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Abstract— Motivated by finding locomotion primi-
tives for a legged robot, we present controllability
results and kinematic reduction for a variable inertia
mechanical system. We show that the mechanical sys-
tem is configuration controllable and use the symmetry
resulting from angular momentum conservation to
develop a kinematic representation of the mechanical
system. We also show through simulation how plans
for the kinematic representation can be implemented
on the full dynamical mechanical system. Our hope is
that this technique will lead us to a general procedure
for solving the gait synthesis problem.

|. INTRODUCTION

Planning for mechanical systems can be difficult,
since such systems typically have velocity-related
drift vector fields and input controls which are gen-
eralized forces (comparable to acceleration inputs).
In contrast, planning for kinematic systems is easier,
since they do not have drift vector fields and have
input controls which are velocities [8][9]. Thus, if
a mechanical system can be reduced to a kinematic
system, then we will be able to plan the motion
for the kinematic system and cause the mechanical
system to track those velocity inputs through careful
use of the force inputs. Unfortunately, short of just
integrating the system equations (a difficult process),
there is no systematic procedure for finding such a
kinematic reduction. This paper presents controlla-
bility results [12] and kinematic reduction [11][7]
using the system’s symmetry for a simple mechanical
system called the Yaw model (see Fig. 1).

The Yaw model is a simplification of Rocking
and Rolling Robot (RRRobot) (see Fig. 2), a high-
centered robot that locomotes using the dynamic
effect of swinging its legs; this locomotion, termed
legless locomotion [2][3], is a result of the inter-
action between RRRobot body attitude oscillations
and the nonholonomic contact constraints. In [4],
we presented three leg motion patterns, or gaits,
that locomote RRRobot in different directions in the
plane and also studied simplified models where the
effect of the contact constraints on the body attitude

Fig. 1. The Yaw Model: the body can freely rotate about the
yaw axis, and the two legs with point masses at the distal ends
are actuated.

dynamics analysis is ignored. But we still are not
able to find a systematic technique for finding gaits
inducing controlled body attitude changes; that is,
given a goal RRRobot attitude trajectory, we do not
have a procedure for finding leg trajectories that
generate the desired body rotations. To understand
the relationship between RRRobot body rotations and
leg motions, we consider simplified models such as
the Yaw model where we can study the relationship
between leg motions and specific body rotational
freedoms (see [3] and [4] for other simplified mod-
els). This paper relates body yaw to specific gaits
and presents a path planning procedure for the Yaw
model. Understanding these simple models may help
find a path planning strategy for RRRobot or inspire
other legless locomotion designs.

The Yaw model has three degrees of freedom-—
the body is free to rotate about the yaw axis, and
each massless leg has a single-actuated hip joint and
a point mass at its distal end. An important aspect
of the Yaw model is that its inertia about the yaw
axis changes with leg configuration but is invariant to
yaw rotations. In Balasubramanian et al. [2][3], we
show how cyclic interleaved leg motions exploit the
variable yaw inertia to produce net yaw.

After presenting some background material in Sec-
tion 11, we show that the Yaw model is configuration



Fig. 2. Rocking and Rolling Robot locomotes in the plane using
the dynamic effect of swinging its legs.

controllable and present a kinematic representation
of the Yaw model in Section Ill. In Section 1V, we
show through simulation how plans for the kinematic
representation can be implemented on the mechanical
system.

Il. BACKGROUND

Lewis and Murray [13] provide a foundation
for studying simple mechanical systems whose La-
grangian is the system Kinetic energy minus the
potential energy; we will consider only systems with
constant potential energy. The equations of motion
for a mechanical system Sy with an n-dimensional
configuration space Q and a Riemannian metric g :
TQ — R can be expressed as

Oy (1) = ua(t)Ya(c(t)), D

where c(t) = (g*(t),...,q"(t)) is a curve on Q, O is
an arbitrary affine connection defined by
NG i vivk O
Oy = (a—qu’Jrl"ij‘Y )o"'_qi 2
for a set of Christoffel symbols F‘jk, ud ¢ R are
the inputs, Y,,...,Yn are the control vector fields,
X € TgQ is a vector field, and we use the Einstein
summation notation, where we sum over all possible
values of indices which occur twice in a single term.
For example,

m

U*(t)Ya(c(t)) = Zua(t)Ya(C(t))- 3)

a=
For those unfamiliar with affine and Riemannian
differential geometry, we suggest Kobayashi and No-
mizu [14]; we will use the notation of Abraham and
Marsden [1] in this paper.

Defi nition 1 Given an affine connection [0 on Q, the
symmetric product is defined as

(X:Y)=0.Y +0,X, ¥X,Y € TQ.

An important property for control systems is the
notion of local configuration accessibility, the abil-
ity to reach an open set of configurations. Lewis
and Murray [13] give the sufficient condition for
local configuration accessibility for Sp. Let Dayn =
Span{Y,,...,Ym} be the input distribution for Sy,
Sym(Dy,,,) be the symmetric closure of Dy, C TQ,
and Lie(Dyy,,) be the involutive closure of Dg,,.

Theorem 1 [13] The mechanical system S, is locally
configuration accessible at q if Lie(Sym(Dyy))q =

TqQ.

Using Theorem 1, Lewis and Murray show that
a rigid body in the plane is locally configuration
accessible with two inputs; one of the inputs is a
force, and the other can be an off-centered force or
a torque. Thus, with these two inputs, the rigid body
can reach an open set of local configurations.

Before we state the sufficient condition for Small
Time Local Configuration Controllability (STLCC)
of mechanical systems, the ability to reach a local
neighborhood of configurations, we define the notion
of good and bad symmetric products. A symmetric
product is bad if it contains an even number of
each of the vector fields Y,,a =1,...,m; otherwise
a symmetric product is good. Lewis [12] gives the
sufficient condition for STLCC:

Theorem 2 [12] If Dim(Lie(Sym(Dygy,))q) = n, and
every bad symmetric product at g € Q is an R-linear
combination of good products of lower degree at g,
then Sy is STLCC at q.

Lewis [12] proves configuration controllability for
the snakeboard [10], a variation of the skateboard
where the wheel directions can be changed and there
is a rotor; that is, with input torques for the wheels
and rotor, the snakeboard can reach a local neighbor-
hood of configurations.

Configuration controllability is useful, but still
planning for mechanical systems is difficult compared
to planning for kinematic models. A driftless kine-
matic model Sy with an n-dimensional configuration
space Q is defined by the set of linearly independent
vector fields {X;,..., Xz} such that

g(t) = 0%(t)Xa (c(t)), (4)



where g € Q and (% € R. Bullo et. al [6] look at con-
ditions when a mechanical system can be represented
by a kinematic model. Let (q, () be a solution of (4)
for controls G € Uy, and D, = Span{X,,..., Xz}
be the input distribution for the kinematic model.
The kinematic model Sy is said to be a kinematic
reduction of Sy if there exist controls u € Uy, so
that (q,u) is a solution of (1). Note that Uy, , is not
necessarily equal to Uy,. This relationship between
Dyin @nd Dy, is summarized as:

Theorem 3 [6] The kinematic model Sy is a kine-
matic reduction of Sy if and only if the distribution
generated by the vector fields {X;, (X; : X )i, j,k €
{1,...,M}} is a constant rank subbundle of the input
distribution D,

In addition to the condition placed by Theorem 3 on
Dgyn and Dy, Uy, must be such that there exists
u € Uy that can track the trajectory; for example,
Uy, must at least be C? continuous. Lewis [11] shows
that the upright rolling disk is kinematically reducible;
that is, we can ignore the dynamic effects of inertia
while planning paths for the upright rolling disk.
This greatly simplifies the planning problem; if we
find smooth plans for the kinematic model, those
trajectories can be tracked by the dynamic system.

Typically, it is not straightforward to find a kine-
matic model for a mechanical system. For a generic
mechanical system to admit a kinematic reduction, the
system must satisfy certain properties as expressed in
Theorem 3. An important property of the Yaw model
that will help us derive its kinematic reduction is that
its Lagrangian is invariant to yaw rotations, that is,
there is a symmetry. For the Yaw model, by Noether’s
theorem [5], this means that the momentum about
the yaw axis is conserved in the absence of external
forces. In 111-C, we will use this symmetry to derive
the kinematic reduction for the Yaw model.

I1l. THE YAW MODEL

The Yaw model body is pivoted at its body center
and has two masses, each my,, at its ends (see Fig. 1).
Each massless leg has an actuated hip joint and a
point mass m, at the distal end. The Yaw model
configuration is represented by = (6,,@,®,)" €Q=
St x St x St, where 6 denotes the body configuration,
@ leg 1’s joint configuration, and ¢, leg 2’s joint
configuration. There is no gravity, there are no joint
limits, and torques u; and u, can be applied at leg
joints 1 and 2. The Riemannian metric g associated

with the Yaw model on Q is

11 912 913
9@ =1 %91 92 9u |, ®)
O31 932 O33

where
g = 2(Mm + m)b? + m1% + Iml%(cos2¢ +
cos2@,)),

01, = —Mm,Ibsing,
013 = mlbsing,,
0, = —Mm,Ibsing,
Opo =M 1%,

O23 =0,

U5 = Mlbsing,,
93, =0,

Ogs =M 1%,

and the twenty seven Christoffel symbols I‘ijk are
computed as

15,09 dgy 99
jk_z (qu (9q1 - aq| )7
where g'l are the components of the inverse of 9ij-
Note that there is a symmetry in the Yaw model: g
is independent of yaw rotations, that is, g does not
depend on 6.
The Yaw model equations of motion are

(6)

d+Madc = vy, ()
0 0

whereY, =g 1| 1 |,andY,=g 1| O | are the
0 1

control vector fields, and Dy, = Span{Y;,Y,}. Row 1
of (7) indicates that the body is not directly actuated:;
assuming zero system initial velocity, then the body
must be stationary when the legs are stationary. Plan-
ning system trajectories using (7) is difficult, because
of the velocity-related terms and the torque inputs;
that is, there is no systematic analytic procedure to
find torque inputs to achieve a given goal trajectory.
We will see in Section IV how to plan for the
Yaw model using a kinematic representation.

A. Configuration Accessibility

_ Since (Y; 1 Yp), (Y 1Y), (Yy 1 Yy) € Dy
Sym(Dgyy,) = Dgypn- Except at sing = sing, = 0,
Rank({Y,,Y,,[Y;,[Y;,Y,]]}) =3. Thus, by Theorem 1,
Lie(Sym(Dgy,)) = TqQ, and the Yaw model is locally
configuration accessible everywhere except when
both legs are horizontal. From now on, we will con-
sider only non-singular configurations. Thus, starting
from rest at a given configuration, the Yaw model can
reach an open set of configurations.



B. Configuration Controllability

In 111-A, we showed that the Yaw model is con-
figuration accessible. The bad symmetric products
(Yp1Yp) and (Y, 1Y,) are in the span of Dy, Thus, by
Theorem 2, the Yaw model is STLCC, and, starting
from rest at a given configuration, the Yaw model
can reach a local neighborhood of the initial config-
uration.

C. Kinematic Representation

Using (7), we now derive a kinematic represen-
tation of the Yaw model. Note that row 1 of (7) is
integrable; that is, if the initial system velocity is zero,
we can integrate row 1 to get

9110+ 95, +9y30 = 0. (8)

The terms on the left side of (8) add up to the system’s
yaw momentum; thus, the yaw momentum is always
zero.

Using (8), we define the kinematic representation
of the Yaw model to be

—012/911 —013/911
where X, = 1 , Xy = 0 ,
0 1

Dyin = Span{X;,X,}, Ua € R, and we have assumed
that we have direct control over the leg joint veloc-
ities. Note that the kinematic representation is also
invariant to yaw rotations.

D. Kinematic Reducibility

Using linear algebra, we can verify that the vector
fields X, and X, are in the span of Dg,. Also,
the symmetric products Ox X i,j=1,2 are in the
span of Ddyn. Thus, by Theorem 3, the Yaw model
is reducible to the kinematic representation in (9),
while ensuring C? continuous inputs for the kinematic
representation. Note that (9) is much simpler than (7),
but represents all the properties of (7). We have, thus,
reduced planning for the mechanical system in (7)
to a nonholonomic kinematic path planning problem
for (9).

Further, we notice that if only one leg moves and
the other is fixed, (8) can be integrated again. This
induces a holonomic constraint on the Yaw model;
that is, the yaw configuration is specified just by the
leg configuration and is independent of the path taken
by the leg. Suppose, leg 2 is kept fixed at ¢,, and

Body Yaw
0 (rad) 0.1

— $p=m2
o =m/4
- 42=0

Body yaw when leg 2 is fixed and leg 1 is rotated.

Fig. 3.

leg 1 is moved by Ag, from 71/2, the net body yaw
is calculated using the holonomic constraint

2B — 2m,Ib arctanh(a(A@,))
m12y(,)

where  y(@) = (4m1? — 2(4mb? + 3mI2 +
4mmb? + m1%cos2@,)), and a(A@) =
—2y/m12sin(Ag,)/y(@,). Thus, when leg 1 is
moved to @ = 0, the body rotates by an angle
AD — 2m b arctanh(2,/m12/y(®,))

VmiZye) o
body yaws, as a function of leg 2 configuration,

when leg 1 is moved. Similarly, if leg 1 is kept
fixed at ¢, and leg 2 is moved by Ag@, from 71/2,
the net body yaw is computed using the holonomic
constraint:

: (10)

. Fig. 3 shows how the

B 2m,1b arctanh(a(Ag,))
m, Izy(qll)

where  y(@) = (4mI2 — 2(4mb? + 3mI2 +
dmmb?  + m1%cos2q,)), and a(hp,) =
—2/mI%sin(Ag)/y(@).

IV. Z MODEL MOTION PLANNING

AB =

: (11)

The Yaw model kinematic reduction in I11-C is sim-
ple to plan paths for, since we require the following
two leg motion patterns or gaits only, one a sinusoidal
trajectory and the other a cubic spline trajectory.

« Gait 1: Move the legs simultaneously with out-
of-phase velocities; for example, ¢ = Asint, and
@ = Acost for some suitable amplitude A. To
ensure that the dynamic inputs can track these
velocities, an envelope function is used at the
start and end of each cycle to guarantee smooth-
ness in velocity space (see Il for conditions on
the kinematic model input space).

« Gait 2: Move only one leg, say, using a cubic
spline with zero initial and final velocities; keep
the other leg stationary.



Each cycle of Gait 1 produces net body yaw due to
the varying mass matrix (see [3] for intuitive thought
experiments on net yaw produced by interleaved leg
motions). Gait 2 produces body yaw, but if the leg
returns to the start configuration, then the net body Z
rotation is zero (see I11-D for more details).

Here is a motion planning algorithm for the Yaw
model. Without loss of generality, we will assume that
the legs start from the legs-up configuration. Let the
goal configuration be qg = (Gg,(plg,(ng).

1) Precompute body yaw a using (10) when mov-
ing leg 1 from 71/2 to @4 Using Gait 2 while
keeping leg 2 fixed at 71/2. Similarly, precom-
pute body yaw S using (11) when moving leg 2
from 11/2 to @ Using Gait 2 while keeping
leg 1 fixed at ¢,,. We can compute a and f3
a priori because the Yaw model is invariant to
yaw rotations.

2) Choose amplitude A so that the net yaw p in
one cycle of Gait 1 is sufficiently small to make
c=(6;— (a+P))/p an integer. Repeat Gait 1
c times.

3) Move leg 1 to @q using Gait 2. Move leg 2
to @, using Gait 2.

Once we compute the trajectories in the kinematic
representation for each leg to achieve qgq, we can track
those trajectories in the mechanical system using a
simple PD controller.

A. Numerical Results

The start configuration qs = (0,71/2,71/2) is the
legs-up configuration. Let my = 1.0 kg, m; = 0.5 kg,
b=05m | =05 m A=0516 and qq =
(—4m/180,41/9,41/9) (four degrees body yaw and
ten degrees off the legs-up configuration). For Gait 1,
we set the leg velocities as follows:

@ = f(t)Asin(t),
@ = f(t)Acos(t),

where

_ a—kmod(t,2m) <
f(t) :{ 1-e mod(t,2m) < T,

1 — e K@m-mod(t2m)  gtherwise,

and k = 100. The envelope function ensures that the
legs’s initial and final velocities during each cycle
of Gait 1 are zero. Following the algorithm, we
precompute a = —0.02889 and [ = 0.02875. With
p = —0.014, we repeat Gait 2 five times so that the
body reaches the required yaw configuration. Now,
when the legs are moved one by one to their goal
positions using Gait 2, the Yaw model will reach qq.
Fig. 4 shows the time history of body rotation and
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Fig. 4. Time history of body Z and leg configurations while

executing a plan to go from start configuration ¢ = (0, 71/2,11/2)
to goal configuration gy = (—471/180,471/9,471/9) (four degrees
body yaw and ten degrees off the legs-up configuration). Gait 1 is
repeated five times in period (a), leg 1 is moved using Gait 2 into
its goal position in period (b), and leg 2 is moved using Gait 2
into its goal position in period (c).

leg configuration when executing the plan on the
mechanical system using a PD controller (constants
Kp =20 and K = 10).

V. DISCUSSION

The key contribution of this paper is finding a
kinematic reduction of a mechanical system by iden-
tifying the system symmetry. Once we deduce the
kinematic equations, the planning and control for
the mechanical system becomes intuitive. We have
only discussed the procedure for the simple Yaw
model; we hope this technique of using symmetries
to develop kinematic reductions will lead us to a
general strategy for understanding and finding motion
primitives for complex systems such as the legless



locomoting RRRobot [4]. Yaw rotations are a crucial
component of RRRobot’s locomotion, and, with a
suitable choice of coordinates, RRRobot’s Lagrangian
is invariant to yaw rotations. Exploiting this symmetry
and developing kinematic equations of motion for at
least some of RRRobot’s freedoms may help develop
RRRobot motion primitives and help plan paths for
RRRobot.

VI. CONCLUSION

We presented controllability and kinematic reduc-
tion for a variable inertia mechanical system with
drift. We used the symmetry of angular momentum
conservation to develop the kinematic representation.
Future work will include developing reduced models
for systems like RRRobot and generalize these tech-
niques to automatically produce gaits.
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