗gen ≈ 0.6 x 104 N/(m/s). The boundary between the Optimal Region
and the Limiting Region is defined as |żb| > 0.5 m/s. When in the Optimal Region, the system operates
under optimal control (cgen = c∗gen) and the generator force Fgen is controlled to be 0.6 x 104 times the buoy
velocity. However, when the buoy velocity exceeds 0.5 m/s, the system enters the Limiting Region and the
generator force per velocity is increased exponentially (cgen > c∗gen) in an attempt to limit the overall stroke.

As a side note, the process of piecewise defining cgen for the Optimal Region and Limiting Region
effectively defines cgen to be a function of buoy velocity żb.

Fgen = −żb cgen(żb) (10)

V.B.2. Multi Dimensional Control

An extension of the single dimensional idea is to define a boundary and control law that depends on both
buoy position and velocity, in addition to other limiting factors.

cgen = (zb, żb, z̈b, iabc, . . .) . (11)
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satisfied. The first logical approach is to use a limit-based approach where GenC is discretely 

increased as the system exceeds the limit conditions. This type of control causes discontinuous 

force that can have damaging affects throughout the system. The idea of exponential control is an 

extension of the limit based control but eliminates the step change increases in GenC . Exponential 

control can be based on a single input variable or a combination of variables (multivariable). 

This means GenC  could be defined as:  

 

)( BGen zfC !  or ),,,( ...,.........GenBBBGen IzzzfC !!!   (8) 

 

By using generator damping coefficients that are exponential relations of the control 
variables we can easily prevent any limit violations by delivering a gradual yet forceful increase 

in the generator force. When the velocity grows the control force will grow with the exponent to 
prevent the violation from occurring.  It has been shown that larger values of the exponent are 
more independent of the wave profile and can perform well in a wide variety of seas conditions. 

These large exponents exaggerate the control response and act to limit the buoy velocity.  
 This conditional damping control creates a hybrid approach between ideal loading and 

exponential control that can provide the best of both worlds. Operation with GenC * would occur 

during moderate sea conditions. Only when the wave climate increased would the controller be 
driven into the augmented protective control region. Figure 2 illustrates what this conditional 
damping control would look like with use of exponential control augmentation.  Here the 

augmented GenC  is proportional to 
2

Bz! . 
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Fig.2 ! Plot of Hybrid Generator Damping Control. 

 
Figure 2. Single variable cgen control.

This may provide a more sophisticated system response. For example, the single dimensional control algo-
rithm above makes no distinction between a large velocity in the center of the stroke, where there may yet
be plenty of time to contain the stroke, and a high velocity at the top of the stroke where immediate, severe
corrective action is required.

A state space can be created by placing the states buoy position zb and buoy velocity żb on the x and y
axis. Sinusoidal buoy motion will trace an ellipse in this space. Small motions will trace an ellipse of small
radius and large motions will trace an ellipse of large radius. Large amplitudes extend the ellipse along the
zb axis and large frequencies extend the ellipse along the żb axis.

Refer to Fig. 3. The generator hydrodynamic damping cgen is on the z-axis, and buoy position zb and
velocity żb are on the x and y axis. The optimal control region, the Optimal Region, is the center of the
surface. As both the velocity and position become large, indicating a large speed near the limits of the
stroke, cgen is increased above c∗gen to increase the generator hydrodynamic damping to limit the stroke.
The boundary between the Optimal Region and Limiting Region is defined by(

|zb|
zb,limit

)2

+
(
|żb|

żb,limit

)2

= 1. (12)

Equation (12) defines an ellipse on the velocity-position plane.

Region Region Boundary Condition Control Law

Optimal Region
(
|zb|

zb,limit

)2

+
(
|żb|

żb,limit

)2

≤ 1 cgen = c∗gen

Limiting Region
(
|zb|

zb,limit

)2

+
(
|żb|

żb,limit

)2

> 1 cgen = c∗gen

((
|zb|

zb,limit

)2

+
(
|żb|

żb,limit

)2
)

Table 1. Multi variable control.
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It also may become desirable to include the position in the augmentation law. By doing 
this we significantly deter the motion of the WEC away from its stroke limits. Figure 6 shows 

what the control surface would look like if: 
22

2 ** BBGen zzCC ! . This type of control responds 

well to increases in either the position or the velocity. Notice the level area in the middle is 

exactly equal to the value of GenC * giving us optimum control when both the position and 

velocity are low. 
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Fig.5 ! Plot of Multivariable Control Surface. 

 
 

I V .   Simulat ions 
 

 In order to prove effectiveness of any control design we need generate a realistic wave 

profile which is representative of actual ocean waves. Much more can be learned from a 
completely stochastic sea then from any number of individual tests with a monochromatic wave 

profile. To do this we need to include incident wave frequencies from the entire ocean wave 
spectra. The first step is to obtain wave spectral density data. This can be done by generating it 
from one of several wave spectrum calculations. Pierson-Moskowitz (1964) may be one of the 

best known and is my choice for determining the wave spectrum.  
Pierson-Moskowitz calculated the wave spectra for various wind speeds, and they found 

that the spectra were of the form: 
  

Figure 3. Multi variable cgen control.

VI. Simulations

In order to prove effectiveness of any control design we need generate a realistic wave profile which is
representative of actual ocean waves. Much more can be learned from a completely stochastic sea then from
any number of individual tests with a monochromatic wave profile. To do this we need to include incident
wave frequencies from the entire ocean wave spectra. The first step is to obtain wave spectral density data.
This can be done by generating it from one of several wave spectrum calculations. Pierson-Moskowitz (1964)
is one of the best known.

Pierson-Moskowitz calculated the wave spectra for various wind speeds, and they found that the spectra
were of the form:

S(ω) =
αg2

ω5
exp
(
−β
(ω0

ω

)4
)

(13)

where ω = 2πf , f is the wave frequency in Hertz, α = 8.1 x 10−3, β = 0.74, ω0 = g/u, and u is the wind
speed.

Generating the wave spectra gives us the amplitudes and frequencies for all of the component waves in the
ocean. Figure 4 is an ocean wave spectra generated from Pierson-Moskowitz calculation using a significant
wave height (H1/3) of 1.5 meters, representing summer conditions.

Once we have the wave spectra we can determine the relative wave amplitude for each wave frequency.
To do this we take an interval length of the frequency spectrum and integrate over it. This gives us the
variance over that interval. The variance < ζ2 > is related to the significant wave height by

H1/3 = 4
√
< ζ2 >. (14)

Now that we have the wave height information we can generate a wave surface profile by adding all of
the component frequencies at their relative magnitudes together in superposition. Using a random offset for
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!"#$#%&%'%()%f, f is the wave frequency in Hertz, a = 8.1 ! 10-3, = 0.74, 
0
= g/u and u is the 

wind speed. 
Generating the wave spectra gives us the amplitudes and frequencies for all of the 

component waves in the ocean. Below is an ocean wave spectra generated from Pierson-

Moskowitz calculation using an input 
3/1H of 1.5 meters, representing summer conditions. 
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Fig.6 * Pierson-Moskowitz Frequency Spectra. 

 
Once we have the wave spectra we can determine the relative wave amplitude for each 

wave frequency. To do this we take an interval length of the frequency spectrum and integrate 

over it. This gives us the variance over that interval. The variance 2  is related to the wave 

height by Equation 11:  

 
2

3/1 4H    (11)  

   

Now that we have the wave height information we can generate a wave surface profile by 
adding all of the component frequencies at their relative magnitudes together in superposition. 

Using a random offset for each frequency component we can represent a truly random sea state 
that behaves just like that of an actual wave climate. Below is a sample wave profile with 

3/1H =1.5. 

Figure 4. Pierson-Moskowitz Frequency Spectra
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Fig. 7 ! Stochastic Wave Profile. 

  

Feeding this random wave profile into our control simulations we can see how well the 
WEC will respond to a stochastic wave environment. Below is a sample response using 

exponential control methods. 

Figure 5. Stochastic Wave Profile.
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each frequency component we can represent a truly random sea state that behaves just like that of an actual
wave climate. Figure 5 is a sample wave profile with H1/3 = 1.5

Feeding this random wave profile into our control simulations we can see how well the WEC will respond
to a stochastic wave environment. Figure 6 shows the response using exponential control methods. The
results show that the amplitude of the buoy stroke is well-limited by the control, while keeping the buoy
velocity in phase with the excitation force, maximizing power. Figure 7 shows the control realization in
Simulink.
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Fig. 8 ! 1kW WEC response with Conditional Control. 

 
 
V .  Future  Work  
 

Future work includes physical hardware testing in the lab as well as ocean testing to be 
held in the summer 2007. The energy systems lab at Oregon State University is home to a 
120kVA programmable source that is able to output variable frequency and variable amplitude 

sinusoidal voltages that will be used to verify the control hardware functionality. In addition to 
this OSU is in the construction phase of a 10kW linear test bed to be used solely for the 

verification of linear wave energy converters. After testing on the linear test bed is complete, 
wave flume testing will be carried out at the O.H. Hinsdale Wave Research Lab also at OSU. 
The final ocean test will be carried out 3 miles offshore of Newport, OR. 

 
 
 

Figure 6. 1kW WEC response with optimal limiting control

 

Figure 7. Simulink realization of optimal limiting control

VII. Future Work

A 1kW wave energy buoy will be tested in Oregon State University’s Linear Test Bed in January, 2008.
The control algorithm presented in this paper will be tested at that time in the laboratory environment. In
the summer of 2008, a 1kW wave energy buoy will be tested in the ocean 2 miles off the coast of Newport,
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Oregon. The control algorithm will then be tested in the ocean.
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