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Acquiring Variable Moment Arms for Index Finger
Using a Robotic Testbed

Ashish D. Deshpande∗, Ravi Balasubramanian, Jonathan Ko, and Yoky Matsuoka

Abstract—Human level of dexterity has not been duplicated in
a robotic form to date. Dexterity is achieved in part due to the
biomechanical structure of the human body and in part due to
the neural control of movement. We have developed an anatom-
ically correct testbed (ACT) hand to investigate the importance
and behavioral consequences of anatomical features and neural
control strategies of the human hand. One of the critical aspects
of understanding dexterity is the analysis of the relationships be-
tween the hand muscle movements and joint movements, defined
by the moment arms of the muscles. It is known that the mo-
ment arms for the hand muscles are configuration-dependent and
vary substantially with change in posture. This paper presents a
methodology for determining continuous variations in the moment
arms with respect to multiple joints moving simultaneously. To de-
termine variations in the moment arms of the ACT hand index
finger muscles, we employed a nonparametric regression method
called Gaussian processes (GPs). GPs give a functional mapping
between the joint angles and muscle excursions, and the gradients
of these mappings are the muscle moment arms. We compared the
moment arm relationships of the ACT hand with those determined
from the available cadaver data. We present the implications of
the determination of variable moment arms toward understand-
ing of the biomechanical properties of the human hand and for the
neuromuscular control for the ACT hand index finger movements.

Index Terms—Index finger, moment arms, robot hands.

I. INTRODUCTION

HUMAN hands are capable of many dexterous grasping
and manipulation tasks. Hand dexterity can be defined

as the ability to precisely control movements and forces of all
the DOFs of the hand to achieve a variety of tasks. Some of the
examples of the human hand dexterity are the ability to play mu-
sical instruments with our hands, use chopsticks, gesture, and
perform daily tasks, such as cooking and writing. Numerous an-
thropomorphic robotic hands have been developed with the goal
to replicate such human-level dexterity [7], [9], [13], [22], [31].
Most of the existing and emerging robotic hands [21], [32] are
developed as prosthetic devices, and hence, the focus has been
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on making them lightweight and easy to power and operate. We
have developed a hand called the anatomically correct testbed
(ACT) hand to mimic and study the biomechanics and neuro-
muscular controls of the human hand. We believe that under-
standing of human biomechanical structure and neural coding
of the hand movements gained by experimenting with the ACT
hand will lead to future developments of the robotic and pros-
thetic hands. This paper presents a technique to quantify the
relationships between the muscle contractions and joint move-
ments in human hands by studying these properties in the ACT
hand.

An important characteristic of the human hand is the mechan-
ical advantage, or the moment arm, that each muscle–tendon
combination has on each joint. The relationship between the
muscle–tendon excursions and joint movements, which is char-
acterized by the moment arms, depends on the bone shapes over
which tendons travel and the structure of the tendon network.
In case of the index finger, a moment arm matrix can be defined
to relate excursions of seven muscles to four independent joint
motions. From cadaveric and human studies, it is known that
the moment arms for the hand muscles are nonlinear function of
all the joint angles [2], [10], [18]. Since the moment arm matrix
relates the muscle excursions to the joint motions and also the
muscle forces to the joint torques, understanding the variations
of the moment arm matrix is critical for understanding the hand
control strategies and hand dexterity.

In hand biomechanics research, the importance of variable
moment arms of the finger muscles in achieving finger function-
ality, especially, for the index finger, has long been discussed.
Brand et al. [10] collected excursion data and determined the
moment arms for one of the index finger muscles in intact and
excised cadaver hands, in order to study how pulley advance-
ment affects moment arms and resulting changes in finger flex-
ion and grip strength. An et al. [2] studied muscle excursions as
functions of all four index finger angles in cadaver hands and
determined the moment arms in order to study the effects of
tendon transfer procedures. Recently, Kamper et al. [23] have
studied the mapping between muscle activation and isometric
joint torque production in the index finger of healthy subjects.
The study concluded that the mapping was profoundly affected
by finger posture and the variations in the torques were pro-
duced predominantly by changes in the moment arms. Buford
et al. [12] have demonstrated that the moment arms need to be
determined in order to calculate the exact contributions of in-
trinsic muscles to the finger joint moment. Weiss et al. [42] have
studied the effectiveness of hand implants to replace metacar-
pophalangeal (MCP) joint by studying variations in the in-
stantaneous center of rotation (COR) and moment arms after
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Fig. 1. ACT hand. The ACT hand is modeled to be human size. The skeletal
structure and tendon routing in each finger are anatomical (Photo by Ellen
Garrens).

MCP joint replacements with three different types of implants.
Instantaneous and variable moment arms have also been stud-
ied for other joints, for example, for elbow [3], [17] and shoul-
der [27] joints. However, techniques used so far cannot be ap-
plied to determine continuously varying moment arms for hand
muscles as multiple joints move simultaneously.

Although it has been accepted that the moment arms for
muscles in the fingers are posture-dependent, the exact map-
pings of moment arms and finger postures have been difficult
to determine, since it requires simultaneous measurement of all
joint angle variations and muscle excursions. To address this,
researchers have determined moment arms with respect to only
limited and discrete finger motions. Due to the significance of
MCP flexion for the entire finger movement, many studies have
focused on the determination of moment arms for the index fin-
ger muscles with respect to only MCP flexion [10], [12], [42].
An et al. [2] present a comprehensive study on index finger
moment-arms determination in cadaver hands by moving one
finger joint at a time while fixing the other three joints. Fowler
et al. [18] determine the moment arms in cadaver hands using
MRI scans to measure the distances between tendons and joints
in different finger postures. However, in this study, the moment
arms are determined only at five finger postures, and the effects
of tendon sliding, important in causing moment arm variations,
are not captured. Exactly how the human moment arms vary
with simultaneous joint movements in the human hand and how
(or whether) the central nervous system (CNS) utilizes the vari-
able moment arms to achieve the desired movement is not fully
understood.

We attempt to answer these questions using the ACT hand
shown in Fig. 1. The local nonlinear interactions between the
muscle excursions and joint movements are mimicked in the
ACT hand by bone shapes that match human bones and by
a structure of tendons that connect the actuators to the finger
bones. When a robotic system imitates the human structure, as
in the ACT hand, identifying robotic hardware properties re-
sults in uncovering human biomechanical properties that might
be challenging to identify in vivo. The goals of this paper are to

Fig. 2. Examples of moment arm variations with varying degree of complexity
in the relation between angle and string slide length. (a) Moment arm R is simply
r. (b) Moment arm is configuration-dependent and is given by: R(θ) = ∂L/∂θ.
(c) Moment arm matrix is dependent on two angles and is given by: R2×2 with
elements Rij = ∂Li/∂θj , i, j = 1, 2.

present a system-identification method that allows, for the first
time, the determination of the moment arm matrix for index
finger muscles as a function of multiple joints moving simulta-
neously, and to discuss the implications of the variable moment
arms.

Determination of the moment arm properties requires data
collection over many trials, which is difficult to achieve with the
cadaver fingers because the cadaver samples can only be used for
limited time period and measurement of muscle displacements
is difficult. Using the ACT hand, we have collected a large
amount of data for finger motions. We implement, for the first
time, a method called Gaussian processes (GPs) to determine
the moment-arm functional mappings in a high-dimensional
space (six muscles and four joints) with a large dataset. GP has
advantages with high-dimensional data, since it is completely
data-driven and can model highly nonlinear functions. We com-
pare the moment arm relationships with those determined from
the available cadaver data. We discuss the implications of the
determination of variable moment arm matrix toward the un-
derstanding of the biomechanical properties of the human hand
and for the neuromuscular control for the ACT hand index fin-
ger movements. Preliminary results on this topic are presented
in [14].

II. ACT INDEX FINGER DESCRIPTION

In this section, we present important features of the index
finger of the ACT Hand, which influence the moment arm deter-
mination. The details of finger skeletal structure and the tendon
routing have been presented earlier in [41] and [43].

A. Finger Structure and Muscles

Fig. 1 shows the ACT index finger we used for the system-
identification experiment. The finger consists of four bones (one
metacarpal and three phalanges), which are connected by three
joints, namely, MCP, proximal interphalangeal (PIP), and dis-
tal interphalangeal (DIP). The finger has 4 DOF, abduction–
adduction (Ab–Ad) at MCP and flexion–extension at all joints.
The finger is controlled by three intrinsic muscles, namely,
palmar interossei (PI), radial interossei (RI), and lumbrical
(LUM), and three extrinsic muscles, namely, extensor interossei
(EI), flexor digitorum superficialis (FDS), and flexor digitorum
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profundus (FDP). The human index finger has additional extrin-
sic muscle called extensor digitorum communis (EDC). This
muscle is not copied in the ACT hand, since it is equivalent to
EI when the movements of a single digit are analyzed. The bone
shapes and an extensor hood mechanism, which is a complex
web of extensor tendons located on the dorsal side of the finger,
are duplicated to match the human counterpart [43].

Each muscle is realized by a brushless dc motor and the ten-
dons are connected to the motor shafts. In the human hand,
the LUM muscle does not attach to a bone, instead it attaches
proximally to the tendons of flexor digitorum profundus and dis-
tally to extensor expansions on the dorsal surface of the hand.
This arrangement is not realized in the ACT hand due to its
complexity. Instead, the LUM tendon and associated motor are
attached to the equivalent of a skeletal anchor point. We hope to
achieve anatomical LUM muscle behavior with software con-
trol of the motors. A constant-torque spring is installed on each
motor shaft, which generates pretensions (0.3 N) in the tendons
to avoid tendon slacking. Each motor is connected to a minia-
ture controller with an embedded photosensor and an encoder
wheel with 114 ticks/degree, allowing for a high-precision po-
sition sensing of the motor rotation [5]. The controllers are con-
nected to a real-time application interface (RTAI) Linux [38]
machine that provides motor position readings at a high fre-
quency (500 Hz).

B. Moment Arm Variations

The moment arm relates the rate of change of finger joint
angles to the rate of change of muscle excursions. A positive
moment arm means that the muscle length increases when the
joint angle increases, while a negative moment arm means that
the muscle length decreases as the joint angle increases. In the
case of the ACT hand index finger, the moment arm is defined
by a matrix R of dimension 6 × 4. The elements of this matrix
can be determined by first determining the functional mappings
between the joint and muscle movements. The finger DOFs and
the muscle excursions can be defined to be related by functions
fi as follows:

li = fi(θ), i = 1, . . . , 6 (1)

where li is the excursion length for the muscle i, which is a mem-
ber of the vector of muscle excursions (l = [l1 , l2 , l3 , l4 , l5 , l6 ]T )
and θ is a vector of finger joint angles (θ = [θ1 , θ2 , θ3 , θ4 ]T ).
We define θ1—MCP Ab–Ad, θ2—MCP Flex, θ3—PIP Flex and
θ4—DIP Flex, with the abduction and flexion as positive direc-
tions. The moment arm matrix relates the joint angular velocities
to the muscle length rate of changes as follows:

l̇ = R(θ)θ̇ (2)

where

Rij (θ) =
∂li
∂θj

=
∂fi

∂θj
, i = 1, . . . , 6 and j = 1, . . . , 4. (3)

The moment arm matrix also defines the relationship between
the muscle forces and joint torques as follows:

τ = −R(θ)T f
m

(4)

where τ ∈ R
4×1 is a vector of joint torques and f

m
∈ R

6×1 is
a vector of muscle pull forces.

III. METHOD FOR DATA COLLECTION AND ANALYSIS

To determine the moment arms, the index finger of the ACT
hand was moved in the entire range of its joints. The operator
held the finger tip and systematically moved the finger to the
extreme position of each joint. Based on this data, a visual
4-D map of the entire finger workspace was generated using the
C++ programming and OpenGL platform. The operator then
moved the finger to all the possible positions in its workspace
multiple times with the aid of the data visualization tool.

The muscle excursion data were collected by measuring the
angular rotations of motors using encoders on the motor shaft.
During the movements, the motors did not apply any torque. The
joint angle data were collected using a motion capture system
called Vicon 360. Six Vicon cameras of the type M2 were set
up around the finger to record motions involving all four joint
angles. Thirteen markers, each 3 mm in diameter were placed
on the ACT finger and the distribution of the markers was as
follows: five on the MCP bone, three on the proximal and mid-
dle phalange, and two on the distal phalange. The locations of
the markers on the bones were chosen to avoid marker occlu-
sion during the finger movements. The XYZ positions of the
markers were recorded at 120 Hz, and finger joint angles were
determined by using an angle determination algorithm built into
the Vicon software (Vicon iQ 2.5). Each data point for our ex-
periments consisted of the time stamp, the muscle positions,
and the joint angles. We collected approximately 200 000 data
points that cover the whole range of four joint angles, which is:
MCP Ab–Ad: ∈ [−15◦15◦], MCP Flex–Extend: ∈ [−30◦90◦],
PIP Flex–Extend: ∈ [0◦110◦], and DIP Flex–Extend: ∈ [0◦70◦].
On average, for every 4-D bin defined by 5◦ interval in the
joint angles, we have 820 (SD 98.1) data points, which shows a
satisfactory coverage of the data in the finger workspace.

The determination of the functional mapping, given by (1) in
a high-dimensional space (six muscles and four joints) with a
large dataset, is challenging. To address this, we implemented a
machine-learning technique called the GP. A GP-based regres-
sion model is a probabilistic kernel method [16], [26]. GP has ad-
vantages with high-dimensional data, since it is completely data-
driven and can model highly nonlinear functions. This method
is explained in detail in the Appendix. By taking the derivative
of the joint angle to muscle length mappings we can determine
the moment arms. GP has a unique property that it allows for the
determination of the gradient of the nonparametric functional
mapping given by GP. For details on GP gradients, see [37].

IV. RESULTS AND VALIDATION

A. Muscle Excursions

Table I shows the total excursion lengths for all muscles
for the full range of joint angle movements. Table II shows
muscle excursion lengths for 100◦ change in joint angle for
both the ACT hand and cadaver hands [2] (see shortly for more
on comparisons with cadaver data).
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TABLE I
MAXIMUM MUSCLE EXCURSIONS (IN MILLIMETERS) OBSERVED OVER ALL

COMBINATIONS OF JOINT ANGLES

TABLE II
MUSCLE EXCURSIONS (IN MILLIMETERS) FOR 100◦ OF ANGLE CHANGE

Fig. 3. FDP, PI, and EI muscle excursions (in millimeters) as functions of two
finger angles, while other two angles are held constant at 0◦ for the sake of
plotting. The surfaces were fitted using the finger motion data shown in dots.
(a) FDP excursions. (b) PI excursions. (c) PI excursions. (d) EI excursions.

Fig. 3 shows example plots of muscle excursions, for FDP, PI,
and EI muscles, as functions of two joint angles, while the other
two joint angles are held constant at 0◦ for the sake of plotting.
The mean error across all data points with the GP-based mapping
is 0.65 (SD 0.33) mm. This error is quite low when compared
with the total excursions, as given in Table II, which gives the
muscle excursions per 100◦ of angle change. Thus, we have a
functional mapping between the joint angles and muscle ex-
cursion. As expected, the extrinsic muscles (FDS, FDP, and EI)
show large excursions with finger flexion and smaller excursions
for abduction–adduction; while the intrinsic muscles (LUM, PI,
and RI) show large excursions with finger abduction–adduction
and smaller excursions for flexion. GPs provide a measure of
uncertainty for each data point along with mean estimation.
Table III gives the mean uncertainty for each muscle.

TABLE III
MEAN UNCERTAINTY um AND STANDARD DEVIATION FROM THE MEAN

UNCERTAINTY (IN MILLIMETERS) GIVEN BY GP-BASED MAPPING OF MUSCLE

EXCURSIONS FOR EACH MUSCLE

B. Moment Arms

Using the aforementioned functional relationship between the
joint angles and muscle excursions, we computed moment arms
using (3). Table IV gives the mean, maximum, and minimum
values (in millimeters) of the moment arm for all six muscles.
The moment arms for the muscles with respect to all four joint
angles show substantial variations. The moment arms of some of
the muscles with respect to the MCP angles are different from the
results in [14], where we held the PIP and DIP angles constant
during the experiments. This shows that the moment arms with
respect to the MCP joint angles are affected by the changes in
the PIP and DIP angles. Fig. 4 gives the variations in the moment
arms for the muscles FDP, EI, and PI with respect to two joint
angles, while the other two joint angles are held constant at 0◦

for the sake of plotting. We notice that the large variations in the
FDP’s moment arm with respect to MCP flexion is primarily a
function of DIP and MCP Ab–Ad configuration. However, EI’s
moment arm with respect to PIP varies significantly with PIP
flexion. The 2-D projections of PI’s moment arms show that
PI’s moment arms do not vary much in the MCP Ab–Ad and
PIP joint angle space. Fig. 5 shows the variations of moment
arms estimations for all muscles when PIP and DIP joints are
varied individually while other finger joints are held constant.
The shaded regions show the uncertainty or variance given by
GPs.

C. Cadaver Data Comparison

We compare our results with index finger cadaver data from
[2], which is one of the most comprehensive datasets available.
Data in [2] is from independent variations in each joint while
other joints are fixed. Table II shows the muscle excursions with
100◦ of joint changes for a cadaver hand and the ACT hand. We
have regenerated the moment arm variations from [2] (from one
female specimen) in Fig. 6(b) and (d). To make the comparison
between variable moment arms data, we generated slice plots
from our data, as shown in Fig. 6(a) and (c). We generated these
plots by keeping the other joint angles constant as it was done for
the cadaver data. The signs of moment arms for all the muscles
match, except for LUM in parts of finger flexion, confirming that
the elongation and contraction of all the muscles are copied in the
ACT hand. Note that the sign of MCP Ab–Ad angle is switched
to match with the cadaver data leading to change in the sign
of the moment arms in Fig. 6(a). Table V gives the correlation
coefficients between individual muscle plots for MCP Ab–Ad
and flexion variations. The differences in variations in LUM and
RI with flexion angle and PI with adduction might have arisen
due to the differences in the structure of LUM in the cadaver
hands and the ACT hand.
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TABLE IV
MOMENT ARM (IN MILLIMETERS PER RADIANS) MEAN, MAX, AND MIN FOR ALL SIX MUSCLES OF THE ACT HAND DUE TO CHANGES IN FINGER ANGLES

Fig. 4. Moment arm variations for EI and PI muscles as two finger angles vary.
The other two finger angles are held constant at zero for the sake of plotting. (a)
and (b) show the variations of the moment arms of the muscle EI (l1 ) with respect
to two separate angles, MCP flex (θ2 ) and PIP flex (θ3 ) are shown. Therefore,
(a) gives the variations of ∂l1/ ∂θ2 and (b) gives the variations of ∂l1/ ∂θ3 .
(a) EI moment arm w.r.t. MCP flex. (b) EI moment arm w.r.t. PIP flex. (c) PI
moment arm w.r.t. MCP Ab–Ad. (d) PI moment arm w.r.t. PIP flex.

Fig. 5. Variations of moment arms for the six index finger muscles as PIP and
DIP joint angles vary, while MCP angles are fixed at 0◦, for the sake of plotting.
The shaded regions show the uncertainty or variance given by the GP. Since
the variability is very small, the shading is hard to see. The figures indicate
that variations in the moment arms due to changes in PIP and DIP angles are
considerable and must be accounted for in the moment arm structure. (a) PIP
effects on R. (b) DIP effects on R.

Fig. 6. Variations of moment arm for the six index finger muscles as MCP
joint angles vary, while PIP and DIP angles are fixed at 0◦ for the sake of
plotting. The shaded regions in (a) and (c) show the uncertainty or variance
given by GPs. (b) and (d) Recreated using the data and figures provided in [2].
The sign of the moment arms, indicating contribution to flexion/extension or
abduction/adduction, for all muscles match, except for LUM in parts of finger
flexion, with the cadaver plots. The moment arm values are higher in our case
by, on average by 25%, presumably, at least in part, due to the fact that we
modeled the ACT hand size on the size of a male subject and data in An
et al. [2] is from a female specimen. (a) Ad–Ab ACT. (b) Ad–Ab Cadaver.
(c) MCP Flex ACT. (d) MCP Flex Cadaver.

TABLE V
CORRELATION COEFFICIENTS BETWEEN MOMENT ARM CURVES FROM THE

CADAVER AND ACT HAND GIVEN BY FIG. 6

D. Validation

To validate the moment arm matrix estimations, we moved the
ACT index finger in a test path and collected muscle excursion
and joint angle data. We then used the moment arm matrix R(θ)
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determined by using GP to predict finger joint angles given
muscle excursions, using the relationship

θ̃ =
∫

R(θ)−1 l̇dt. (5)

The fingertip position was calculated using the joint angles de-
termined by using (5) and also using the joint angles collected
during the test.

Currently, in many hand biomechanics studies, moment arms
for the index muscles are assumed to be constant due to lack
of available moment arm variation models. To demonstrate the
effects of such an assumption, we predicted the finger path
using a constant moment arm matrix Rc , given by (6). The
constant moment arm values were determined by measuring
the approximate distance between the joint centers and tendon
locations from the ACT finger drawings when all the joint angles
are at zero

Rc =




0.10 9.80 5.08 3.16
8.05 2.92 4.45 3.16
2.97 6.43 −5.08 −3.81
5.87 5.54 4.45 0
1.68 5.59 −5.08 0
9.35 1.42 2.54 3.16




mm/rad. (6)

Fig. 7 shows the comparison of the paths estimated by using
GP, by using the constant moment arms assumption, and the true
fingertip path determined by using the recorded joint angles.
The shaded regions in the 2-D projections show the finger tip
position calculated by using the variance in joint angles given
by GP. Table VI gives the r2 value between the ground truth and
the estimated paths, and also the mean error. The mean error
was calculated as the L2-norm distance between the true path
and the estimated path in 3-D.

V. DISCUSSION

In this paper, we present a method, for the first time, for the
investigation of the variations in the index finger moment arms
when multiple joints move simultaneously. The determination of
a mathematical model of variations in the moment arms for the
index finger muscles is the main contribution of this paper. In this
section, we discuss our results and also present the implications
of our findings.

A. Comparison with Cadaver

The determination of the variable moment arms using cadav-
ers is difficult due to the challenges of preparations required for
the cadaver experiments, the limited availability of specimen,
and limited time for experiments and difficulty of experimental
setup with the thawed specimen. With the ACT hand, we are
able to collect extensive data (over 200 000 data points), which
allows us to determine exact mapping between motions of all
the muscles and all finger angles. Of course, the method of using
data from a robotic structure to infer human properties has lim-
itations. Although we have mimicked the human biomechanics,
some differences exist. For example, the ACT hand does not
possess the musculotendon viscoelastic properties. Also, the
differences in the structure of LUM in the cadaver hands and

Fig. 7. Validation of moment arms. The 3-D path is shown in (a). (b) and (c)
2-D projections of the same path. The shaded regions in the 2-D projections
show the finger tip position based on the variance in joint angles given by GP.
Figures show the ground truth trajectory and the trajectories estimated by using
the moment arms from the GP method and a constant moment arm given by (6).
(a) Validation 3-D. (b) XZ projection. (c) XY projection.

TABLE VI
VALIDATION RESULTS: THE PATH ESTIMATED USING GP MATCHES CLOSELY

(r2 VALUE) TO THE GROUND TRUTH PATH

the ACT hand lead to differences in the variations in the moment
arms. When controlling the finger, we have the ability to control
individual muscle force and movements. To achieve anatomical
LUM behavior, our plan is to couple the LUM muscle move-
ments, using the software control algorithms, with those of the
other hand muscles. The negative correlation (see Table V) be-
tween the RI muscle moment arms with respect to MCP flexion
in the cadaver and ACT hand suggests that while the line of
action of RI muscle moves away from the COR as MCP flexes
in the ACT hand, it moves closer to the COR in the cadaver.
The signs of the moment arms match in both cases, indicat-
ing that there are only a slight difference in the biomechanical
structure of the ACT hand and cadaver specimen. Although PI
muscle moment arms with respect to MCP Ab–Ad in the ACT
hand and cadaver are negatively correlated (see Table V), both
curves are fairly flat; therefore, negative correlation is accept-
able. Overall, our results show that the ACT hand moment arms
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are comparable to the available cadaver results and the mean-
ingful understanding of human moment arm variations can be
achieved from the ACT hand experiments.

B. Muscle Excursions and Variations in Moment Arms

Our results demonstrate that the excursion lengths and mo-
ment arms for all muscles of the index finger depend signifi-
cantly on all the joint positions of the finger. As observed in An
et al. [2], the extrinsic muscle excursions show significant
dependency on flexion, but little variation with abduction–
adduction. The intrinsic muscle excursions show significant de-
pendency on both flexion and abduction.

Table IV shows that the moment arms for all muscles of the
ACT hand index finger depend significantly on all the joint po-
sitions of the finger, and for some of the muscles, the moment
arms change sign. This allows for the understanding of how the
muscle switch roles between contributing and noncontributing
to the joint motions. Such an understanding is critical for com-
posing controllers for the finger motion and also for decoding
brain control of the human muscles for achieving desired finger
movements [4], [15]. Fig. 5 and comparisons with [14] indicate
that the variations in the moments arms with respect to the PIP
and DIP angles are considerable. Also, the moment arms for the
extrinsic muscles of the ACT hand with respect to the flexion
angles show large variations and maintain the sign, but show
small variations and sign change with respect to the adduction
angle. In contrast, the moment arms for the intrinsic muscles
with respect to the flexion angles show small variations, but
show large variation with respect to the abduction–adduction
angle. Earlier studies to determine the contribution of intrinsic
muscles in MCP flexion in the human hand did not consider
variable moment arms [12], [29] and may need to be updated.
Fig. 5 indicates that the variations in the moment arms due to
changes in PIP and DIP angles are considerable and must be
accounted for in the moment arm structure.

C. Implications for Force and Velocity Control

Determination of the variable moment arm matrix allows
for the quantification of contributions of the muscle forces and
velocities to the finger motions in various finger configurations.

Fig. 8 shows variations in the MCP flexion torque for various
finger configurations when all six muscles are fully activated.
This surface was created by using the relationship between the
muscle forces and joint torques given by (4). Specifically

τX =
6∑

i=1

−(RT (2, i) × fm (i)max) (7)

where τX is the flexion torque, R is the variable moment arm
matrix, and fm (i)max is the maximum pull force generated
by muscle i. The maximum force values were used from the
literature [34]. Fig. 8 illustrates that for the same forces applied
by the muscles, the joint torques vary depending on the finger
configurations. It shows that a constant moment arm, using (6),
does not capture the variations in joint torques. With the variable
moment arm matrix, the flexion torque is maximum when the

Fig. 8. MCP joint torque in the flexion (X) direction for various finger con-
figuration as all six muscles are fully activated. The flexion torque is maximum
when the finger is adducted and flexed. The figures shows the variation with a
variable moment arm and with a constant moment arm [see (6)].

Fig. 9. Variations in the excursion velocity of the muscle RI for constant joint
angle velocities. The figures shows the variation with a variable moment arm
and with a constant moment arm [see (6)].

MCP joint is adducted and flexed. Physiologically, this allows
the finger to produce the maximum palmar force when the finger
is flexed and adducted. A study by Li et al. [30] in which the
finger strength in various finger configurations was measured
also concluded that the finger strength is highest when MCP joint
is adducted and flexed. Our results have proven that variations
in moment arms of the finger muscles might have played a
significant role in achieving configuration-dependent variations
in finger strength.

Understanding of variations in the moment arms is critical
for the understanding of neuromuscular controls of the finger.
For example, Fig. 9 shows a plot of variations in the instanta-
neous excursion velocity of the muscle RI for the same instanta-
neous angular velocities of MCP Ab–Ad (0.5 rad/s), MCP Flex
(1.0 rad/s), PIP Flex (1.0 rad/s), and DIP Flex (1.0 rad/s), as the
configurations of the MCP Ab–Ad and MCP Flex angles vary.
As the MCP angles vary, while PIP and DIP Flex angles are kept
constant, the RI velocity changes from positive to negative. This
means that the muscle switched from being active and pulling
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to being passive and stretching. Fig. 9 also shows that a con-
stant moment arm, using (6), does not capture the variations in
muscle velocities as functions of the finger configuration. Thus,
to control the finger joint velocities, the muscle velocities are
generated based on the finger configuration using the variable
moment arms. A constant moment arms assumption will lead to
erroneous model of neuromuscular controls.

D. Advantages of GPs

To the best of our knowledge, this is the first time that a
GP-based machine-learning technique is implemented to deter-
mine the moment arm variations. Our results show that a good
mapping between angles and muscle-length excursions was de-
rived using GP modeling. In the past, we have employed a least
squares regression (LSR) method to this end [14]. LSR is para-
metric and simple to implement; however, the structure for the
parametric equations need to be defined by the user and the qual-
ity of fit is dependent on the choice of structure. The GP-based
modeling is parameter-less and the mappings are purely data-
driven. GPs also provide estimated variance at each data point
and it can be utilized in designing the controllers for the finger
motion and force tracking [15]. One disadvantage of this ap-
proach is that it is computationally costlier than LSR [16], [26].
As a result, for example, one run of the control loop with GP-
based mapping takes 28 ms, whereas with LSR mapping takes
15 ms. We have demonstrated that this is not a limitation in
achieving fast finger control [15].

E. Future Implications

The investigation of the importance of variation in the mo-
ment arms in achieving the hand movement control may allow
us to understand the neuromuscular control of human hands. By
utilizing the variable moment arms, we have designed position
and joint torque control strategies for the finger movements, as
discussed in [15]. The determination of the variations in the
moment arms is important for other hand applications as well.
Determination of moment arm variations would help in testing
the viability of hand implants [6], [40]. It would be an important
part of a biomechanical model of finger dynamics [11], [28] and
control [20]. So far, tendon arrangement and grasping abilities
are analyzed with the assumption that the moment arms are con-
stant [8], [19], [33], [34]. Our results will help to update these
studies to model anatomical hand motions. Moment arm deter-
mination will also play an important role in developing the next
generation of hand animations [1] and simulations [12], [39].

The knowledge of variations in joint torques and muscle
velocities as functions of finger configurations is critical for
understanding the neural control of the hand and for design-
ing brain–machine interfaces for prosthetic hands. As shown
in Fig. 8, with the variable moment arms, for given muscle
forces, the joint torques vary significantly (>100%), while con-
stant moment arms lead to constant joint torques. Therefore, a
tight grasping task is easier to execute in the center of the hand
than in other configurations. We believe that the CNS learns the
models of local biomechanical properties, including variable
moment arms and generates neural signals in accordance with

biomechanical features. The current accepted theory of neuro-
muscular controls suggests that the CNS develops an internal
model of the motor command given the states and tasks, changes
in states given the motor command, and sensory feedback given
the new state [24], [35], [44]. Researchers have concluded that
internal models are fundamental for understanding a range of
processes, such as state estimation, prediction, context estima-
tion, control, and learning [44]. It may be possible that the CNS
builds the internal models of the hand muscle moment arms to
achieve dexterous control. Therefore, for the successful neu-
ral control of a prosthetic hand, we may have to mimic the
anatomical features in the prostheses so that neural signal can
be directly fed in. Otherwise, if the prostheses do not possess all
the physiological features, then we may have to design software
interfaces to decode and process the neural signals, using our
models of the anatomical features, before sending those to the
prostheses. On the other hand, considering the complexity of re-
alizing anatomical features, it is worth exploring whether such
anatomical details are necessary in the hand prostheses, joint
implants, and computer graphics models. The variable moment
arms are critical in neuromuscular control of the hand to achieve
dexterity, and a constant moment arm assumption may lead to
incorrect representation of the human hand. It is possible that
in case of hand prostheses, detailed anatomical imitation may
not be necessary and the brain can adapt to different hardware
with limited features. In our opinion, the anatomical features
will help in adaptation of brain control for prosthetic devices.

APPENDIX

Gaussian Processes

GPs are nonparametric techniques for learning regression
functions from sample data [37]. GPs have been used with
great success in robotics applications, such as reinforcement
learning [16] and Bayesian filtering [25].

Assume that we have n d-dimensional input vectors
X = [x1 ,x2 , . . . ,xn ] and associated scalar outputs Y =
[y1 , y2 , . . . , yn ]. The output y is a function of x with added
Gaussian noise

yi = f(xi) + N (0, σn ) (8)

where σ2
n is the variance of the zero-mean white noise.

A GP defines a zero-mean, Gaussian prior distribution over
the function f . This function is inferred by querying at specific
inputs a multivariate Gaussian conditioned on training data X
and Y . The Gaussian that related the inputs and outputs is in the
form

p(Y|X) = N (Y; 0, K + σ2
nI). (9)

The covariance of this Gaussian distribution is defined via a
kernel matrix K and a diagonal matrix with elements σ2

n . The
elements of the n × n kernel matrix K are specified by a kernel
function over the input values: K[i, j] = k(xi ,xj ). By inter-
preting the kernel function as a distance measure, we see that if
points xi and xj are close in the input space, then, their output
values yi and yj are highly correlated.
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The specific choice of the kernel function k depends on the
application, the most widely used being the squared exponential,
or Gaussian, kernel

k(x,x′) = σ2
f e−1/2(x−x ′)W (x−x ′)T

. (10)

The kernel function is parameterized by W and σf . The diagonal
matrix W defines the length scales of the process, which reflect
the relative smoothness of the process along the different input
dimensions and σ2

f is the signal variance.
In our application, we wish to learn a mapping from joint

angles to muscle lengths. This is done by conditioning (9) on
training data D = 〈X,Y〉, where X contains joint angles θ
and Y contains the corresponding muscle lengths l collected
during the training phase. It can be shown that conditioning on
training data and a test input x∗ results in the following Gaussian
predictive distribution over the output:

p(y∗|x∗,D) = N (y∗; GPµ (x∗,D) ,GPΣ (x∗,D)) (11)

with mean

GPµ (x∗,D) = kT
∗ [K + σ2

nI]−1y (12)

and variance

GPΣ (x∗,D) = k(x∗,x∗) − kT
∗

[
K + σ2

nI
]−1 k∗. (13)

Here, k∗ is a vector of kernel values between x∗ and the train-
ing inputs X: k∗[i] = k(x∗,xi). Note that the prediction un-
certainty, captured by the variance GPΣ , depends on both the
process noise and the correlation between the test input and
the training inputs. Here, we do not consider the prediction un-
certainty, but focus on the GP mean prediction given by (12).
As can be seen, the complexity of the GP mean prediction is
linear in the number of training points. In our experiments, we
found that GP prediction is efficient enough for finger control.
If needed, however, more efficient predictions can be generated
by sparsification of the GP [36].

The hyperparameters θy of the GP are given by the parameters
of the kernel function and the output noise: θy = 〈σn ,W, σf 〉.
They can be determined by maximizing the log likelihood of
the training data

θ∗
y = arg max

θy

log p(Y|X,θy ). (14)

This optimization can be performed efficiently using techniques,
such as conjugate gradient descent. Finally, the gradient of the
GP mean-prediction function (12) gives the moment arm. For
more details on GP, the reader is referred to [37].

GP Example
The following is a simple example of using GP for regression.

This example demonstrates the ability of a GP to recover a func-
tion from noisy training data. In addition, the noise parameter
of training data can also be recovered. The function we wish to
learn is

f(x, y) = sin(
√

x2 + y2). (15)

This is shown in the first panel of Fig. 10 as a function of two
inputs x and y.

Fig. 10. (Left) Original function we wish to learn with a GP. (Middle)
Noisy training data used for GP learning. (Right) Recovered function after GP
optimization.

The training data consist of 625 noisy samples from this
function at intervals of 0.8 on the grid, where x and y ranges
from −10 to 10. The noise value σ used is 0.1, i.e., at each point
in the grid [x, y], the training output is z where

z = f(x, y) + N (0, σ2). (16)

The training data for the GP is D = 〈(x, y), z〉 and is displayed
in the second panel of Fig. 10. Note the relatively high noise in
the training data. The original function is greatly obscured by
the noise.

After learning hyperparameters using conjugate gradient op-
timization, the GP can then be used to predict the the mean
and variance of the recovered function, given a test input. We
test using x and y at regularly spaced intervals of 0.4 along
the grid. The resulting GP mean predictions are plotted in the
last panel. One can see qualitatively how the recovered function
closely matches the original function. Quantitatively, the root-
mean-squared error for all the sample points is 1.3e-3, where
the function ranges from −0.5 to 1. Another feature of the GP
is the ability to learn the noise parameter of the training data. In
this case, the mean prediction of the variance is 0.011. This is
very close to the true variance of 0.01.
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