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Abstract— The compliance of an underactuated robotic

hand, or a robotic hand with fewer actuators than degrees

of freedom, is a function of the mechanism type, the

design parameters, and the operational control mode.

The transmissions used in underactuated mechanisms

can be divided into two main classes based on the self-

adaptive transmission used to route actuation to the

various degrees of freedom, namely the single-acting

transmission and the double-acting transmission. While

both transmission classes can be represented using a kine-

matic constraint equation that defines the relationship

between actuator and joint motion, the main difference

between the two transmission classes is that the kinematic

constraint is always active in double-acting mechanisms

while there are specific combinations of external dis-

turbances and mechanism parmeters that render the

constraint inactive in single-acting mechanisms. While

previous studies have only explored the performance of

underactuated mechanisms with the constraint always

active, this paper identifies the benefits for robotic

grasping (such as better disturbance rejection) that arise

when the constraint becomes inactive in single-acting

mechanisms.

I. INTRODUCTION

A strong interest in improving the reliability of

robotic grasping has led to the development of “under-

actuated” robotic hands, or hands with fewer actuators

than degrees of freedom. These hands exploit clever

transmission mechanisms that couple the motion of

multiple joints to an actuator while allowing the hands

to naturally adapt to the external environment without

any sensing. While the motion of these hands when

actuated internally has been studied in prior work [2],

[11], [9], [21], [23], the compliance exhibited by these

hands in the presence of external disturbances is still

not well understood. This paper investigates the varia-

tion in compliance of an underactuated mechanism as
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a function of the mechanism type, design parameters,

and external loading.

A robotic hand’s compliance is an important factor

in grasping performance since it influences how the

hand adapts to the environment and disturbance forces.

Compliance in robotic hands is typically included in

hand design in the form of passive torsional springs at

the robot’s joints or through active control such as joint-

torque control policies [24], [12]. In the case of un-

deractuated hands, an additional factor that determines

hand compliance is the transmission mechanism linking

actuator and joint motion.

The transmission mechanisms used in current un-

deractuated hand designs can be categorized into two

broad classes: single-acting mechanisms and double-

acting mechanisms. Single-acting mechanisms can ap-

ply only unidirectional forces on the joints. For ex-

ample, Fig. 1a shows a cable-driven system which

produces flexion (curling) motion through a pulling

action, and the return motion is achieved using springs.

Examples of robotic hands with single-acting mecha-

nisms include the SDM Hand [9], Balance Bar [14],

and 100G robotic hands [15].

On the other hand, a double-acting mechanism can

apply bi-directional forces on the joints such as a pull

and a push (see Fig 1c for a linkage-driven example).

Examples of robotic hands with double-acting mecha-

nisms include the Laval hands [10], [17], SPRING [3],

Southampton [7], Graspar [6], BarrettHand [27], and

Obrero [26] robotic hands (see [1] for other examples

of underactuated mechanisms).

Interestingly, the coupling behavior of mechanisms

used in single-acting and double-acting classes may

be represented by the same kinematic constraint that

defines the relationship between actuator and joint

motion (see section II-B for more details). However,

a significant difference between the two classes is that

there are certain operating modes and external loads

for which the coupling constraint becomes inactive

for a single-acting mechanism (for example, when

the cable slackens in a single-acting mechanism, see
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Fig. 1. Examples of underactuated hands: (a) single-acting cable-

driven system, (b) single-acting when coupling breaks down (cable

slack), and (c) double-acting linkage-driven system.

Fig. 1b) while the coupling constraint is always active

for a double-acting mechanism. To our knowledge,

prior work [16], [25] has only studied the behavior

of underactuated mechanisms when the constraint is

always active, thus, missing an important difference

between the two mechanism classes.

Building on preliminary work of how an under-

actuated mechanism changes posture due to external

disturbances at a specific configuration and specific

parameter values [1], we quantify in this paper how

an underactuated mechanism’s compliance varies as a

function of the coupling mechanism’s behavior in the

presence of external disturbances, by specifically iden-

tifying the parameter subspace in which the coupling

constraint becomes inactive in single-acting mecha-

nisms. Furthermore, we analyze the effect of different

control modes, namely position control mode or force

control mode, on mechanism compliance. In section II,

we present a framework for studying the compliance of

an underactuated mechanism taking into consideration

the kinematics of joint coupling, hand joint configu-

ration, joint stiffness, force location, and the control

mode. In section III, we present results from an analysis

of the compliance of single-acting and double-acting

underactuated hands. Finally, in section IV, we present

a discussion of the effect of compliance variation on

grasping performance and then offer suggestions for

the design and operation of underactuated hands.

II. FRAMEWORK FOR UNDERACTUATED HAND

ANALYSIS

The framework for analyzing underactuated hands

consists of three components: 1) The static equilibrium

equations that relate contact forces on the phalanxes

with joint torques; 2) The kinematic coupling between

joint motion and actuator motion; 3) The change in
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Fig. 2. A two-link revolute-revolute finger. Examples of actuation

mechanisms are shown in Fig. 1.

robot configuration due to the external forces in the

presence of joint coupling. The configuration change

of the mechanism for a given force is used to com-

pute the mechanism compliance. As an example, we

consider the flexion and extension behavior of a two-

link revolute-revolute finger with a single actuator (see

Fig. 2).

A. Static Equilibrium

The relationship between the contact forces acting on

the finger and the resulting joint torques (see Fig. 2)

may be expressed as

τ = JT
c fe, (1)

where fe =

(

f1

f2

)

represents the normal contact force

on the proximal and distal links, τ =

(

τ1

τ2

)

the

resulting torque at the joints, and Jc ∈R
2×2 the contact

Jacobian that maps between the two spaces. For a

two-link mechanism, the contact Jacobian Jc can be

computed as [2]

Jc =

(

b1 0

b2 + l1 cosθ2 b2

)

, (2)

where b1 represents the proximal force location, b2 the

distal force location, l1 the proximal link length, θ2 the

relative angle between the two links. While this for-

mulation assumes that the contact point can slide on

the link without friction, friction models can also be

incorporated.

B. Kinematics of the Coupling Mechanism

The kinematics of the coupling mechanism may be

expressed as a first-order differential equation in the

mechanism’s configuration θ =

(

θ1

θ2

)

and actuator
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variable θa. In cable-driven mechanisms, the actuator

variable may be defined as the angle traveled by the

pulley over which the cable travels, while in link-

age driven mechanisms, the actuator variable may be

defined as the angle traveled by the actuating link.

For cable-driven mechanisms in current underactu-

ated hands such as the SDM hand, the kinematics of

the coupling mechanism may be expressed as

∆θa = r1∆θ1 + r2∆θ2, (3)

where r1 and r2 represent the pulley radii (assuming

unit radius for the actuation pulley) and ∆θi the con-

figuration change of link i.

For four-bar linkage driven mechanisms in current

underactuated hands such as the SARAH hand, the

kinematics of the coupling mechanism may be ex-

pressed as

∆θa = ∆θ1 +∆θ2R, (4)

where R represents the transmission ratio of the mech-

anism. Note that for a four-bar linkage mechanism, the

transmission ratio R is a function of joint configura-

tion θ and link lengths and therefore varies with joint

motion. In this paper, we consider only small joint

configuration changes from a given configuration θ .

Thus, R is a constant for the instantaneous analysis in

this paper.

A closer analysis of (3) and (4) shows that the kine-

matics of both cable-driven mechanisms and linkage-

driven mechanisms can be expressed as

Ja∆θ = ∆θa, (5)

where Ja =
(

a1 a2

)

represents the actuator Jaco-

bian of the mechanism. For linkage-driven systems, a1

equals 1 and a2 equals R. For cable-driven systems, a1

equals r1 and a2 equals r2. For both types of systems,

the transmission ratio may be defined as R = a2/a1.

Note that some underactuated hands with double-acting

mechanisms use clutch or break mechanisms and are

not compliant (see [27] for an example). We do not

explore such hands in this paper.

C. Robot Configuration Change Due to External Force

An external disturbance force fe on an underactuated

hand can cause a change in configuration ∆θ . The

magnitude and direction of ∆θ in the joint configu-

ration space depends on factors such as 1) the joint

coupling mechanism, 2) the direction, magnitude, and

location of the disturbance force, 3) joint compliance,

and 4) the hand control mode. This section describes

the change in robot configuration as a function of all

four factors (assuming disturbance forces normal to the

links).

The configuration change ∆θ for external force fe

can be quantified using a Lagrangian view of the work

done by the external forces and the energy stored in the

springs in the presence of the actuation constraints [13].

Specifically, we define the Lagrangian L as

L = Ws +Wc +Wa, (6)

where Ws represents the work done on the springs,

Wc the work done by the external forces, and Wa the

work done on the actuator. The work done on the

spring Ws = −1/2∆θ T K∆θ and work done by the

external forces Wc = f T
e Jc∆θ [5] are similar in form

for the underactuated mechanisms we consider, and

K =

(

K1 0

0 K2

)

represents joint stiffness.

However, the work done on the actuator Wa takes

different forms depending on the control mode the

mechanism is driven in (see Table I, which also gives

the scenarios where these control modes apply). In the

force-control mode, the work is “real”, while in the

position control mode, the “virtual” work must equal

zero [19]. In the decoupled mode (constraint inactive),

the work done on the actuator is zero (see Fig. 1b).

The formulation in this paper assumes that the external

force is constant through the deflection. Certainly, cases

where the external force changes with deflection (such

as compliant springy contacts) as well as geometric

constraints that would be imposed by contact can also

be incorporated. In position control mode, p is the

pretension in the actuating mechanism that maintains

mechanism stability prior to the application of the

external disturbance fe. The structure of the contact

forces have been intentionally kept simple so as to

focus on the hand configuration change.

By taking derivatives of the Lagrangian with respect

to the variables and any Lagrange multipliers, we

can derive the static balance equations [13]. Table I

presents the static balance equations for the two-link

mechanism, one for each control mode. Note that

these equations predict the instantaneous hand posture

change ∆θ from a statically stable configuration as a

result of the external force and the actuation mode.

D. Mechanism Compliance

A mechanism’s compliance at a point may be defined

as the net deflection of that point on the mechanism due

to a unit force. The effective mechanism compliance

in the presence of multiple external forces has been

derived in [20] for fully-actuated robotic arms, but has
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TABLE I

EFFECT OF CONTROL MODE ON WORK DONE ON ACTUATOR BY EXTERNAL FORCES

Actuation mode Work done on

actuator

Static balance equation Example scenario

Force control (con-

stant actuator force)

Wa = fa∆θa
1 K∆θ + JT

c fe + JT
a fa = 0 (7) Maintaining fixed cable tension in

SDM hand.

Position control (con-

stant actuator posi-

tion)

Virtual work

Wa = λ∆θa = 0 2

Ja∆θ = 0

K∆θ + JT
c fe + JT

a (λ − p) = 0

}

(8) 1) Maintaining fixed cable length in

SDM hand (can save battery power

if actuator can be locked); 2) Non-

backdrivability in SARAH hand.

Decoupled (coupling

constraint inactive)

Wa = 0 K∆θ + JT
c fe = 0 (9) Cable slackening in SDM hand.

1: fa is the constant actuation force. 2: λ is the tendon force resulting from the coupling constraint.

not yet been well understood for underactuated hands.

For simplicity, we consider the case where a normal

external force is applied only at the distal link of an

underactuated mechanism. This situation is similar to

the circumstances of a precision grasp [18] where only

the distal link interacts with an object. Large external

disturbances are also most likely to occur on the distal

link as it is more likely to make contact with objects

in the external environment.

Since a coordinate frame attached to the mechanism

at the force location has three degrees of freedom

in the plane (translations parallel and perpendicular

to the link and a rotational degree of freedom), the

mechanism compliance at that point for a normal

distal force is three-dimensional. The three elements

represent the compliance perpendicular to direction of

the normal force (tangent to the link), the compliance

in the direction of the normal force, and the torsional

compliance. In this paper, we only focus on mechanism

compliance in the direction of the normal force.

For a distal link force f2, the mechanism compli-

ance C can be computed as

C = ∆d/ f2, (10)

where ∆d ∈ R represents the deviation of the contact

point in the force’s direction v =

(

s12

−c12

)

, s12 =

sin(θ1 +θ2), and c12 = cos(θ1 +θ2).
Note that we can use the differential kinematics of

the two-link mechanism to compute the mapping from

joint configuration change ∆θ to the change in location

of the contact point ∆x ∈ R
2 as follows:

∆x = Jk∆θ , (11)

where Jk ∈ R
2×2 is the manipulator kinematic Jaco-

bian [5]. For a two-link mechanism, the Jacobian Jk

for a contact point on the distal link may be expressed

as

Jk =

(

−l1s1 −b2s12 −b2s12

l1c1 +b2c12 b2c12

)

, (12)

where si = sinθi and ci = cosθi. The deviation ∆d in the

direction of the force may be computed as ∆d = ∆x ·v.

A closer look at static balance in the decoupled

mode (see (9) in Table I) reveals that the compliance

at the force location is determined primarily by the

joint stiffnesses K1 and K2 and the force location. The

system compliance in force-control mode also (see (7)

in Table I) is shaped by the joint stiffnesses K1 and K2

and force location only, even though the actuator main-

tains a constant force. This is because the constant

actuation force fa only produces a constant shift in joint

configuration which is not a function of the external

force. Thus, the constant actuator force does not affect

mechanism compliance in force-control mode. In the

force control mode and the decoupled mode, the joint

coupling does not influence mechanism compliance.

In contrast, the system response in the position

control mode (see (8) in Table I) is shaped by the joint

compliance K1 and K2, the pulley radii ratio R (due to

the kinematic constraint created by the fixed actuator

position), and the mechanism pretension p. Indeed,

the pretension value p influences the circumstances

under which the coupling mechanism in single-acting

systems transitions into the decoupled mode (coupling

constraint inactive). For example, external forces can

combine to cause the cable to go slack, and the

single-acting mechanism transitions into the decoupled

control mode. Since the underactuated mechanism ex-

hibits more interesting compliance behavior in position

control mode when compared with the compliance

behavior in force control or the decoupled mode, the
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TABLE II

FIXED PARAMETERS

Parameter Value

Proximal joint stiffness K1 1 Nm/rad

Proximal and distal link length l1 and l2 0.1 m

Proximal pulley radius r1 0.02 m

Proximal joint configuration θ1 π/10 rad

Cable pretension p 10 N

External force on proximal link f1 0 N

rest of this paper only highlights the results from the

position control mode.

III. RESULTS

Using the SDM hand [9] as an exemplar of a cable-

driven single-acting underactuated mechanism and the

SARAH hand [17] as a linkage-driven double-acting

underactuated mechanism, we now present results from

a kinetostatic analysis of the variation in mechanism

compliance using the static stability models from sec-

tion II. We examine the variation in compliance over

a nominal set of the following parameter space: the

joint stiffness ratio Kr = K2/K1, transmission ratio R,

distal link configuration θ2, and distal force location b2.

Table II shows the values of the fixed parameters used

in the analysis. We show results for only two distal-joint

configurations that are nominally seen in the grasping

process. Since the static balance of a two-link finger is

a continuous system, it is straightforward to work out

performance at other joint configurations.

A. Compliance of a Double-Acting Mechanism

Fig. 3 shows the variation in compliance of a linkage-

driven double-acting mechanism in position control

mode. We now analyze the variation in compliance

across the rows and columns of the subfigures to study

the effect of the joint stiffness ratio Kr and the distal

joint configuration θ2. As expected, as the joint stiffness

ratio increases from Kr = 0.5 to Kr = 10, the overall

compliance decreases.

We also notice that the mechanism has zero com-

pliance for some combination of parameters. This

point has been termed an “equilibrium point” in prior

work [2], [22], [1]. In the context of the studying a

mechanism’s compliance, we term this point a “zero-

compliance point” instead and use the same terminol-

ogy in the rest of the paper. At the zero-compliance

point, the mechanism behaves extremely stiff and can

withstand large external forces without any deviation.

Using our framework, we can analyze the variation of

the zero-compliance point across the complete param-

eter space for underactuated hands. It is interesting to

note that the zero-compliance point whose expression

has the form e = l1Rcosθ2/(1−R) does not vary with

the joint stiffness ratio Kr, since it is dependent only on

the transmission ratio R, distal joint configuration θ2,

and proximal link length l1.

As the distal joint configuration θ2 increases

from θ2 = π/6 to θ2 = π/3, the compliance also

decreases. This is expected because the moment arm

of a normal force on the distal link about the proximal

joint decreases as the distal joint angle θ2 increases. An

interesting aspect not shown in these plots is that the

zero-compliance curve shifts rapidly towards the b2 = 0

and R = 1 locations as the distal link approaches the

perpendicular configuration (θ2 = π/2). This indicates

that at large flexion angles the mechanism exhibits large

stiffness only when the normal disturbance force is very

close to the distal joint or when the pulley radius ratio R

is close to unity. The condition R = 1 is particularly

interesting, since in this situation the proximal joint

motion is exactly opposite to the distal joint motion,

causing the distal joint angle to be fixed relative to a

world coordinate frame.

We now look closely at each subfigure to study the

effect of the pulley radius ratio R and the distal force

location b2 on the effective compliance. As expected,

the compliance C increases as the distal force moves

farther away from the distal joint.

The effect of the pulley-radius ratio on mechanism

compliance is more intricate. First, we notice that for

nominal distal link configurations (0 < θ2 < π/2), the

mechanism exhibits zero compliance only when R < 1.

Also, we can carefully choose R to locate the zero-

compliance point beyond the link length if we ignore

large flexion angles (θ2 between 84 and 90 degrees).

B. Compliance of a Single-Acting Mechanism

For extension disturbance forces, a single-acting

mechanism like the SDM hand in position control mode

behaves identical to the double-acting mechanism since

the coupling constraint is always active (cable tension

always couples the proximal and distal joint motion; see

Fig. 3). However, a single-acting mechanism in position

control mode exhibits bimodal compliance for flexion

disturbance force (see Fig. 4), depending on if the cable

is slack or taut. Indeed, a large enough flexion force

can cause the cable to go slack, rendering the coupling

constraint inactive.

In Fig. 4, the thin (red) lines in the left region

represent the compliance contours when the joints are
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still coupled, and the compliance behavior of the single-

acting mechanism is identical to the compliance of

a double-acting mechanism in this region. However,

certain parameter combinations (indicated by the solid

red line) can render the coupling constraint inactive,

such as when the cable becomes slack in the cable-

driven mechanism. The parameter space to the right

of this line represents the region when the joints are

completely decoupled. Note that the boundary between

these regions is a function of the pretension p in

the system and shifts to the right as the pretension

increases.

We notice that the compliance is generally higher in

the decoupled region when compared with the region

when the joints are coupled. This is expected since

most of the stiffness for the underactuated mechanism

in position control mode comes from the joint coupling.

Also, the variation of mechanism compliance with

pulley radius ratio R in the decoupled state is much

lower than in the coupled state. While one may have

expected the decoupled compliance to be independent

of pulley radius ratio R, the single-acting mechanism

actually transitions from a constraint-active state to

a constraint-inactive state. Thus, the effect of pulley

radius ratio R on compliance in the constraint-active

state carries over to the effective compliance even in

the constraint-inactive state.

IV. DISCUSSION

A. Bimodal Compliance in Single-Acting Mechanisms

The key result in this paper is identifying the pa-

rameter space where the coupling constraint becomes

inactive in single-acting mechanisms. The constraint

becoming inactive in an underactuated mechanism does

have benefits, as it provides a desirable disturbance

rejection behavior [1]. Specifically, in a cable-driven

single-acting mechanism like the SDM hand, the pre-

tension p in the cable determines when the coupling

constraint becomes inactive due to a flexion force.

When the coupling constraint becomes inactive, the

mechanism yields to the external disturbance force by

curling in naturally and possibly even strengthening a

grasp by enveloping the object (see Fig. 5a). In contrast,

a double-acting mechanism where the constraint is

always active exhibits complex reconfiguration which

can negatively influence a grasp (see Fig. 5b).

The parameter space where the coupling constraint

becomes inactive increases for lower pretension values,

suggesting that pretension should be kept as small as

possible while retaining a stable grasp. Furthermore,

(a) (b)

Fig. 5. Disturbance response in position-control mode of (a) a

single-acting mechanism where the coupling constraint becomes

inactive (cable slackens). The mechanism complies naturally with

the disturbance force and curls in. (b) Disturbance response of a

double-acting mechanism where the coupling constraint is always

active. The mechanism exhibits complex reconfiguration where the

distal joint flexes and the proximal joint extends.

Fig. 3 suggests that this parameter subspace also in-

creases with larger joint-stiffness ratio Kr. This accords

with previous results that showed that the distal joint

should be much stiffer than the proximal joint in order

to retain a desirable hand grasping configuration in the

presence of object contact forces [8]. Independently, it

has also been shown that a higher joint stiffness ratio Kr

helps in grasp stability as well [4]. Note that in this

paper we have only considered two degree-of-freedom

fingers and normal external forces on the distal links.

More work is required to expand the parameter space

to include contact constraints and fingers with more

degrees of freedom.

B. Effect of Zero-Compliance Point On Grasping

From Figs. 3 and 4, we notice that there are regions

in the parameter space where the mechanism has zero

compliance; that is, at those points, the mechanism will

not deviate for any external force normal to the link.

So how do these zero-compliance points influence hand

performance when used in a grasping task? When the

hand approaches an object in the pre-grasp phase, any

collisions with the object at or near the zero-compliance

point will produce minimal finger reconfiguration and

poor adaptability. In contrast, if the hand has already

grasped an object, then an external force that acts at

or close to the zero-compliance point will also produce

minimal hand reconfiguration. Thus, the grasp will be

rigid to external disturbances which is advantageous.

More work is required to understand how the placement

of zero-compliance points through hand design can

influence grasping performance.
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C. Tunable Stiffness with Variable Transmission Ratio

For both single-acting and double-acting mecha-

nisms, we notice that the transmission ratio R influences

mechanism compliance. In the case of double-acting

mechanisms implemented using four-bar linkages, the

transmission ratio R is governed by joint configura-

tion as well as link lengths. In the case of single-

acting cable-driven systems, the transmission ratio R

is governed by pulley radii (or more generally, the

moment arm of the tendon insertion point). It would

be interesting to explore a design strategy in which the

transmission ratio R can be varied during the grasping

process to achieve optimal compliance at the contact

points. For example, once a grasp is achieved, the

pulley radius ratio R could be tuned in order to provide

high stiffness at the contact points. For cable-driven

systems, a cam with varying radius could be used as a

pulley.
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[10] C. Gosselin and T. Laliberté. Underactuated mechanical finger

with return actuation. US Patent 5 762 390, 1996.

[11] S. Hirose and Y. Umetani. The development of soft gripper for

the versatile robot hand. Mechanism and IVlechine Theory,,

13:351–359, 1978.

[12] N. Hogan. Impedance control of a robotic manipula-

tor. In Proc. of Winter Annual Meeting of ASME, 1981.

DOI: 10.1017/S0263574708004281.

[13] T. Inoue and S. Hirai. Mechanics and Control of Soft-fingered

Manipulation. Springer, 2008.

[14] Y. Kamikawa and T. Maeno. Underactuated five-finger pros-

thetic hand inspired by grasping force distribution of humans.

In Proc. IEEE/RSJ Internat. Conf. on Intell. Robots and Sys.,

pages 717–722, 2008.

[15] M. Kaneko, M. Higashimori, R. Takenaka, A. Namiki, and

M. Ishikawa. The 100G capturing robot too fast to see.

ASME/IEEE Trans. on Mechatronics, 8(1):37–44, 2003.

[16] G. A. Kragten and J. L. Herder. Equilibrium, stability, and

robustness in underactuated grasping. In Proc. of ASME

Internat. Design Engineering Technical Conf., pages 645–652,

2007.
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