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Abstract 

Recent studies have shown that the single-threaded paradigm used by conventional programming lan-

guages and run-time systems can utilize less than 50% of the processor capabilities.  Yet, advances in 

VLSI technology have led to faster clocks and processor designs that can issue multiple instructions per 

cycle with more on-chip cache memories.  In order to garner the potential performance gains from these 

technological advances, it is necessary to change the programming paradigm.  Multithreading has 

emerged as one of the most promising and exciting avenues for exploiting the technological advances.  

Multithreading can be applied to achieve concurrency using multiple processing resources (e.g., SMP and 

NOW's) where individual threads can be executed on different processors with appropriate coordination 

among the threads.  Multithreading can also be used to hide long latency operations such as slower mem-

ory accesses.  The memory latency is further compounded in high-end workstations that use multiple lev-

els of cache memories and multiprocessor configurations involving remote memory accesses. 

 The idea of multithreading is not new.  Fine-grained multithreading was implicit in the dataflow 

model of computation.  Multiple hardware contexts (i.e., register files, PSW's) to aid switching between 

threads were implemented in systems such as Dorado and HEP.  These systems were not successful due 

to a lack of innovations in programming languages, run-time systems and operating system kernels.  

There is, however, a renewed interest in multithreading primarily due to a confluence of several inde-

pendent research directions which have united over a common set of issues and techniques.  A number of 

research projects are underway for designing multithreaded systems including new architectures, new 

programming languages, new compiling techniques, more efficient interprocessor communication and 

customized microkernels.  Some of these projects have produced substantial improvements over single 

threaded abstractions.  The success of multithreading as a viable computational model depends on the 

integration of these efforts.  In this paper, we will introduce the concept of multithreading, illustrate how 

multithreaded programs can be written in various programming languages, compare different thread 

packages and kernel-level threads, and describe how multithreaded architectures can be implemented. 
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Glossary 

Memory latency:  The number of processor clock cycles required to access memory.  Memory latency 

increases as the gap between processor cycle time and memory access time becomes wider. 

Symmetric Multiprocessors (SMPs):  Refers to a system where multiple processors are interconnected by 

a shared-bus.  The shared-bus is located between the processor’s private caches and the shared main 

memory subsystem.  Due to contention for the shared-bus, SMPs are not scalable.  

Distributed Shared Memory (DSM) systems:  Unlike SMPs, DSM systems have physically distributed 

main memory.  The processors in a DSM systems are interconnected by a network, such as a mesh or a 

hypercube, and shared-memory abstraction is provided by software.  Due to the structure of their inter-

connect, DSM systems are scalable. 

L1 and L2 caches:  Modern microprocessors have an on-chip L1 cache and an off-chip L2 cache.  Misses 

on the L2 cache require access to the main memory subsystem. 

Cache coherency:  Refers to the state in a multiprocessor system in which all copies of common data 

within the caches are the same.  Multiprocessors implement protocols to ensure cache coherency. 

Mutual exclusion:  Allows only one thread (or process) to enter a section of a code, called the critical sec-

tion, which modifies a shared variable.  Mutually exclusive access to shared variables can be accom-

plished by using locks, semaphores, monitors, etc. 

Barrier:  Synchronizes concurrent threads (or processes) residing on different processors.  Threads are not 

allow to proceed beyond the barrier until the synchronization process is completed.  A barrier can be im-

plemented by mutual exclusion that keeps track of the number of processes reaching the barrier. 

Context:  The state of the processor during execution of a thread, which is represented by a register file, 

condition register, and a stack pointer. 

Multiple contexts:  Can be implemented in software or hardware.  Software implementation involves 

keeping a Thread Descriptor (TD) with each thread.  Each TD contains the state of the processor and sig-

nal handling information.  Hardware implementation usually involves keeping multiple register banks, 

each register bank assigned to a thread. 

Context switching:  Involves switching from the currently running context (i.e., a thread) to another.  In 

software, this process requires saving the state of the current thread, scheduling a new thread, retoring the 

state of the new thread, and starting instruction execution from the new thread.  In hardware, the process 
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simply involves switching to the next ready register bank and executing instruction from the new hard-

ware context. 
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1. Introduction 

The past couple of decades have seen tremendous progress in the technology of computing devices, both 

in terms of functionality and performance.  It is predicted that over the next five years, it will be possible 

to fabricate processors containing billions of transistor circuits operating at GigaHertz speeds  [21].  

While there has been a continuing growth in the density of DRAM memory chips, improvements in the 

access times and I/O bandwidth of memory parts have not kept pace with processor clock rates.  This has 

widened the relative performance of processors and memory.  The memory latency problem is further 

compounded by complex memory hierarchies which need to be traversed between processors and main 

memory.  In Symmetric Multiprocessors (SMPs), which have become dominant in commercial and scien-

tific computing environments, contention due to the shared-bus located between the processor’s L2 cache 

and the shared main memory subsystem adds additional delay to the memory latency.  The delays be-

comes even more severe for scalable Distributed Shared Memory (DSM) systems that span the spectrum; 

from systems with physically distributed memory and hardware support for cache coherency, to Networks 

of Workstations (NOWs) interconnected by a LAN or WAN and software support for shared-memory 

abstraction.  In either case, a miss on the local memory requires a request to be issued to the remote mem-

ory, and a reply to be sent back to the requesting processor.  Stalls due to the round-trip communication 

latency are and will continue to be an aggravating factor that limits the performance of scalable DSM sys-

tems. 

 Memory latency, while growing, is not a new phenomenon.  There have been varied efforts to 

resolve the memory latency problem.  The most obvious approach is to reduce the physical latencies in 

the system.  This involves making the pathway between the processor requesting the data and the remote 

memory that contains the data as efficient as possible, e.g., reducing the software overhead of sending and 

receiving messages and improving the connectivity of networks.  The second approach is to reduce the 

frequency of long latency operations, by keeping data local to the processor that needs it.  When data lo-

cality cannot be exploited, prefetching or block transferring (as opposed to cache-line transfers) of data 
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can be used.  Caches are the most prevalent solution to the problem of memory latency.  Unfortunately, 

they do not perform well if an application’s memory access patterns do not conform to hard-wired poli-

cies.  Furthermore, increasing cache capacities, while consuming an increasingly large silicon areas on 

processor chips, will only result in diminishing returns. 

Although the aforementioned approaches reduce latency, they do not eliminate it.  Multithreading 

has emerged as a  promising and exciting avenue to tolerate the latency that cannot be eliminated.  A mul-

tithreaded system contains multiple “loci of control” (or threads) within a single program; the processor is 

shared by these multiple threads leading to higher utilization.  The processor may switch between the 

threads to not only to hide memory latency but other long latency operations, such as I/O latency, or inter-

leave instructions on a cycle-by-cycle basis from multiple threads to minimize pipeline breaks due to de-

pendencies among instructions within a single thread.  Multithreading has also been used strictly as a pro-

gramming paradigm on general purpose hardware to exploit thread parallelism on SMPs and to increase 

applications’ throughput and responsiveness.  However, lately, there is an increasing interest in providing 

hardware support for multithreading.  Without adequate hardware support, such as multiple hardware 

contexts, fast context-switch, non-blocking caches, out-of-order instruction issue and completion, register 

renaming, we will not be able to take full advantage of the multithreading model of computation.  As the 

feature size of logic devices reduces, we feel that the silicon area can be put to better use by providing 

support for multithreading. 

 The idea of multithreading is not new.  Fine-grained multithreading was implicit in the dataflow 

model of computation [34].  Multiple hardware contexts (i.e., register files, PSWs) to speed up switching 

between threads were implemented in systems such as Dorado [38], HEP [42], and Tera [4].  Some of 

these systems were not successful due to a lack of innovations in programming languages, run-time sys-

tems, and operating system kernels.  There is, however, a renewed interest in multithreading primarily 

due to a confluence of several independent research directions which have united over a common set of 

issues and techniques.  A number of research projects are underway for designing multithreaded systems 



- 9 - 

that include new architectures, new programming languages, new compiling techniques, more efficient 

interprocessor communication, and customized microkernels.  Some of these projects have produced sub-

stantial improvements over single threaded abstractions.  The success of multithreading as a viable com-

putational model depends on the integration of these efforts. 

 This article is organized as follows:  Section 2 discusses multithreading in terms of user-level 

programming models, such as TAM [19], Cilk [13], and Cid [37].  Section 3 reviews the execution mod-

els and run-time support of multithreading.  Thread libraries and kernel-level thread support will be the 

main focus of this section.  Section 4 discusses the architectural support for multithreading with emphasis 

on reducing the cost of context switching.  Section 5 provides an overview of various multithreaded archi-

tectures along with their key features.  The survey includes Tera MTA, StarT, EM-X, Alewife, M-

Machine, and Simultaneous Multithreading.  Section 6 presents analytical models for studying the per-

formance of multithreading.  Finally, Section 7 concludes the article with a brief discussion of future de-

velopments and challenges in multithreading. 

 

2. Programming Models 

Multithreading has become increasingly popular with programming language designers, operating system 

designers, and computer architects as a way to support applications.  In this section we will concentrate 

on multithreaded models as seen from a programmer perspective.  Concurrency can be supported by a 

programming languages in many ways.  It can be achieved by providing user-level thread libraries to C 

and C++ programmers, whereby the programmer can insert appropriate calls to these libraries to create, 

invoke, and control threads.  A variety of such libraries have been available to programmers, including C-

threads, Pthreads, and Solaris Threads.  We will discuss these libraries in the next section.   

Some programming languages provide concurrency constructs as an integral part of the language.  

Ada-95 permits users to create and control concurrent programming units known as tasks [31].  Synchro-

nization among tasks can be achieved using either shared-memory (protected objects) or message-passing 
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(rendezvous using select and accept statements).  Consider the following function which forks (recur-

sively) threads to compute Fibonacci numbers: 
 
Function Fibonacci (N : In Integer) Return Integer Is 
 
Task Type Fib Is 
--- This is the task specification (prototype). 
--- Task type is declared here with two entry points. Tasks can rendezvous at these entry points. 
 Entry Get_Input (N: In Integer); 
 Entry Return_Result (Result : Out Integer); 
End Fib; 
 
Type Fib_Ptr Is Access Fib;  --- A pointer to the task type is defined here. 
 
Function Create_Fib_Task Return Fib_Ptr Is 
Begin 
--- This function is used to create and spawn new tasks of type Fib by allocating the pointer type. 
--- The function is needed to eliminate recursive definition inside the task body below. 
 Return New Fib;    --- The construct New allocates the task 
End Create_Fib_Task; 
 
Task Body Fib Is 
--- This is the task body for the task Fib.  
 
Input, Result_N, Result_N_1, Result_N_2 : Integer; 
Fib_N_1, Fib_N_2 : Fib_Ptr; 
 
Begin 
 Accept Get_Input (N : In Integer) Do 
 --- This entry point is used to receive the argument. 
  Input := N; 
 End Get_Input; 
 
 If (Input <= 2) Then 
  Result_N := Input; 
 Else 
   Fib_N_1 := Create_Fib_Task; --- Create a new thread to compute Fib (N-1). 
  Fib_N_2 := Create_Fib_Task; --- Create a new thread to compute Fib (N-2). 
  Fib_N_1.Get_Input (Input-1); --- The spawned task Fib(N-1) receives the argument n-1 
  Fib_N_2.Get_Input (Input - 2); -- The spawned task Fib(N-2) receives the argument n-2 
 
  Fib_N_1.Return_Result (Result_N_1); -- Receive the result from task Fib(N-1) 
  Fib_N_2.Return_Result (Result_N_2); -- Receive the result from task Fib(N-2) 
  Result_N := Result_N_1 + Result_N_2; 
 
  Accept Return_Result (Result : Out Integer) Do 
  --- 
  --- This entry point is used to return the result to the parent 
  ---- 
   Result := Result_N; 
  End Return_Result; 
 End If; 
End Fib; 
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--- This is the main procedure that contains the task Fib declaration. 
Result : Integer; 
Fib_N := Fib_Ptr; 
 
Begin 
 Fib_N := Create_Fib_Task; 
 Fib_N.Get_Input (N); 
 Fib_N.Return_Result (Result); 
 Return Result; 
End Fibbonnacci; 
 
Forking of tasks is accomplished by allocating a pointer type that points to a task type.  Each new 

task spawns two additional tasks to compute Fib(N-1) and Fib(N-2), and waits for the results from the 

spawned tasks.  In most implementations, individual Ada-95 tasks of a program are bound to threads pro-

vided by the system (either kernel-level or user-level threads).  Ada-95 facilitates a various means for cre-

ating, initiating, and managing synchronization among tasks.  Single tasks are scheduled as soon as the 

block in which they are defined is entered.  Variables of task types are enabled for execution as soon as 

the body containing the variable declarations is entered.  Access (pointer type) variables to tasks types 

become enabled when allocated.  Tasks cease to exist when they complete execution, and only when all 

their child tasks complete executions.  Tasks can also be explicitly aborted.  The primary synchronization 

in Ada is the rendezvous mechanism using select and accept statements.  Entry points can be guarded.  In 

Ada-95, the concept of protected objects is introduced to implement monitors and conditional waiting 

inside a monitor. 

Java programming language supports multithreading by defining classes for creation and syn-

chronization of threads [9].  Consider the following Java implementation of Fibonacci numbers. 

public class Fibonacci extends Thread 
 { int fib; 
 Fibonacci(int n) 
 {  fib = n;  
 } 
 public void run() 
 { if(fib == 0 || fib == 1) 
  { fib = 1; 
  } 
  else 
  {  Fibonacci thread1 = new Fibonacci(fib-1);  // create a child thread for N-1 
   Fibonacci thread2 = new Fibonacci(fib-2); // create a child thread for N-2 
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   thread1.start(); // execution of created thread starts here. 
   thread2.start();// execution of created thread starts here. 
   try 
   { thread1.join(); // wait for child threads 
    thread2.join();// wait for child threads 
    fib = thread1.getFib() + thread2.getFib(); 
   } 
   catch( InterruptedException e) 
    // Java requires this section to handle exceptions 
    {  e.printStackTrace();  
    } 
  } 
 } // end of run() 
 public final int getFib() 
 {  return fib; 
 } 
 public static void main(String arg[])  // this is the main program 
 { Fibonacci fib; 
  int n = new Integer(arg[0]).intValue(); 
  fib = new Fibonacci(n); 
  fib.start(); 
  try 
  { fib.join(); 
   System.out.println("The Fibonacci for "+ n + " is: "+ fib.getFib());  
  } 
  catch( InterruptedException e) 
  { e.printStackTrace(); 
  } 
 } 
} 
 
As in the Ada-95, Java threads are blocking (and coarse-grained).  The parent thread that created 

and started two new threads to compute Fibonacci(N-1) and Fibonacci(N-2) must wait for the threads to 

complete using a barrier synchronization “Join”.  Java is based on C++.  In the above example, a class 

Fibonacci is defined as thread class.  In the body of the class, two new threads for computing Fibonacci of 

N-1 and N-2 are created recursively.  The parent will wait (using Join) the two child threads complete 

execution; and the values returned by the child threads are added.  Some of the characteristic of Java 

threads are listed in the next section. 

Programming languages with support for multithreading normally permit coarse-grained and 

blocking threads.  The blocking nature requires synchronization among the threads using such common 

techniques as mutual exclusion using semaphores or mutexes, condition variables, events, rendezvous, 

guards and monitors.  They provide for thread scheduling constructs such as yield, suspend, detach, abort, 
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or terminate.  Some functional programming languages such as Multilisp [27] and Id90 [35] have pro-

posed a different attack on multithreading, often supporting fine-grained threads.  In such languages, ac-

tions that traditionally block or synchronous are made nonblocking and asynchronous.  For example, in 

traditional von Neumann languages, function calls are synchronous: when a function is invoked, the 

thread of control is transferred to the called function (blocking the execution of the caller) and the control 

is returned to the caller upon its completion.  In Multilisp, function calls (called futures) are nonblocking 

so that several futures can be invoked without waiting for their completion.  Likewise languages can be 

designed with other asynchronous or nonblocking actions.  In general, a multithreaded programming lan-

guage may permit programs where even conditional statements can be made asynchronous.  Languages 

based on data-driven model of synchronization support fine-grained and nonblocking threads.  In such 

systems, a thread is not ready for execution until all its synchronizations requirements are satisfied; and 

once initiated, the thread executes to completion with no further synchronization requirements.  In the 

remainder of this section, we will introduce three such languages.  

 

2.1 Threaded Abstract Machine (TAM) 

TAM [19] has its roots in the dataflow model of execution, but can be understood independently of dataflow.  

A language called Threaded Machine Language, TL0, was designed to permit programming using the TAM 

model.  TAM recognizes three major storage resources—code-blocks, frames, and structures—and the exis-

tence of critical processor resources, such as registers.  A program is represented by a collection of re-entrant 

code-blocks, corresponding roughly to individual functions or loop bodies in the high-level program text.  A 

code-block comprises a collection of threads and inlets.  Invoking a code-block involves allocating a 

frame—much like a conventional call frame—depositing argument values into locations within the frame, 

and enabling threads within the code-block for execution.  Instructions may refer to registers and to slots in 

the current frame: the compiler statically determines the frame size for each code-block and is responsible 

for correctly using slots and registers under all possible dynamic thread orderings.  The compiler also re-
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serves a portion of the frame as a continuation vector, used at run-time to hold pointers to enabled threads.  

The global scheduling pool is the set of frames that contain enabled threads.   

Executing a code-block may fork several frames concurrently, since the caller is not suspended as in 

a conventional language.  Therefore, the set of frames in existence at any time form a tree (the activation 

tree) rather than a stack, reflecting the dynamic call structure.  This is shown in Figure 1.  To allow greater 

parallelism and to support languages with non-strict function call semantics, the arguments to a code-block 

may be delivered asynchronously.  An activation is enabled if its frame contains any enabled threads.  At any 

time, a subset of enabled activations may be resident on processors. 

Threads come in two forms, synchronizing and non-synchronizing.  A synchronizing thread specifies 

a frame slot containing the entry count for the thread.  Each fork to a synchronizing thread causes the entry 

count (synchronization count) to be decremented, but the thread executes only when the count reaches zero, 

indicating that all synchronization requirements were met.  A non-synchronizing thread is ready for execut-

ing immediately.  Synchronization occurs only at the start of a threads: once successfully initiated, a thread 

 

Figure 1: TAM activation tree 
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executes to completion.  Fork operations may occur anywhere in a thread, causing additional threads to be 

enabled for execution.  An enabled thread is identified by a continuation—its instruction pointer and frame 

pointer.  A thread ends with an explicit stop instruction, which causes another enabled thread to be sched-

uled.  Conditional flow of execution is supported by switch, which forks one of two threads based on a boo-

lean input value.  The compiler is responsible for establishing correct entry counts for synchronizing threads.  

This is facilitated by allowing a distinguished initialization thread in each code-block, which is the first 

thread executed in an activation of the code-block.  Long latency operations, such as I-Fetch or Send, implic-

itly fork a thread that resumes when the request completes.  This allows the processor to continue with useful 

work while the remote access is outstanding. 

 The storage hierarchy is explicit in TAM.  In addition, scheduling is explicit and reflects the stor-

age hierarchy.  In order to execute threads from an activation, the activation must be made resident.  

When an activation is made resident on a processor, it has access to processor registers.  Furthermore, it 

remains resident and executing until no enabled threads for the activation exist.  The set of threads exe-

cuted during a single residency is called a quantum. 

The following is an implementation of the Fibonacci program in TL0: 

FRAME_BODY RCE = 3    -- defines a frame with 3 arguments 
 islot1.i, islot1.i, islot2.i  -- one argument and two results 
 pfslot1.pf, pfslot2.pf  -- frame pointers for recursive calls 
 sslot0.s    -- synchronization variable for thread 6 
 pfsloto.pf, jsloto.j   -- parent’s frame pointer and inlet 
REGISTER     -- Registers used 
 breg0.b, ireg0.i   -- boolean and integer temps. 
INLET 0      -- recv parent fr. ptr, return inlet and argument 
 RECEIVE pfslot0.pf, jslot0.j, isloto.i  
 FINIT     -- initialize frame  
 SET_ENTER 7, t    -- set enter-activation thread 
 SET_LEAVE 8, t    -- set leave-activation thread 
 POST 0.t 
 STOP 
INLET 1      -- receive frame pointer of first recursive call 
 RECEIVE pfslot1.pf 
 POST 3.t 
 STOP 
INLET 2      -- receive result from first recursive call 
 RECEIVE islot1.i 
 POST 5.t 
 STOP 
INLET 3      -- receive frame pointer of second recursive call 
 RECEIVE pfslot2.pf 
 POST 4.t 
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 STOP 
INLET 4      -- receive result from second recursive call 
 RECEIVE islot2.i 
 POST 5.t 
 STOP 
THREAD 0     -- test argument against 2 
 LT brego.b = islot0.i 2 i 
 SWITCH breg0.b 1.t 2.t   
 STOP 
THREAD 1     -- if argument <2, return argument 
 MOVE ireg0.i = 1.i 
 FORK 6.t    -- thread 6 retuns this value 
 STOP 
THREAD 2     -- allocate frames for recursive calls 
 MOVE sslot0.s = 2.s   -- set synchronization counter 
 FALLOC 1.j = FIB.pc 
 FALLOC 3.j = FIB.pc 
 STOP 
THREAD 3     -- send n-1 to first recursive call 
 SUB ireg0.1 = islot0.1 1. i 
 SEND pfslot1.pf[0.i] <-fp.pf 2.j ireg0.i 
 STOP 
THREAD 4     -- send n-2 to second recursive call 
 SUB ireg0.1 = islot0.1 2. i 
 SEND pfslot2.pf[0.i] <-fp.pf 4.j ireg0.i 
 STOP 
THREAD 5     -- waits for results from both calls 
 SYNC sslot0.s 
 ADD ireg0.i = islot1.1 islot2.i -- add the two results 
 FORK 6.t 
 STOP 
THREAD 6     -- send result to parent 
 SEND pfslot0.pf[jslot0.j] <- ireg0.i 
 FREE fp.pf 
 SWAP     -- swap to next activation 
 STOP 
THREAD 7     -- enter point for this activation 
 STOP 
THREAD 8     -- leave this activation 
 SWAP 
 STOP 

 

Here, Thread 0 checks if the argument received is less than 2.  If the value is greater than 2, two 

new fibonacci activations are allocated (corresponding to the recursive calls).  The allocation of frames is 

performed by Thread 2.  It is possible to indicate that the activations be executed either on local or a re-

mote processor.  The arguments n-1 and n-2 for the two recursive calls are computed and sent by Thread 3 

and Thread 4, respectively.  Thread 5 waits for two results from the spawned activation frames (indicated 

by the synchronization counter value of 2).  The two received values are added, and the result is sent to 

the parent by Thread 6.  If the argument is less than 2, Thread 1 calculates the base value (=1), and Thread 

6 returns this value to the parent. 
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There are four Inlets, two to receive the frame pointers for the recursive calls, and two to receive 

results from the spawned frames.  The synchronization counter of a thread is decremented when either a 

thread or an inlet “posts” to that thread. 

 

2.2 Cilk 

Cilk [13] language is an extension of C, providing an abstraction of threads in explicit continuation pass-

ing2  style.  The Cilk run-time supports “work stealing” for scheduling threads and achieves load balanc-

ing across a distributed processing environment.  A Cilk program consists of a collection of procedures, 

each in turn consists of threads.  These threads of a Cilk program can be viewed as the nodes of a directed 

acyclic graph as shown in Figure 2.  Each horizontal edge represents a creation of a successor thread, a 

downward vertical edge represents the creation of child threads while the curved upward edges represents 

data dependencies. 

                                                             
2  More recent implementation of Cilk (e.g., Cilk 5) have deviated from Continuation Passing style, and chose 

shared memory for passing arguments.  
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Like TAM threads, Cilk threads are non-blocking.  This requires the creation of successor threads 

which receive results form child threads.  The successor thread is blocked until the necessary synchroni-

zation events (or release conditions) arrive.  Cilk threads can spawn child threads to execute a new proce-

dure.  The child threads normally return values or synchronize with the successor threads created by their 

parent thread.  

The run-time system keeps track of the active threads and threads awaiting initiation.  The data 

structure used for thread management is called a “Closure”.  A closure consists of a pointer to the code of 

the thread, a slot for each of the input parameters for the thread, and a join counter indicating the number 

of missing values (or synchronization events).  The closure (hence the thread) becomes ready to execute 

when the join counter becomes zero; otherwise the closure is known as waiting.  The missing values are 

provided by other threads using “continuation passing” which identifies the thread closure and the argu-

ment position in the thread closure.  The following shows a Cilk program segment for computing the Fi-

bonacci numbers. 

 

 thread fib (cont int k, int n) 
 {  

 

Figure 2: An example of a Cilk program. 
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 if (n<2) 
  send_argument (k, n) 
 else{     
  cont int x, y; 
  spawn_next sum (k, ?x, ?y); /* create a successor thread 
  spawn fib (x, n-1);      /* fork a child thread 
  spawn fib (y, n-2);      /* fork a child thread 
  } 
 thread sum (cont int k, int x, int y) 
 send_argument (k, x+y);  /* return results to parent’s successor 
 } 
 

The program consists of two threads, fib and its successor sum (which waits for the recursive fib 

calls to complete and provide the necessary values to sum).  The fib thread tests the input argument n, and 

if it is greater than 2, it spawns the successor thread sum by passing the continuation k, and the indication 

that sum requires two inputs x and y before becoming enabled.  It also spawns two (recursive) child 

threads with n-1 and n-2 as their arguments, as well as the slot where they should send their results (speci-

fied by the cont parameter).  The statement send_argument sends the results to the appropriate continua-

tion.  The closures for the above Fibonacci program is shown in Figure 3.  The similarities between the 

Cilk run-time system and the continuation passing methods used in dynamic dataflow systems  should be 

clear to the reader.   

 Cilk run-time system uses an innovative approach to load distribution known as “work stealing”.  

In short, an idle worker randomly selects a heavily loaded processor, and steals a portion of its work.  

Note that only ready to execute threads are stolen, to avoid the complications that could result in locating 

the continuation slots of the stolen threads. 
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2.3 Cid 

Unlike TAM and Cilk, Cid threads can block waiting for synchronization [37].  Each Cid thread can be 

viewed as a C function with appropriate mechanism to specify synchronization.  The simplest type syn-

chronization is based on Join (and join variables).  Consider the following Cid implementation of the Fi-

bonacci function. 
 
 int fib(int n) 
 { int fibN1, fibN2; 
 cid_initialized_jvar(joinvariable); 
  if (N<2) return n 
      else 
 { cid_fork(joinvariable;) fibN1=fib(n-1); fibN2=fib(n-2); 
 cid_jwait(&joinvariable); 
 return fibN1+fibN2; } } 
 
When the value of N is greater than 2, two new threads are forked using cid_fork to compute 

fib(n-1) and fib(n-2).  The cid_fork also indicates that these computations synchronize using join on the 

joinvariable specified.  The parent thread will wait for the completion of the child threads and then re-

turns the sum of fib(n-1) and fib(n-2) and signals appropriate joinvariable.  Note that the Cid system is 

responsible for initializing the joinvariable (as indicated by cid_initialized_jvar). 

 
Figure 3: The closures for the Fibonacci program. 
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As can be seen from the description of the various programming models shown above, con-

currency using multithreading is becoming prevalent in modern programming languages. Traditional 

imperative languages support coarse-grained threads, where the thread synchronization is based on locks, 

rendezvous or monitors (protected object of Ada-95).  Functional and data-driven languages often permit 

fine-grained and non-blocking threads, using continuation passing and synchronization counters.  Thread 

libraries can be used with languages such as C and C++ to interleave different sections of the program, 

mimicking concurrency.  We feel that the popularity of Java will only increase the interest in multithread-

ing at programming level, and more programming languages will introduce constructs for the creation and 

management of multithreaded programs. 

 

3. Execution Models 

In this section we describe how the underlying system can support multiples threads.  We will only con-

centrate on Operating System level or run-time support for threads.  Section 4 will discuss architectural 

level support for multithreading.  The notion of threads evolved from a need for an execution model that 

supports cooperating activities within a process.  A thread can be viewed as an unit of execution that is 

active within a process, sharing certain resources such as files and address space with other threads in the 

process space.  However, each thread is associated with its own execution status.  This notion of threads 

or lightweight processes was originally supported in Mach [15].  The main advantage of such a threaded 

model is to permit programming applications using “virtual processes” such that a process can continue 

execution even when one or more of its threads are blocked.  Figure 4 illustrates the concept of threads as 

related to conventional Unix like processes.  

Multithreaded programming model is becoming very common since most modern operating sys-

tems (including DEC Unix, Solaris, Windows, Windows-NT, Rhapsody) support threads.  In addition, 

standardized user-level libraries are being provided by numerous vendors.  Such packages permit users to 
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create and manage threads.  It should be noted that OS threads and user-level thread packages normally 

support coarse-grained threads that are blocking.  

 

3.1 Design Issues 

The execution models for multithreading can be distinguished from several view points:  implementation 

(user-level vs. kernel-level), scheduling (preemptive vs. non-preemptive, binding of threads to processors 

and LWP’s) and thread management functions (mutual exclusion, barriers, etc.). Threads can be imple-

mented either at the kernel-level or user-level (see Figure 5).  User-level threads [12, 23, 26, 44] are cre-

ated and managed entirely at the user-level, and the kernel has no knowledge of the existence of these 

threads.  Such packages can be implemented on top of any operating system with or without kernel-level 

threads.  The run-time system will intercept any calls made by user-level threads that could potentially 

block.  The run-time system will not make the system call, but suspends the thread and schedules a new 

user thread.  The required call is made if it results in no blocking or when there are no runnable user 

 

Figure 4. Processes and Threads 
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threads.  The major advantage of such threads is efficiency in implementing thread functionality.  It has 

been found that user-level thread management functions are as much as two orders magnitude faster than 

kernel-level thread management functions.  This in turn permits each user-level process with a larger 

number of threads, leading to more user-level concurrency.  However, since the kernel is unaware of the 

existence of such threads, when one user-level thread is blocked in the kernel, the entire process is 

blocked, thus nullifying the benefits of multithreading.  Other disadvantages include a lack of control for 

preempting threads, or the ability to directly notify a thread of kernel events.  

 Kernel-level threads are essentially lightweight processes (LWP) which have the same address 

space as the “parent” process (see Figure 4).  Hence it is less expensive to create threads than processes, 

and less expensive to switch between threads than between processes.  However, kernel-level thread man-

agement functions are more expensive than those for user-level threads.  Moreover, since each thread re-

quires some kernel resources, the number of threads that can be supported within a process space is lim-

ited.  These factors dictate that only coarse grained concurrency be used to exploit multithreading using 

kernel-level threads. 

 More recently, thread packages are becoming available that multiplex several user-level threads 

onto one or more kernel-level threads (or LWPs), resulting in hybrid threads.  Each user process can have 

multiple LWP’s, and the run-time system can bind user-level threads to these LWPs.  In such systems, 

 

Figure 5. User Level and Kernel Level Threads 



- 24 - 

scheduling occurs at two levels.  The multiplexing of use-level threads onto LWP’s is under the control of 

the run-time system, while the scheduling of LWP onto physical processors is under the control of the 

kernel.  The hybrid model was originally implemented in Scheduler Activations [5].  When a user-level 

thread (scheduled on a LWP) is blocked, the kernel notifies (upcall) the run-time system and provides 

sufficient information about the event that caused the block.  The run-time system will then schedules 

another user-level thread (possibly on another LWP).  When the blocking event is cleared, the kernel noti-

fies the run-time system, which either schedules the blocked thread or starts a new thread. 

Thread implementations can also be distinguished based on the scheduling control given to the 

user: 

Non-preemptive scheduling. In such systems, a thread runs until it is blocked on a resource request or 

completes its execution, before releasing the processing resources.  In some recent implementations, it is 

possible for a thread to voluntarily “yield” the processing resources.  Such non-premptive scheduling is 

possible only for user-level thread packages, since the kernel cannot permit run-away threads that do not 

relinquish their resources.  For well behaved programs, this model is very efficient since very little run-

time scheduling is involved.  Another advantage of this model is that it reduces the reliance on locks for 

synchronizing threads, since the running thread knows when it is giving up control of the processor.  The 

reduced use of locks will reduce the overhead due to thread synchronization functions.  The major draw-

back of this model is that, for some CPU-intensive applications, very little performance gains can be ob-

tained using multithreading.  

Preemptive scheduling. When threads can be preempted, we can consider various scheduling approaches 

to dynamically schedule runnable threads, including priority scheduling and time-sliced (round-robin) 

scheduling.  The priority based scheduling can also be used with non-preemptive model, where the selec-

tion of a new thread to run occurs when the running thread blocks or yields.  In most systems, the thread 

priority is fixed and assigned statically.  When time-slicing is used, the running thread is preempted when 

its time-slice expires, and it awaits its turn in the round-robin queue.  Kernel-level threads often permit 
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pre-emption of running threads on interrupts or when a higher priority thread becomes runnable.  In most 

systems, the kernel attempts to prevent the starvation of lower priority threads, by periodically increasing 

their priority.  

Thread packages also differ in how user-level threads can be bound to processing resources. In 

many-to-one model, all user-level threads are bound to a single processing resource (or kernel-level 

LWP).  This is the only model feasible when the kernel does not support threads.  In one-to-one model, 

each user-level thread is bound to a different kernel-level LWP.  Many-to-many model is the most flexi-

ble since it allows different number of user-level threads to be bound to each kernel LWP.  Solaris sys-

tems support all of the above models, while DEC Unix 3.0 and WIN32 threads support one-to-one model.   

In addition to the differences in the design decisions described above, thread implementations dif-

fer in the thread management and synchronization functions they provide.  TABLE 1 summarizes the 

thread functions supported by Pthreads, WIN32, and Solaris threads.  Java threads are included for com-

pleteness sake, even though Java threads are a language feature, and they are either supported using 

threads provided by the underlying run-time and/or kernel threads, or simulated with interleaved execu-

tion of threads. 

The multithreaded model of execution is becoming popular with programmers since user-level 

thread packages and kernel threads are becoming readily available, along with debugging and analysis 

tool [16, 31].  A majority of the systems provide reasonable control on the creation and management of 

threads.  They differ in the flexibility of synchronization primitives, control over a thread’s priority, stack 

size for a thread, and ability to share the kernel resources across multiple processing units.  There are ex-

perimental systems currently being developed that permit even greater control over threads.  Such sys-

tems will allow the microkernel functionality to be customized for a specific application, by specifying 

the actions to be performed in response any thread function. Such systems (e.g., SPIN [11], Exo Kernel 

[22]) are beyond the scope of this paper. 

Table 1: Comparison of Thread Implementations 
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 Features Java POSIX SOLARIS WIN32 
User-Kernel Space K N/A K and U K 
Cancellation No Yes No No 
Priority Scheduling Yes Yes Yes Yes 
Priority Inversion ? Yes Yes Yes 
Mutex Attributes No Yes Yes No 
Shared and Private Mutexs Yes Yes Yes No 
Thread Attributes No Yes Yes No 
Synchronization Yes Yes Yes Yes 
Stack Size Control No Yes Yes Yes 
Base Address Control No Yes Yes No 
Detached Threads Yes Yes Yes No 
Joinable Threads Yes Yes Yes No 
Condition Variables Yes Yes Yes ? 
Semaphores Yes Yes Yes Yes 
Thread ID Comparison Yes Yes Yes No 
Call-Once Functions Yes Yes Yes No 
Thread Suspension Yes No Yes Yes 
Specify Concurrency ? No Yes Yes 
Reader / Writers Share Locking Yes No Yes No 
Processor Specific Thread Alloca-
tion 

No No No Yes 

Fork All Threads Yes No Yes No 
Fork Calling Thread Only Yes Yes Yes No 

K = Kernel-Level; U = User-Level 
 

The following describes the various characteristics listed in the above table. 
 
Base Address Control - Allows identification of where the thread will reside in physical memory. 

Call-Once-Functions - An ability to limit execution of a particular function/rountine only once.  Subsequent call will 
return without execution and error. 

Cancellation - Killing threads from within the program. 

Detached Thread - A flag not to join a thread(s) at creation time. 

Fork All Threads - A flag, which forces all thread-creation calls to be, forks with shared memory. 

Joinable Threads - The ability to merge threads into a single execution context. 

Kernel Level Threads - Threads that are handled/scheduled by the kernel. 

Mutex - Mutex Exclusion.  A Mutex can lock specific section of memory using access flags. 

Priority Inversion - As threads get I/O blocked, provides a re-prioritization of threads. 

Priority Scheduling - Programmatically identifying the order, priority, or next threads to execute. 

Processor Specific Thread Allocation - The ability to designate a specific thread to a specific processor.  Useful for 
processors that handle special things like interrupts or exclusions. 

Reader / Writer Locking  - In Solaris, threads can have one writer and several readers at the same time. 

Semaphores - A pair of functions that lock data sets, p() and v() (lock and unlock). 

Shared / Private Mutexes - Having separate spaces for mutexes. 
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Specifying Concurrency - The ability to identify which threads will be multiprocessed. 

Stack Size Control - The ability to limit, resize or check the thread's stack usage. 

Synchronization - Ensures multiple threads coordinate their activities. 

Thread - The smallest context of execution. 

Thread Suspension - Temporarily halting execution of a thread. 

User Space Threads - Threads that are handled/scheduled within a single task by special libraries. 
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4. Architectural Support for Multithreading 

The previous sections discussed multithreading support from a purely software point-of-view.  This sec-

tion presents the hardware mechanisms used to support multithreading.  Hardware support needed for 

multithreading varies depending on whether thread execution blocks on long latency operation (i.e., 

blocked scheme) or is interleaved on a cycle-by-cycle basis (interleaved scheme).  Both schemes, how-

ever, require support for multiple hardware contexts (i.e., states) and context switching, their implementa-

tions differ. 

In the blocked scheme, the simplest way to support multiple contexts is to provide a register file 

with each context.  This will reduce the cost of context-switching, however, these register partitions are 

fixed and inflexible, making it difficult to utilize effectively when the number of registers required per 

thread varies dynamically.  This problem can be alleviated by allowing the contexts to share a large regis-

ter file, but will likely to increase the register file access time.   

Once multiple threads exist in the processor, it must decide when to context-switch.  A context-

switch can occur when there is a cache miss.  This will require additional logic to signal cache misses.  A 

processor probably will not context-switch on a L1 cache miss since the latency to fetch the cache line 

from L2 cache is small.  Whether to context-switch on a L2 cache will depend on the cost of context 

switching, the thread run-length, and the latency of a L2 cache miss.  The context switching cost depends 

on how much support is provided in the hardware, while thread run-length depends on the miss rate.  La-

tency of L2 cache misses depends on the organization of a node.  A single processor node will have lower 

latency than a node in a SMP.  Finally, context switching will be necessary for misses on local memory 

that require requests to be sent to remote node. 

Once the need to context-switch is detected, a number of possibilities exist for scheduling the 

next available thread.  A simple technique that can be used is to select the next thread using round-robin 

scheduling.  This can be implemented by a bit vector with warp-around indicating which threads are 

ready to be scheduled.  Having selected the next thread to schedule, a context-switch is performed by sav-

ing the PC of the first uncompleted instruction from the current thread, squashing all incomplete instruc-
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tions from the pipeline, save the control/status registers from the current thread, switch the control to the 

register file for the new context, restore the control/status registers from the new thread, and start execut-

ing instructions from the PC of the new thread. 

 

5. Example Multithreaded Systems 

Multithreading is desired when the performance of a parallel machine suffers from the latencies involved 

in the communication and synchronization.  Multithreaded architectures provide various software and 

hardware features in order to support multithreading, including lightweight synchronization, fast context 

switching mechanism, effective and intelligent management of threads, efficient communication mecha-

nism, and shared-memory model for ease of programming.  This section provides an overview of various 

multithreaded architectures and discusses some of the software and hardware features that represent the 

past and the current research efforts in the multithreading community.  The architectures included in the 

discussion are Tera [4], MIT’s StarT project [6, 18, 36], Electrotechnical Lab’s EM-X [32, 39], MIT's 

Alewife [3], M-Machine [25], and Simultaneous Multithreading [48, 49].   

 

5.1. Tera MTA 

Tera MTA (MultiThreaded Architecture) computer is a multistream MIMD system developed by 

Tera Computer Company [4]  It is the only commercially available multithreaded architecture that will 

become available in 1997.  The designers of the system tried to achieve the following three goals: (1) 

provide high-speed, highly-scalable architecture, (2) be applicable to a wide variety of problems, includ-

ing numeric and non-numeric problems, and (3) ease the compiler implementation.  

The interconnection network of Tera is composed of pipelined packet-switching nodes in a three-

dimensional mesh with a wrap-around.  Each link is capable of transmitting a packet containing source 

and destination addresses, an operation, and 64-bit data in both directions simultaneously on every clock 

cycle.  For example, a 256 processor system consists of 4096 switching nodes arranged in 16×16×16 tor-

oidal mesh, among which 1280 nodes are attached to 256 processors, 512 data memory units, 256 I/O 
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cache units, and 256 I/O processors as shown in Figure 6.  In general, the number of network nodes grows 

as a function of p
3

2 , where p  is the number of processors in the system.   

Each processor in Tera can simultaneously execute multiple instruction streams from one to as 

many as 128 active program counters.  On every clock cycle, the processor logic selects an instruction 

stream that is ready to execute and a new instruction from a different stream may be issued in each cycle 

without interfering with the previous instruction.  Each instruction stream maintains the following infor-

mation: one 64-bit Stream Status Word (SSW), 32 64-bit General Purpose Registers (R0-R31), and eight 

64-bit Target Registers (T0-T7).  Thus, each processor maintains 128 SSWs, 4096 General Purpose Reg-

isters, and 1024 Target Registers, facilitating context switching on every clock cycle.  Program addresses 

are 32 bits long, and the program counter is located in the lower half of the its SSW.  The upper half is 

used to specify the various modes (e.g., floating-point rounding), trap mask, and four recently generated 

condition statuses.  Target Registers are used for branch targets, and the computation of a branch address 

and the prediction of a branch are separated, allowing the prefetching of target instructions.  A Tera in-

struction typically specifies  three operations: a memory reference operation, an arithmetic operation, and 

a control operation.  The control operation can also be another arithmetic operation.  Thus, if the third 

 

Figure 6: The organization of Tera MTA 
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operation specifies a arithmetic operation, it will perform a memory and two arithmetic operations per 

cycle. 

Each processor needs to execute on the average about 70 instructions to maintain the peak per-

formance by hiding remote latencies (i.e., the average latency for remote access is about 70 cycles).  

However, if each instruction stream can execute some of its instructions in parallel (e.g., two successive 

loads), less than 70 streams are required to achieve the peak performance.  To reduce the required num-

bers of streams, Tera architecture introduced a new technique called explicit-dependence lookahead to 

utilize instruction-level parallelism.  The idea is that each instruction contains a three-bit lookahead field 

that explicitly specifies how many instructions from this stream will be issued before encountering an in-

struction that depends on the current instruction.  Since seven is the maximum possible lookahead value 

with three bits, at most eight instructions can be executed concurrently from each stream.  Thus, in the 

best case only nine streams are needed to hide 72 clock cycles of latency, compared to 70 different 

streams required for the worst case.   

A full-size Tera system contains 512 128-Mbyte data memory units.  Memory is 64-bit wide and 

byte-addressable.  Associated with each word are four additional access state bits consisting of two data 

trap bits, a forward bit, and a full/empty bit.  The trap bit allows application-specific use of data break-

points, demand-driven evaluation, run-time exception handling, implementation of active memory ob-

jects, stack limit checking, etc.  The forward bit implements invisible indirect addressing, where the value 

found in the location is interpreted as a pointer to the target of the memory reference rather than as the 

target itself.  The full/empty bit is used for lightweight synchronization.  Load and store operations use 

the full/empty bit to define three different synchronization modes along with the access control bits de-

fined in the memory word.  The values for access control for each operation is shown below. 

 
value LOAD STORE 

0 read regardless write regardless and set full 
1 not used not used 
2 wait until full and then read wait until full and then write 
3 read only when full and then set empty 

empty  
write only when empty and then set full  
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For example, if the value of the access control field is 2, LOAD and STORE operations wait until the 

memory location is full (i.e., written) before proceeding.  When a memory access fails, it is placed in a 

retry queue and memory unit retries the operation several times before the stream that issued the memory 

operation results in a trap.  Retry requests are interleaved with new memory requests to avoid the satura-

tion of the communication links with the requests that recently failed.   

 

5.2 StarT 

The StarT project attempts to develop general-purpose scalable parallel systems while using commodity 

components.  StarT-NG (Next Generation) is the first effort in developing such a system [6].  Based on a 

commercial PowerPC 620, a 64-bit, 4-way superscalar processor with a dedicated 128-bit wide L2 cache 

interface and a 128-bit wide L3 path to memory, StarT-NG is a SMP system that supports user-level mes-

saging and globally-shared cache coherent memory. 

 StarT-NG has 4 processor card slots, where one to four slots are filled with Network-Endpoint-

Subsystem (NES) cards.  Each NES contains a single PowerPC 620 processor with 4 MBytes of L2 cache 

and a Network Interface Unit (NIU) as depicted in Figure 7.  Each site has an Address Capture Device 

(ACD) on the NES board, which is responsible for bus transactions.  When an access to global shared-

memory is necessary, one of the processors is dedicated to servicing the ACD and is called a service 

processor (sP).  On the other hand, when a processor is used for running application, the processor is 

called an application processor (aP).   

StarT-NG is built on a fat-tree network using MIT’s Arctic routers connected to NIU [14].  The 

NIU’s packet buffers are memory-mapped into an application’s address space enabling users to send and 

receive messages without kernel intervention.  The arrival of a message can be signaled either by polling 

or interrupt.  Generally, PowerPC 620 polls the NIU by reading a specified location of the packet buffer, 

resulting in lower overhead.  An interrupt mechanism can also be used either for a kernel message or a 

user message when the frequency of the message arrival is estimated to be low, to minimize the overhead 



- 33 - 

of polling.  The dual ported buffer space of NIU is divided into four regions allowing receiving and 

transmitting of messages with both high and low-level priorities.   

Cache-coherent distributed shared-memory in StarT-NG is implemented in software by pro-

gramming the ACD and sP.  This allows the designers of StarT-NG to experiment with various cache-

coherence protocols, such as cache-only memory architecture. 

Influenced by the predecessor *T [36], multithreading in StarT-NG relies heavily on software 

support.  The instruction fork creates a thread by pushing a continuation specified in registers onto a con-

tinuation stack.  For thread switching, the compiler is required to generate switch (branch) instructions in 

the instruction stream.  Also, the compiler needs to generate the necessary save/restore instructions to 

swap the relevant register values from the continuation stack, resulting in a large context-switching cost.  

 

Figure 7: A site structure of StarT-NG 
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StarT-NG examines how the multithreaded codes can run on a stock processor and emphasizes the impor-

tance of cache-coherent global shared-memory supported by efficient message-passing. 

 StarT-Voyager, which replaces StarT-NG, is based on dual-PowerPC 604 SMP system [7].  Each 

SMP uses a typical PC/workstation class motherboard with two processors cards, but one of the proces-

sors cards is replaced with an NES card.  Each NES card is then attached to the Arctic network to facili-

tate a scalable architecture.  The NES has been programmed to support S-COMA coherent shared mem-

ory that allows local DRAM to act as a cache for global data.  A two-node StarT-Jr system [29], consist-

ing of Pentium Pro processors connected by a network interface attached to their PCI buses, was 

demonstrated at Fall Comdex95 in Las Vegas.  StarT-Jr provides much of the same functionality 

of StarT-Voyager at a lower development cost and lower performance.  A four-node StarT-

Voyager system is expected to be completed in 1998.   

 

5.3. EM-X 

 The EM-X parallel computer, which is a successor to EM-4 architecture [40], is being built at 

Electrotechnical Laboratory in Japan [32, 39].  EM-X architecture is based on the dataflow model that 

integrates the communication pipeline into the execution pipeline by using small and simple packets.  

Sending and receiving of packets do not interfere with the thread execution.  Threads are invoked by the 

arrival of the packets from the network or by matching two packets.  When a thread suspends, a packet on 

the input queue initiates the next thread.  EM-X also supports direct matching for synchronization of 

threads, and the matching is performed prior to the buffering of the matching packets.  Therefore, one 

clock cycle is needed for pre-matching of two packets, but the overhead is hidden by executing other 

threads simultaneously.   

The EM-X consist of EMC-Y nodes interconnected by a circular Omega Network with virtual 

cut-through routing scheme.  The structure of its single chip processor EMC-Y is depicted in Figure 8.  

The Switching Unit is a 3-by-3 crossbar connecting input and output of network and the processor.  Pack-

ets arriving at a processor are received in the Input Buffer Unit (IBU).  The IBU has a on-chip packet 
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buffer which holds a maximum of 8 packets.  When the on-chip buffer overflows, packets are stored in 

data memory, and brought back to on-chip buffers when space becomes available.   

EM-X implements a flexible packet scheduling by maintaining two separate priority buffers.  

Packets in the high priority buffer are transferred to the Matching Unit (MU), and the low priority packets 

are transferred to MU only when the high priority buffer is empty.  The MU prepares the invocation of a 

thread by using the direct matching scheme [32].  This is done by first extracting the base address of the 

operand segment from the incoming packet.  The operand segment is basically an activation frame which 

is shared among threads in a function, and holds the matching memory and local variables.  Next, the 

partner data is loaded from the matching memory specified in the packet address, and the corresponding 

presence flag is cleared.  Then, a template (i.e., a code frame) is fetched from the top of the operand seg-

ment, and the first instruction of the enabled thread is executed on the Execution Unit (EXU).  The EXU 

is a RISC-based thread execution unit with 32 registers.  The EXU provides four SEND instructions for 
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Figure 8: A structure of EMC-Y. 
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invoking a thread, accessing remote memory, returning the result after the thread execution, and imple-

menting variable size operand segments or a block access of remote memory [32]. 

EM-X performs a remote memory access by invoking packet handlers at the destination proces-

sor, and the packets are entirely serviced by hardware which does not disrupt the thread execution in the 

execution pipeline.  The round trip distances of the Omega Network in EM-X are 0, 5, 10, and 15 hops for 

request/reply sequences with the average of 10.13 hops requiring less than 1µ sec on a unloaded network.  

On a loaded network, the latency is 2.5µ sec on the average with random communication of 100 Mpack-

ets/sec.   

 

5.4. Alewife 

MIT’s Alewife machine improves scalability and programmability of modern parallel systems by 

providing software-extended coherent cache, global memory space, integrated message-passing, and sup-

port for fine-grained computation.  Underneath the Alewife’s abstraction of globally shared memory, each 

PE has a physically distributed memory managed by a Communication and Memory Management Unit 

(CMMU).  This memory hardware manages the locality by caching both private and shared data on each 

node.  A scalable software-extended scheme called LimitLESS maintains the cache coherence [17].  The 

LimitLESS scheme implements a full-map directory protocol which can support up to five read requests 

per memory line directly in hardware and by trapping into software for more widely-shared data. 

 Each Alewife node, shown in Figure 9, consists of a Sparcle processor, 64 Kbytes of direct-

mapped cache, 4 Mbytes of data and 2 Mbytes of directory, 2 Mbytes of private unshared memory, a 

floating-point unit, and mesh routing chip.  The nodes communicate via two-dimensional mesh network 

using wormhole routing technique.   

 Sparcle is a modified SPARC processor that facilitates block multithreading, fine-grained syn-

chronization, and rapid messaging.  The register windows of SPARC are modified to represent four inde-

pendent contexts in Sparcle: one for trap handlers and other three for user threads.  A context-switch is 

initiated when the CMMU detects a remote memory access and causes a synchronous memory fault to 
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Sparcle.  The context switching is implemented by a short trap handler that saves the old program counter 

and status register, switches to a new thread by restoring a new program counter and status register, then 

returns from the trap to begin execution in the new context..  Currently, the context-switching takes 14 

clock cycles, but it is expected to be reduced to four clock cycles. 

 Sparcle also provides new instructions that manipulates the full/empty bits in memory for data-

level synchronization [2].  For example, ldt (read location if full, else trap) and stt (write location if 

empty, else trap) instructions can be used to synchronize on an element-by-element basis.  When a trap 

occurs due to a synchronization failure, the trap handler software decides what must be done next. 

 Fast message handling is implemented via special instructions and memory-mapped interface to 

the interconnection network.  To send messages, Sparcle first writes a message to the interconnection 

network queue using stio instruction, and then ipillaunch instruction is used to launch the message into 

the network.  A message contains the message opcode, the destination node address, and data values (e.g., 

content of a register or address and length pair which invokes DMA on blocks from memory).  The arri-

val of a message invokes a trap handler that loads the incoming message into registers using ldio instruc-

tion or initiate a DMA sequence to store the message into memory.   

 
 

Figure 9: The Organization of Alewife Node 
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5.5. M-Machine 

 M-machine is an experimental multicomputer being developed by MIT.  The M-Machine effi-

ciently exploits increased circuit density by devoting more chip area to the processor.  It is claimed that a 

32-node M-Machine system with 256 MBytes of memory has 128 times the peak performance of uni-

processor with the same memory capacity at 1.5 time the area, 85 times improvement in peak perform-

ance/area [25].  The M-Machine consists of a collection of computing nodes interconnected by a bidirec-

tional 3-D mesh network.  Each node consists of a multi-ALU processor (MAP) and 8 MBytes of syn-

chronous DRAM.  A MAP contains four execution clusters, four cache banks, a network interface, and a 

router.  Each of the four MAP clusters is a 64-bit, three-way issue, pipelined processor consisting of a 

 
Figure 10: The MAP architecture and its four clusters. 
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Memory Unit, an Integer Unit, and a Floating-Point Unit as shown in Figure 10.  The Memory Unit is 

used for interfacing to the memory and the cluster switch (C-Switch).  The cache is organized as four 

word-interleaved 32-KByte banks to permit four consecutive accesses.  Each word has a synchronization 

bit which is manipulated by special load and store operations for atomic read-modify-write operations.  

 M-Machine supports a single global virtual address space through a global translation lookaside 

buffer (GTLB).  GTLB is used to translate a virtual address into physical node identifier in the message.  

Messages are composed in the general registers of a cluster and launched automatically using user-level 

send instructions.  Arriving messages are queued in a register-mapped FIFO, and a system-level message 

handler performs the requested operations specified in the message. 

Each MAP instruction contains one to three operations and may execute out-of-order.  The M-

Machine exploits instruction-level parallelism by running up to 12 parallel instruction sequences (called 

H-Thread) concurrently.  In addition, MAP interleaves the 12-wide instruction streams (called V-Thread) 

from different threads of computation to exploit thread-level parallelism and to mask various latencies 

that occur in the pipeline, (i.e., during memory accesses and communication).  Six V-Threads are resident 

in a cluster, and each V-Thread consists of four H-Threads.  Each V-Thread consists of a sequence of 3-

wide instructions containing an integer, a memory, and a floating-point operation.  Within an H-Thread, 

instructions are issued in order, but may complete out of order.  Synchronization and communication 

among H-Threads in the same V-Thread is done using a scoreboard bit associated with each register.  

However, H-Threads in different V-Threads may only communicate and synchronize through memory 

and massages. 

 

5.6. Simultaneous Multithreading 

 Simultaneous multithreading (SMT) is a technique that allows multiple independent threads from 

different programs to issue multiple instructions to a superscalar processor’s functional units.  Therefore, 

SMT combines the multiple instruction-issue features of modern superscalar processors with the latency-

hiding ability of multithreaded architectures, alleviating the problems of long latencies and limited per-
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thread parallelism.  This means that the SMT model can be realized without extensive changes to a con-

ventional superscalar processor architecture.   

Figure 11 shows a hardware organization of an 8-thread simultaneous multithreading machine 

proposed in [48, 49].  The processor execution stage is composed of three Floaing-Point Units and six 

Integer Units.  Therefore, the peak instruction bandwidth is nine.  However, throughput of the machine is 

bounded to eight instructions per cycle due to the bandwidth of Fetch and Decode Units.  Each Integer 

and Floating-Point Instruction Queue (IQ) holds 32 entries, and the caches are multi-ported and inter-

leaved.  In addition, an 8-thread SMT machine has 256 physical registers (i.e., 32-registers per each 

thread) and 100 additional registers for register renaming.   

The throughput of the basic SMT system is 2% less than a superscalar with similar hardware re-

sources when running on a single thread due to the need for longer pipelines to accommodate a large reg-

ister file.  However, its estimated peak throughput with multiple threads is 84% higher than that of a su-

perscalar processor.  Also, the system throughput peaks at 4 instructions per cycle, even with eight 

 
 

Figure 11: A Basic Simultaneous Multithreading Hardware Architecture 
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threads.  This early saturation is caused by the three factors: (1) small IQ size. (2) limited fetch throughput 

(only 4.2 useful instructions are fetched per cycle), and (3) lack of instruction-level parallelism.  How-

ever, the performance of simultaneous multithreading hardware can be improved by modifying the Fetch 

Unit and Instruction Queues.  The fetch throughput can be improved by optimizing fetch efficiency (i.e., 

partitioning fetch unit among threads), fetch effectiveness (i.e., selective instruction fetch or fetch poli-

cies), and fetch availability (i.e., eliminating conditions that block the fetch unit).   

It has been shown that the best performance is obtained when the Fetch Unit is partitioned in such 

a way that eight instructions are fetched from two threads, and the priority is given to the threads with the 

smaller number of  instructions in the decode stage [49].  Fetch misses can be reduced by examining the I-

cache tag one cycle earlier, and then selecting only threads that cause no cache miss.  However, this 

scheme requires extra ports on the I-cache tags and increases misfetch penalties due to an additional  

pipeline stage needed for early tag lookup.  The resulting performance shows a factor of 2.5 throughput 

gain over a conventional superscalar architecture when running at 8 threads, yielding a 5.4 instructions 

per cycle.  These experiments lead to following observations. 

• Techniques such as dynamic scheduling and speculative execution in a superscalar processor are 

not sufficient to take full advantage of a wide-issue processor without simultaneous multithread-

ing. 

• Instruction scheduling in SMT is no more complex than that of a dynamically scheduled super-

scalar processor. 

• Register file data paths in SMT are no more complex than those in a superscalar, and the per-

formance implication on the register file and its longer pipeline is small. 

• The required instruction fetch throughput is attainable without increasing the fetch bandwidth by 

partitioning the Fetch Unit and intelligent instruction selection to fetch.   
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6. Performance Models 

Whether we deal with finely multithreaded or coarsely multithreaded architecture, there are limi-

tations to the improvements in processor utilization that can be achieved.  The most important limitation 

is applications running on a multithreaded system may not exhibit sufficiently large degrees of parallel-

ism to permit the identification and scheduling of multiple threads on each processor.  Even if sufficient 

parallelism exists, the cost of multithreading should be traded off against any loss of performance due to 

active threads sharing the cache and processor cycles wasted during context switches.  In this section we 

will outline analytical models that can be used to describe these competing aspects of multithreaded sys-

tems. 

In the simplest case, we assume that the processor switches between threads only on long latency 

operations, such as remote memory accesses.  Let L denote a fixed latency for such operations. Let R be 

the average amount of time that each thread executes before encountering a long latency operation.  Let C 

be the (fixed) overhead in switching between threads.  Consider the case when there is only one thread.  

The processor utilization can be described by 

 U1 =
R

R + L
.         (Eq. 1) 

The utilization is limited by the frequency of long latency operations, ! =1 / R , and the average time re-

quired to service the long latency operation L.  

If L is much larger than C, the time to switch between threads, then useful work can be performed 

during the latency operations.  In addition, if the number of threads is sufficiently large, long latency op-

erations can be completely hidden.  In such a case, the processor utilization can be described as 

 UNSAT
=

R

R +C
,         (Eq. 2) 

where NSAT is the number of threads required to totally mask L.  Note that increasing the number of 

threads beyond NSAT will not increase the processor utilization.  We will denote this as saturation number 

of threads which satisfies: 

 NSAT !
R + L

R +C
         (Eq. 3) 
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 If there are insufficient number of threads to totally mask the latency L, the processor utilization 

can be described by 

 UN =
NR

R + L
         (Eq. 4)  

Note that the overhead of switching among thread does not appear in the above equation since this time 

would have been idle (or wasted) in a single threaded system. 

Using the above equations, the speedup that can be achieved is given by 

 SN =
U
N

U
1

=

N if N < N
SAT

R + L

R + C
otherwise

! 

" 
# 

$ # 

% 

& 
# 

' # 
      (Eq. 5) 

As shown in Eq. 5, the minimum number of threads needed to achieve maximum utilization, NSAT 

≥(R+ L) (R+C) , depends on time between thread switches (R), the time to service long latency opera-

tion (L), and the thread switching overhead (C).  For example, a fine grained multithreaded system, R=1, 

with negligible thread switching overhead (e.g., using multiple hardware contexts) requires at least (1+L) 

threads to achieve optimum utilization.  When C is not negligible, R should be much larger (i.e., coarser-

grain multithreading) to achieve useful performance gains using multithreaded systems.  

The above model ignored the performance impact due to higher cache miss rates in a multi-

threaded system and higher demands on the network placed by higher processor utilization.  In addition, 

the above model assumed fixed latencies, and fixed frequency of long latency operations in threads.  If we 

assume that a thread switch occurs on every cache miss, then we can equate cache miss rate m with the 

frequency of long latency operations, ! = 1 R .  Realistically, a thread switch occurs only on nonlocal 

cache misses.  The speedup of a multithreaded system can be rewritten as  

 SN =
U
N

U
1

=

N if N < N
SAT

1 +mL

1 + mC

 

 otherwise
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$ # 
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& 
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' # 
      (Eq. 6) 

The cache miss penalty is the primary contributor to L.  Note that we assume constant cache miss rate and 

miss penalty in the above equation.  The effect of thread switch on other long latency operations such as 

synchronization delays can also be added to above equation. 

In deriving Eq. 6, we have assumed that cache miss rate and miss penalties are not effected by 

multithreading. However, cache miss rate is negatively effected by increasing the degree of multithread-
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ing.  Likewise, the miss penalty increases with the number of threads due to higher network utilization 

(leading to longer delays in accessing remote memory modules).  

Let us consider the impact of multiple threads on network delays (or miss penalties).  The average 

rate of networks requests by a single thread is equal to the miss rate m = 1/R.  As the number of threads is 

increased, the rate of requests is increased proportionately to mN, until N becomes equal to NSAT.  Using 

simple M/M/1 model for network delays, we can compute the average response time from the network as 

T = µ ! "N( )!1 , where µ is the service time and λN is the rate of arrivals.  Assuming Poisson distribution 

for the cache misses, we obtain T = µ ! mN( ) !1 . 

Note that the above derivation must be modified to account for the non-Poisson process that un-

derlies cache misses.  Network service time must reflect the topology, bandwidth, and routing algorithms 

of specific networks.  For example, in [1], the miss penalties due to multiple threads assuming a k-ary n-

dimensional cube network was computed.  This analysis shows that network delays increase almost line-

arly with the number of threads, which is given as  

  T =
T
0

2
+
BNk

6
!
1

2m
+
1

2
T0 !

BNk

3
+
1

m
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' ,  (Eq. 7) 

where M represents the memory access time, B is the message size, n is the network dimension, k is the 

radix of the network radix, and T0 represents the network delay without contention, i.e., 

T0 = 2nkd + M + B !1 , where kd  represents the average number of hops a message travels in each di-

mension. 

In order to compute the impact of multiple threads on cache miss rates, let us review the behavior 

cache memories.  It has been shown that the components of cache misses can be classified as nonstation-

ary, intrinsic-interference, multiprogramming-related, and coherency-related invalidations.  Nonstation-

ary misses, mns , are due to “cold start” misses that bring blocks into the cache for the first time.  Intrin-

sic-interference misses, mintr , result from misses caused by conflicts among cache blocks of a working 

set that compete for the same cache set.  Multiprogramming related misses account for the cases when 

one thread displaces the cache blocks of another thread.  Coherency related invalidation, minv , occur in 
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multiprocessor systems where the changes made in one processor may require invalidation of other proc-

essor cache entries. 

Increasing the degree of multithreading will effect both the intrinsic-interference and multipro-

gramming components of cache misses.  When more threads occupy the cache, we can assume that each 

thread is allocated a smaller working set, and this in turn leads to higher intrinsic conflicts.  Likewise, as 

the number of threads is increased, the multiprogramming-related component also increases since there is 

a higher probability that cache blocks of active threads displace those of inactive threads.  The miss rates 

in the presence of N threads is derived by Agarwal [1], which is given as.  

 m N( ) ! m fixed +mintr +mintr N " 1( ) 1+
1

c

# 

$ 
% 

& 

' 
( ,     (Eq. 8) 

where c represents the collision rate and mintr is a function of c, working set u, the time interval used to 

measure the working set τ, and the number of cache sets S, i.e.,  

 mintr !
c

"

u
2

S
 

It is interesting to note that with sufficiently large cache memories, the multiprogramming related 

component of the cache miss rate is not effected by the number of threads.  This is because, the cache 

memory is large enough to hold the working sets of all resident threads.  The number of threads propor-

tionately increases the intrinsic-interference component of cache misses.  Set associativity is another issue 

that significant affects the performance of cache memories for multithreaded systems; higher associativ-

ities can compensate for the increased intrinsic interference in a multithreaded system.  The collision rate 

parameter used in deriving cache miss rates by Agarwal [1] must be described as a function of set associa-

tivity.  Alternatively, set associativity can be modeled by treating the cache memory as several smaller 

direct mapped caches, each allocated to a different thread.  This is the case when instructions from differ-

ent threads are interleaved to achieve higher pipeline utilizations.  
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7. Conclusions and Prognostication 

 The past couple of decades have seen tremendous progress in the technology of computing de-

vices, both in terms of functionality and performance.  It is predicted that over the next five years, it will 

be possible to fabricate processors containing billions of transistor circuits operating at GigaHertz speeds 

[21].  While there has been a continuing growth in the density of DRAM memory chips, improvements in 

the access times and I/O bandwidth of memory parts have not kept pace with processor clock rates.  This 

has widened the relative performance of processors and memory.  The memory latency problem is further 

compounded by complex memory hierarchies which need to be traversed between processors and main 

memory.  Multithreading is becoming increasingly popular as a technique for tolerating memory latency.  

It requires concurrency and complicated processors. However it offers the advantage of being able to ex-

ploit MIMD concurrency as well as interleave multiple users so as to maximize system throughput. 

 In this paper we have introduced the multithreaded paradigm as supported in programming lan-

guages, rutime systems, OS-kernels, and in processor architectures.  We have also presented simple ana-

lytical models that can be used to investigate the limits of multithreaded systems.  Without adequate 

hardware support, such as multiple hardware contexts, fast context-switch, non-blocking caches, out-of-

order instruction issue and completion, register renaming, we will not be able to take full advantage of the 

multithreading model of computation.  As the feature size of logic devices reduces, we feel that the sili-

con area can be put to better use by providing support for multithreading.  The addition of more cache 

memory (or more levels of cache) will result in only insignificant and diminishing performance im-

provements.  The addition of more pipelines (as in superscalar) will only prove effective with multi-

threading model of execution.  

 Hardware support alone is not sufficient to exploit the benefits of multithreading.  We believe that 

the performance benefits of multithreading can only be realized when the paradigm is applied across all 

levels: from applications programming to hardware implementations.  Fortunately, a number of research 

projects are underway for designing multithreaded systems that include new architectures, new program-
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ming languages, new compiling techniques, more efficient interprocessor communication, and custom-

ized microkernels.   

 New programming languages supporting both fine-grained and coarse-grained multithreaded 

concurrency are becoming available.  Unless applications are programmed using these languages, the ex-

ploitable parallelism (in single threaded applications) will be very limited.  New compile-time analysis 

and optimization approaches must be discovered to map user-level concurrency onto processor level 

threads.  For example, it may be necessary to rethink register usages: it may be worthwhile loading multi-

ple registers (belonging to different threads) with the same value, thus eliminating unnecessary data de-

pendencies.  It may be necessary to aggressively use speculative execution, and mixing instructions from 

unrelated threads to increase thread run-lengths. 

 While some of the research projects described in this paper have produced improvements over 

single threaded abstractions, in a majority of cases, they have shown only small or incremental improve-

ments in performance.  One of the issues often ignored by multithreaded systems is the performance deg-

radation of single-threaded applications, due increased hardware data paths. Recently, numerous alternate 

approaches to tolerating memory latencies have been proposed, including DataScalar [10], Multscalar 

[43], preload/prefetch techniques [8, 20, 24].  There has been a proposal for moving the processor onto 

DRAM chips, to reduce the latency [41].  It is our belief that multithreaded model of execution should be 

combined with some of these approaches proposed for sequential (single-threaded) execution systems.  

For example, the preloading can be adapted to multithreaded systems.  The success of multithreading as a 

viable computational model depends on the integration of these efforts. 
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