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Abstract

Perception and gaze are an integral part of determining where and
how to grasp an object. In this study we analyze how gaze patterns
differ when participants are asked to manipulate a robotic hand to
perform a grasping task when compared with using their own. We
have three findings. First, while gaze patterns for the object are sim-
ilar in both conditions, participants spent substantially more time
gazing at the robotic hand then their own, particularly the wrist and
finger positions. Second, We provide evidence that for complex ob-
jects (eg, a toy airplane) participants essentially treated the object
as a collection of sub-objects. Third, we performed a follow-up
study that shows that choosing camera angles that clearly display
the features participants spend time gazing at are more effective for
determining the effectiveness of a grasp from images. Our findings
are relevant both for automated algorithms (where visual cues are
important for analyzing objects for potential grasps) and for design-
ing tele-operation interfaces (how best to present the visual data to
the remote operator).

Keywords: robot grasp, eye-gaze, camera control
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1 Introduction

In this paper, we examine how human eye gaze differs between
a human performing a grasp with their own hand versus position-
ing a robot hand in a similar grasp. Differences between eye gaze
patterns can help distinguish extrinsic (visual) cues from intrin-
sic (touch, proprioception) ones, and more importantly, which vi-
sual cues humans use as substitutes for missing intrinsic cues. We
perform a follow-up study that demonstrates that the visual cues
identified from the eye-gaze patterns are important for effective
grasp evaluation from images.

As robotics advances, it is expected that humans will guide robots
in performing increasingly complex manipulation tasks in a variety
of different environments. A wide spectrum of possible human-
robot tele-operation interaction paradigms exist to enable this (see
Fig. 1). At one extreme, the robot and the human are physically sep-
arate from each other — the robot provides just video information
about the environment, and the human sends remote commands to
the robot (such as a robot used for disaster rescue [Murphy 2004]).
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Figure 1: Spectrum of human-guided robot manipulation in terms
of available control (vertical axis) and information returned from
the robotic manipulator (horizontal axis).

The other extreme is when the human uses a neuroprosthetic robotic
hand that provides touch and force information directly to the hu-
man’s neural system and in turn receives commands through the
neural system [Taylor et al. 2002]. In either case, the robotic manip-
ulation can be thought of as an extended embodiment of the human.
Across this spectrum, it is important to understand how humans
process information when making decisions during physical inter-
action tasks in order to provide an effective interface. In this paper,
we use eye gaze information to explore how visual information is
processed in the context of grasping and manipulating objects, and
specifically, how it changes when a human positions a robotic hand
to perform the grasp versus using his/her own hand.

The spectrum of information available to the human when teleop-
erating a robot to perform a grasping task is diverse. It includes
direct 3D views, 3D point clouds, 2D video or images, and con-
tact and tactile information. Prior work has partially explored how
to present the information to operators to get the quickest response
time as well as the best decision from the operator [Drury et al.
2003; Murphy 2004; Burke and Murphy 2004; Steinfeld et al.
2006]. However, there is little work in understanding how the visual
information provided to the operator is processed when performing
physical interaction tasks such as grasping, and how humans might
compensate for missing tactile cues using visual ones.

In this paper, we compare eye gaze between two different points
on the manipulation spectrum. First, we use the human hand as an
example of an “ideal robotic tool”, where the human has the best
information about the object and the manipulator and optimal con-
trol over the manipulator. Second, we use physically positioning
a robotic hand as an example of tele-operation, where the operator
has full, natural control and complete visuals. We analyze the eye
gaze difference between the two conditions in three different stages
of the manipulation task: pre-grasp, during manipulation, and post-
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Figure 2: Study set up. The table included a checkerboard pattern
for further calibration. The red circle (inset, lower right) was used
to calibrate the eye tracker. The box on the table (inset upper left)
was used in the object placement tasks. Participants were seated at
the table. The robotic arm can be moved by simply manipulating it;
closing the fingers required sliders (in a box on the table).

manipulation grasp evaluation. We use this information to design a
simple camera viewpoint algorithm (based on the work of [Gooch
et al. 2001; Christie and Olivier 2009]), which uses our identified
features to determine the best view for grasp evaluation from im-
ages.

Understanding operator gaze is important in a grasping task because
it provides information about how the human perceives the object
and the task environment, and what visual cues are important to
completing that task. Specifically, eye gaze provides information
about how important different features of the object — such as the
object’s silhouette, surface, center of mass, and center line — are
when performing the task with either a robot hand or a human hand.
More subtly, changes in visual cues between using their own hand
and the robotic one provide information about which features of
the robotic hand’s position (eg finger location, wrist orientation)
are important. In particular, humans rarely look at their own hand
when grasping. This information can be used to improve efficacy
of remote and simulator interfaces by choosing camera angles that
show these visual cues. Long-term, we can improve grasp planning
algorithms by structuring the perceptual space based on these cues.

Contributions: We analyze visual cue differences for human-hand
versus robot-hand manipulation tasks. We confirm visual cues
found in previous human-hand studies [Lawrence et al. 2011; De-
sanghere and Marotta 2011; Prime and Marotta 2013] and addi-
tionally identify a more complex fixation pattern for more complex
objects. For the robot-hand manipulation task, we identify the vi-
sual cues used by the human to compensate for missing propriocep-
tive cues. We use these cues to create better camera viewpoints for
image-based grasp evaluation. We validate the viewpoints using an
online survey.

2 Related work

The domain of robotic grasping and manipulation has seen signifi-
cant progress both in terms of hardware [Dollar and Howe 2010;
Birglen et al. 2008; Brown et al. 2010] and software develop-
ment [Saxena et al. 2008; Lopez-Damian et al. 2005; León et al.
2010; Chitta et al. 2012]. However, there is a strong need to im-
prove the ability of robots to robustly physically interact with the
environment. Specifically, prior work has shown that even in a

Figure 3: Objects used for the study.

laboratory environment with almost perfect information for grasp
planning, robotic grasping performance only succeeds about 75%
of the time; that is, one in four grasps fail [Balasubramanian et al.
2012]. The primary reason for this poor performance is that even
small differences in object shape or object position cause the object
to, say, slip out during the grasping process. There has been signif-
icant effort to address these issues using physics-based heuristics
and brute-force search algorithms to find more robust grasps with
mixed success [Goins et al. 2015; Bohg et al. 2013; Balasubrama-
nian et al. 2012; Miller and Allen 2004].

Prior work has also explored “learning from demonstration”, where
humans teach robots [Ekvall and Kragic 2004; Argall et al. 2009]
to advance robot performance. However, most previous approaches
for gathering data are time-intensive [Balasubramanian et al. 2010].
In prior work, we used crowd-sourcing where we have employed
images or video of the grasps to receive human input [Unrath et al.
2014]. That work showed that humans are likely to over-estimate
how successful the grasp will be. Despite this over-estimate, hu-
mans are still more accurate than learning approaches that use stan-
dard grasp metrics (for instance, center of grasp, center of mass)
for certain subsets of grasp types. In on-going work we have also
shown that view point and rendering can influence accuracy in this
context; part of the goal of this work is to automate viewpoint se-
lection for on-line or simulation applications.

Other work in the context of learning from demonstration also re-
vealed a novel heuristic that humans use for improving grasp qual-
ity, namely, “skewness” where the human aligns the robot’s wrist to
the object’s principal axis [Balasubramanian et al. 2012]. We also
studied gaze patterns for evaluating static images of grasps [Sund-
burg et al. 2016], which showed that participants use many of the
same cues as they do for grasping, and that participants are sim-
ilarly likely to overestimate the effectiveness of grasps that look
“human”. However, no prior work has studied human eye gaze in
3D when controlling a robot arm in a physical interaction task.

There is a growing body of prior work on where humans look when
performing grasps using their own hands [Lawrence et al. 2011;
Desanghere and Marotta 2011; Prime and Marotta 2013]. This
work showed that that people’s gaze patterns are a mix of track-
ing the object’s center of mass, looking at the top of the object,
and looking at where the forefinger will make contact with the ob-
ject (which in their case was the top of the object). Varying the
task [Desanghere and Marotta 2011] or asking the participants to
do the grasp from memory [Prime and Marotta 2013] changed the
ratios of which region was gazed at, and in what order, but did not
substantially change the types of regions. In this study (and our pre-
vious study of gaze patterns in images [Sundburg et al. 2016]) we
see that these same patterns hold for the robotic grasping task, but
that participants (not too surprisingly) also spend substantial time
looking at the fingers, wrist, and other contact points.
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Figure 4: Flow chart of study procedure.

There are several existing techniques for camera viewpoint selec-
tion [Gooch et al. 2001; Christie and Olivier 2009] which evaluate a
large number of visually salient features and artistic guidelines. Our
contribution is a method for picking these features (and weighting
them) for the more specific task of grasp evaluation.

3 Physical study (PS): Method

In this section we describe our physical-interaction user study
where the participants performed specific object manipulation
tasks, both with their own hand and by physically manipulating
a robotic arm to do the task (see Figure 2). The participants per-
formed two tasks per object. The participant’s eye-gaze was tracked
throughout, and they were also asked to “think aloud” — verbally
evaluating their choice of grasp.

We first describe the study protocol, including objects, tasks, and
participant pool. We then describe our eye-gaze analysis approach
(Section 4), then provide results on eye-gaze differences between
the two conditions (Section 5).

The visual cues from this physical study was used to develop cam-
era viewpoints for grasp evaluation. These viewpoints were then
validated in an online survey, which is described in section 6. Over-
all, this work was part of a larger study; we only describe the study
elements relevant to this paper. The study was approved by Oregon
State University’s Institutional Review Board.

3.1 PS: Objects and tasks

A photo of the objects is in Figure 3. For each object the partici-
pants were asked to perform two tasks. The first was to pick up the
object from the table and place it on a box on the table. The second
task was object-specific (see Table 1). These object-specific tasks
are tasks or actions that are associated naturally with each object,
such as throwing a ball, squeezing a trigger, or handing the object
to someone.

The participants performed the task with the robotic hand by grab-
bing the hand and moving it to the desired location and orientation.
Unfortunately, changing the finger spread and closing the fingers
has to be performed through software; we placed a box with physi-
cal sliders and a knob on the table to enable this (one slider for each
finger plus a master slider to close all of them at once, the knob for
finger spread). Once the object was secure in the grasp the partic-
ipants moved the robot arm and hand as necessary to perform the
task.

Table 1: Object-specific tasks and number of grasps captured (in-
cluding pick-up task).

Object Natural Task Total
Grasps

Water Pitcher Pour water out of pitcher 11
Spray Bottle Pull trigger to spray 14
Margarita
Glass

Drink out of glass 14

Cereal Box Pour cereal out of box 12
Cracker Box Pour crackers out of box 15
Television Re-
mote

Press power button on re-
mote

11

Toy Plane Pretend to fly plane around 13
Food Clip Open clip as if using it to

close bag
10

Soap Dispenser Press down on nozzle to
dispense soap

10

Foam Cylinder Throw object overhand 16
Bison Plush
Toy

Hand toy to someone 5

Plush Ball Throw ball underhand 19
Sock Doll Hand doll to someone 16
Decorative
Cord

Hang cord by its metal ring 5

Tape Roll Support tape roll so that
another hand can be used
to rip tape off

11

Total 182
Grasps/object 12.1

3.2 PS: Capture and training phases

Our study protocol is designed to capture both human grasping and
human-planned robotic grasping. To do this, the study features a
training phase and two distinct (randomly ordered) capture phases:
in the first capture phase the participants use their own hands to grab
an object, while in the second, the participant physically positions
the robotic arm and hand to grasp the object. To prevent learning
effects, the order of the two phases was randomized for each object.

In the training phase (which happened before any data capture) par-
ticipants were asked to familiarize themselves with the hand by
moving it around and adjusting the fingers through the sliders. Al-
though there was a gravity compensation mode for the arm, it did
not adjust well when the hand was opened and closed, so partici-
pants were also given instructions to ask for help in supporting the
hand if needed.

For the human-hand grasping phase, participants were asked to use
just their thumb and first two fingers to mimic the three fingers of
the robotic hand.

3.3 PS: Prompts and think-aloud

The subjects were asked to think out loud as they performed the
study to provide insight into what they were thinking of while per-
forming the grasping tasks.

For the move-the-object task, participants were asked to actually
move the object using the robotic hand and arm. For the other tasks,
they were not required to perform the task, but simply needed to
position the hand. They were given explicit permission to pick up
the object, position it how they wanted, and to use their other hand
if they needed two hands.



Figure 5: Example frames from the eye-tracking video showing the
different eye gaze locations we identified (center, top, side, finger,
wrist).

At the end of each grasp participants were asked: “Is this grasp
exactly what you wanted? Or are the finger placements slightly
different that what you were intending? (How so?)”. This prompt
is aimed at determining how much the robotic hand limitations af-
fected the participant’s grasp choice.

3.4 PS: Data capture equipment and procedure

The equipment used for this study included a pair of SMI Eye
Tracking Glasses 2.0 to collect eye-gaze data and a Barrett WAM
Arm with BH280 BarrettHand to perform the robotic grasping. We
also instrumented the working space with spatial calibration pat-
terns (see Fig. 2), a Kinect sensor to track objects, and an audio
cue to ensure calibration between data sources (eye-gaze, Kinect
sensor, and BarrettHand).

Eye tracking: The SMI glasses record both where the user is look-
ing and what they are looking at. The data is recorded as a 960x720
video stream at 30 Hz, plus an eye gaze location for each video
frame (as x, y image coordinates). The eye gaze data also includes
other information such as pupil diameter, fixations, and saccades.
The eye tracker has to be fit to the person’s head (similar to goggles)
using two nose pieces and calibrated to their eyes. To perform the
calibration the participant was asked to sit down in front of the table
and fixate on a red dot on the table (see Figure 2). This one point
calibration was performed using the SMI software. We checked the
calibration at the end of each grasp trial by having the participant
focus on the red dot again. We did not detect any significant cali-
bration drift during the study.

Arm and hand tracking: We used a Barrett WAM and Barrett-
Hand (BH-280) in the study. The arm is backdrivable and gravity
compensated; that is, the arm location can be physically adjusted
with ease. However, the BarrettHand’s fingers cannot be physically
adjusted from external forces (only through its motors). We used
a physical set of three sliders to control how much each finger was
closed, and a knob to control the spread of the fingers. Note that the
two joints of the finger are controlled with one actuator.

Audio and temporal alignment: The eye-tracker records audio
with the video. In addition to recording what the participant said we
also used this information to temporally align the eye-tracker to the
arm data streams using a generated beep. All other data alignment
was through the Robot Operating System (ROS) toolkit.

3.5 PS: Protocol management and flow

The study is designed to be run by two researchers. One researcher
handled the Ubuntu Linux PC running ROS and the arm, the other

Table 2: Annotation codes

Step Codes
Phase Pre-grasp During grasp Post-grasp
Regions (object) Centerline Top Edges
Regions (hand) Wrist Finger tips

handled the SMI eye tracking laptop. Both researchers were in-
volved in explaining the study and talking to the participant.

The average time for a data collection session was an hour and a
half, covering two grasps each for three or four objects. The maxi-
mum time was capped at two hours due to eye strain generated by
the eye tracking glasses, as well as general fatigue from performing
the experiment. New participants went through a training session to
familiarize themselves with the robot arm and hand before starting
data collection.

The general flow of the study can be seen in Figure 4 and is also
outlined in the list below.

1. Participant enters room and signs consent form.

2. Brief training session with a test object (not in capture set).

3. Eye tracking calibration performed.

4. Study trials explained to participant.

(a) Object placed on table, and participant told to use robot
hand (group 1) or their own hand (group 2) to perform
pick up task.

i. Pick up task performed.

ii. Repeat until no new grasps.

(b) Natural task explained.

i. Natural task performed.

ii. Repeat until no new grasps.

(c) Object-tasks (a-b) repeated with human hand (group 1)
or robot hand (group 2)

(d) Eye tracking recording stopped, and re-calibration if
needed.

5. Repeat a-d with as many objects as possible

6. Eye tracking recording stopped, all other data collection
ended.

3.6 PS: Participants

We recruited 15 participants, ranging in age from 16 1 to late 50’s,
all with normal or corrected to normal with contacts vision (it is not
possible to wear regular eye glasses with the Eye-gaze ones). On
average participants specified 4.5 (maximum 8) grasps per object
across the two tasks.

4 PS: Analysis of eye-tracking data

We perform two types of analysis on the eye-gaze data. The first
analysis focuses on labeling what the participant was looking at
before, during, and after grasping the object to perform the manip-
ulation task. The second analysis focuses on differences in fixations

1High-school students involved in a summer STEM program.



0

0.2

0.4

0.6

0.8

1
To

p 
(h

)

To
p 

(r)

Ed
ge

 (h
)

Ed
ge

 (r
)

W
ris

t (
h)

W
ris

t (
r)

F.
 ti

p 
(h

)

F.
 ti

p 
(r)

C
en

te
r (

h)

C
en

te
r (

r)

Features

Before

0

0.2

0.4

0.6

0.8

1
During

To
p 

(h
)

To
p 

(r)

Ed
ge

 (h
)

Ed
ge

 (r
)

W
ris

t (
h)

W
ris

t (
r)

F.
 ti

p 
(h

)

F.
 ti

p 
(r)

C
en

te
r (

h)

C
en

te
r (

r)

Features

Robot Hand
Human Hand

Outliers

Median

0

0.2

0.4

0.6

0.8

1
After

To
p 

(h
)

To
p 

(r)

Ed
ge

 (h
)

Ed
ge

 (r
)

W
ris

t (
h)

W
ris

t (
r)

F.
 ti

p 
(h

)

F.
 ti

p 
(r)

C
en

te
r (

h)

C
en

te
r (

r)

Features

Figure 6: Gaze time differences between the human hand and the robot hand. From left to right: Before, during, and after phases. Gaze time
is normalized across all three phases. Circles with dots are medians; circles without dots are outliers.

for different objects. Example frames from the video are shown in
Figure 5.

4.1 PS: What did they look at?

We analyzed the eye-gaze data using a two-step process. In the first
step, we identify three phases: Pre-grasp (when the participant is
looking at the object but has yet to touch it), during grasp (when the
participant closes the hand around the object) and post-grasp eval-
uation (when the participant evaluates the grasp in the think-aloud
protocol). In the second step we label what the participant was
looking at. The view is split into five regions, three of which focus
on the object and two on the hand (see Table 2). Recall that we used
eye tracking glasses so both the view point and the object were free
to move. Reliably tracking the human hand and object’s location
with the Kinect proved to be difficult because of occlusions; for
these reasons we chose to manually label the video.

To annotate the video data and produce the statistics we used
MaxQDA [max 1989-2015]. We marked all time segments where
the gaze was fixed on the object, hand, or robotic arm and hand for
longer than thirty frames. To verify inter-coder reliability, we had a
second coder repeat the coding for one participant; the code align-
ment was over 95%. For this analysis, the gaze points outside of
the object and hand were ignored.

Not all participants had all codes, most notably, very few partici-
pants had a pre-grasp gaze for the robotic hand, and there were also
2 participants who had no pre-grasp gaze for the human hand. We
hypothesize two reasons for this: The first is that peripheral vision
was sufficient in some cases for the participant to categorize the ob-
ject. The second is that if the participants were doing the robotic
hand second they had no need to look at the object again (10 of 11
with no pre-grasp gaze).

4.2 PS: Fixations

We implemented the EyeMMV fixation detection algorithm [Kras-
sanakis et al. 2014], which filters the coordinate sequences by ap-
plying a threshold of dispersion to the points. We used standard
settings [Salvucci and Goldberg 2000] for the algorithm: a 90 ms
minimum fixation duration and a maximum fixation dispersion of
0.5 degree of visual angle (DVA), with a preliminary filter of 5 pix-
els greater than 1/2 DVA. We measured visual angle based on gaze
frames where the participant was focused on the object. The algo-
rithm produces a sequence of fixations, with each fixation centered
at the average of the coordinates and lasting a given duration. Us-

ing fixations, over the raw coordinate data, both reduces processing
time and removes saccades, where the viewer is essentially blind.

We overlay the fixation counts with the annotations to find the num-
ber of fixations on the object during each phase.

5 Physical study: Results

We first summarize the difference between the two conditions (hu-
man hand versus robot hand), then the differences in fixations be-
tween objects, and finally the think-alound results. Statistical sig-
nificance is inferred at the p = 0.05 level.

5.1 PS: Gaze difference

Figure 6 shows the normalized gaze times for both using the robot
hand and the human hand in the three phases of grasping (before,
during, and after). Several patterns are clear. In the “before” phase
when using the robot hand, the human subjects almost never look
at the objects’ top and edges or the robot’s wrist or fingertips. They
only focus on the object’s centerline. This is in contrast to using
their own hand, where the focus is primarily on the top and edges
of the object, as found in previous studies [Lawrence et al. 2011].

In the “during” and “evaluation” phases, the two gaze patterns were
more similar. Primary differences are that the participants spent
more time observing the robot’s wrist (versus looking at their own)
and less time looking at the object’s centerline.

Overall, during the robotic grasp task participants spent signifi-
cantly less time looking at the edges and top of the object before
beginning the manipulation (some participants barely glanced at the
object before starting — see Figure 7). In human grasping studies,
gaze on the edges and top corresponds to participants determining
potential contact points for their fingers. We hypothesize that the
lack of these pre-grasp glances for placing the robotic hand im-
plies that visualizing contact points is part of the control strategy
for guiding the hand to the desired grasp, but not for planning the
grasp in the first place. The placement of the fingers relative to the
edges or top of the object does, however, play a significant role in
evaluating the grasp for both conditions.

Robotic hand control strategy: Participants varied on exactly how
they moved the robot hand, but in general they positioned the hand
roughly where they wanted it and with the desired finger spread,
then iterated a few times between adjusting the fingers and re-
positioning the hand.
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5.2 PS: Fixation differences for objects

Objects with more complex geometry saw more fixations than sim-
ple objects in the “before” phase (see Fig. 8). We define complex-
ity by the number of components produced by an automated shape
analysis approach such as [Kaick et al. 2014].Their is a positive
correlation between complexity of objects and number of fixation
points, r = 0.83. From an informal observation of the gaze pat-
terns, participants appeared to be moving between the center line
and top of each convex regions of the object (eg, the wings to the
plane body). A more formal evaluation of what regions they were
looking at would require tracking the object in the video.

5.3 PS: Think-aloud evaluations

We did not formally analyze the participants comments; we sum-
marize here overall statements. Around half of the participants said
at least one grasp was not quite what they wanted, particularly for
more complex objects such as the plane. The major refrain was
that the participants didn’t like that the joints in the fingers couldn’t
be controlled individually (the Barrett hand only supports bending
the two finger joints simultaneously, not controlling each joint in-
dependently). This was most noticeable in cases where the finger
locks up due to collision with the object — one part of the finger
comes in contact and stops, while the remaining part of the finger
stops where it is and doesn’t close all the way around the object.
Other issues were the fingers being too thick, the hand too big, or
the controls being too fidgety to achieve some of the more precise
grasps the participants had intended to perform.

6 On-line study (OS): Method

Physical studies provide very high-quality data, but are very time-
consuming and do not scale. Previous work [Unrath et al. 2014]
shows that we can leverage on-line surveys to quickly label and
classify grasps by asking participants to evaluate images of them;
however, on-going work also shows that view point selection plays
a key role both in how effective participants are in labeling grasps
and how confident they are. Our goal is to use the eye-tracking
data to guide an automatic view-point selection algorithm for this

Simple                                                              Complex

Figure 8: Fixation counts on the objects, organized from simpler
shapes to more complex ones, as measured by (approximately) the
number of components a shape segmentation algorithm would pro-
duce.

use case. Specifically, we use the relative percentage viewing time
of the features during the robotic grasping hand stage to create an
optimization function for specifying camera viewing angles. We
used an on-line survey to evaluate if the algorithm selected views
that are both effective and useful.

6.1 OS: Viewpoint optimization algorithm

Because gravity and object orientation are important compo-
nents in grasp evaluation, we limit our viewpoint search to az-
imuth and elevation (effectively searching a hemisphere of view-
points). The camera is pointed at the center of the object and
the up vector aligned with gravity. Our optimization func-
tion for a given viewpoint is simply the sum of the percent-
age of visible pixels for each feature (normalized by the max-
imum number of pixels for that feature seen from any view-
point). Each term is weighted by the percentage of time par-
ticipants spent viewing that feature, averaged across all par-
ticipants(top=0.17,edges=0.24,fingertips=0.27,wrist=0.024, center
line=0.29). For the contact point features, we added a sphere
roughly half the size of the finger tip, centered on the contact point.
The best view is the one with highest score; the second best is the
one with the next highest score that is at least 30 degrees from the
best view.

6.2 OS: Survey format

Our survey was designed to measure both how effective the views
were for evaluation (did this grasp work, yes or no?) and perceived
usefulness. We used four viewpoints: best and second best views
(good pair), and worst and second worst views (bad pair). The sur-
vey had four questions (5-point Likert scale) (complete survey in
Supplemental materials). Each image was shown in all positions
roughly equally.

• Q1 GBPairs work: (All good and bad pairs): Would the grasp
work, yes or no, and how confident are you in your answer.

• Q2 GBPairs useful: (Good pair and bad pair): Rank the use-
fulness of the first pair with respect to the second pair.

• Q3 Second view useful: (Best and second best/Worst and sec-
ond worst:) Rank the usefulness of the second view.

• Q4 Rank views: (Good pair and bad view): Rank the useful-
ness of the three views.



Not Useful              Extremely Useful Not Useful              Extremely useful Not useful    Extremely Useful Not useful    Extremely Useful Not useful    Extremely Useful

Figure 9: Results of on-line survey. Left: Grasp works y/n (Q1 GBPairs work). Middle: Usefulness of view pairs (Q2 GBPairs useful). Right:
Usefulness of first and second best view to worst (Q4 Rank views). (Useful is to the right.)

For simplicity, we evaluated our algorithm with three objects (spray
bottle, ball, glass), two grasps each. These were grasps given by
participants in the physical study and subsequently verified as be-
ing effective using a shake test. Image order was randomized. Each
of the 30 participants saw 20 of the 24 total questions, again ran-
domized. Participants were recruited through Mechanical Turk; we
verified that the participants spent enough time on each question to
have seen the images and didn’t click the same response for every
question.

We determined that there was an order bias: Images on the left
tended to be preferred over images shown on the middle or right
(Question 1 mean 0.68 versus 0.35, Question 4 mean 3.45 versus
3.07 and 2.31, p < 0.0007, 0.0005 respectively). In a previous
study [Sundburg et al. 2016] we also saw a distinct pattern of look-
ing at the left image then the right, with only far more salient views
on the right drawing the gaze first.

7 On-line study: Results

Refer to Figure 9. For Q1 (GBPairs work) participants were not
only more likely to rank the good grasp pairs as effective (means
0.68,0.35, p < 0.0007) but were also more confident in their an-
swer (means 2.3, 1.4, p < 0.05). Grasp views were ranked as ex-
pected for usefulness both as pairs and individual images (Q2 GB-
Pairs useful and Q4 Rank views). Interestingly, the second best (and
first worst) views were both rated approximately as useful (mean
3.07, 2.31, p < 0.00039, 0.00019) relative to their corresponding
first view (Q4 Rank views). The answers to Q3 (Second view use-
ful) did not yield data with statistical significance.

8 Discussion

We have presented an analysis of the difference in eye gaze when
participants used their own hand versus manipulating a robotic one.
This begins to provide an understanding of how humans substitute
visual cues for tactile feedback when performing a physical interac-
tion task. We have demonstrated that these visual cues lead to more
effective view-point selection for grasp evaluation from images.

Future work will focus on view-point selection and visual feedback
for virtual physical manipulation tasks, and on evaluating how gaze
patterns differ from the physical robotic hand to the virtual one.
We will also focus on generating optimal view points in simulation
software (such as Rviz) to improve operator’s effectiveness.
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