Analysis of H.264 Bitstream Prioritization for Dual
TCP/UDP Streaming of HD Video Over WLANSs

Mohammed Sinky, Arul Dhamodaran, and Ben Lee

School of Electrical Engineering and Computer Science

Oregon State University
Corvallis, OR 97331
Email: {sinky, dhamodaa, benl} @eecs.orst.edu

Abstract—Flexible Dual-TCP/UDP Streaming Protocol (FDSP)
is a new method for streaming H.264-encoded HD video over
wireless networks. The method takes advantage of the hi-
erarchical structure of H.264/AVC syntax and uses TCP to
transmit important syntax elements of H.264/AVC video and
UDP to transmit non-important elements. FDSP was shown to
outperform pure-UDP streaming in visual quality and pure-TCP
streaming in delay. In this work, FDSP is expanded to include
a new parameter called Bitstream Prioritization (BP). The newly
modified algorithm, FDSP-BP, is analyzed to measure the impact
of BP on the quality of streaming for partially and fully congested
networks. Our analysis shows that FDSP-BP is superior to pure-
TCP streaming methods with respect to rebuffering instances,
while still maintaining high visual quality.

I. INTRODUCTION

Peer-to-peer HD video streaming over WLANSs is an im-
portant enabling technology for home-entertainment and N-
screen applications. Some of the well-known products com-
peting in this application domain are Apple AirPlay® [1],
Chromecast® [2], and Intel WiDi® [3]. These products are
able to operate with streaming servers for Video on Demand
(VoD) as well as in peer-to-peer fashion for both interactive
and non-interactive video. However, significant challenges
exist in delivering smooth playback of HD content as this
technology becomes more pervasive and multiple streams will
need to be supported on the same network.

The three major interrelated factors that impact visual qual-
ity of videos streamed over WLANs are packet loss, packet
delay, and the transport layer protocols used to transmit pack-
ets. UDP is more appropriate for the tight timing constraints of
interactive video but suffers from packet loss. TCP guarantees
packet delivery ensuring perfect video frame quality, but
suffers from packet delay. Packet loss causes degradation in
video quality while packet delay requires buffering leading to
freezes in video playback.

Although TCP and UDP both have advantages and dis-
advantages, little attention has been paid to leveraging the
benefits of both protocols to improve performance of HD
video streaming in WLANs. Our prior work introduced a
new wireless video streaming technique called Flexible Dual-
TCP/UDP Streaming Protocol (FDSP) [4], which exploited the
advantages of both TCP and UDP. FDSP works with H.264-
encoded video and relies on TCP to transport important syntax

Jing Zhao
QualComm Inc.
WT-330D, 5745 Pacific Center Blvd,
San Diego, CA 92121 (USA)
Email: zpeter@qti.qualcomm.com

elements of the coded bitstream, specifically slice headers
and parameter sets. Guaranteed delivery of these important
syntax elements gives any H.264-compliant decoder a better
opportunity to successfully decode received video even when
packet loss occurs. On the other hand, all other video data
is transported over UDP. FDSP was shown to achieve higher
PSNR than pure-UDP and less buffering time than pure-TCP,
thus, striking a balance between visual quality and delay [4].

This paper proposes a new feature for the FDSP protocol,
called Bitstream Prioritization (BP), which allows additional
high-priority data to be sent over TCP. Most compressed video,
including H.264, exhibits an inherent form of data priority
related to frame types. Intra-predicted frames, e.g., I-frames,
constitute high priority data within a compressed bitstream.
Loss of I-frame data causes significant reduction in visual
quality for subsequent Inter-predicted frames, e.g., P- and B-
frames, because of their dependence on properly received I-
frames. Thus, the newly proposed approach, FDSP-BP, targets
a percentage of packets of I-frames to guarantee their delivery
over TCP, which allows for better reconstruction of H.264-
encoded video sequences.

Our simulation study shows that FDSP-BP significantly im-
proves video quality as the BP percentage increases. Moreover,
FDSP-BP always provides better video quality than pure-
UDP streaming and significantly lower rebuffering times and
rebuffering instances than pure-TCP streaming.

II. BACKGROUND

This section provides a brief overview of the H.264 bit-
stream as well as a discussion on the impact of packet loss
and delay on video quality. The basic structure of the H.264
bitstream consists of a series of Network Abstraction Layer
(NAL) units such as Sequence Parameter Set (SPS), Picture
Parameter Set (PPS), and slices. The SPS contains parameters
that apply to the entire video sequence, such as the profile
and level the coded video conforms to. Hence, loss of SPS
would result in the loss of the entire video sequence. The PPS
contains parameters that apply to the decoding of a sequence
of coded frames, such as the employed entropy coding mode.
If the PPS of a coded video sequence is lost, then those specific
frames cannot be decoded.

In H.264, a slice is a basic spatial segment that is inde-
pendent of its neighboring slices within a video frame. A
frame can either have a single slice or multiple slices. Each
slice can further be classified as an I/IDR-slice, P-slice, or
B-slice depending on the type of frame that they belong to.
A slice can further be classified into slice header and slice
data. A slice header contains information that is common to
all macroblocks (MBs) within a slice, and slice data refers
to the actual MBs. Each slice can be subdivided into one or
more packets for streaming. Thus, if a packet containing the
slice header is lost, then that entire slice cannot be decoded
even if all the MBs of slice data are received properly [5], [6].
This is illustrated in Fig. 1, where Fig. 1a is the original frame
and Fig. 1b shows the received frame with some information
missing due to packet loss. In Slice 4, the first 8§ packets of the
slice are lost, which include the slice header, and thus renders
the entire slice undecodable. However, the decoder is able to
reconstruct a large portion of Slice 5, whose slice header and
most of the subsequent packets are received in tact. Typically,
a decoder will attempt to mask the visual gaps using Error
Concealment (EC) techniques, such as Weighted Pixel Average
(WPA), Frame Copy (FC) and other methods, leading to a
better presentation. Fig. 1c shows the EC techniques employed
by the decoder to improve video quality.

III. RELATED WORK

UDP is generally accepted to be more suitable than TCP
for real-time video streaming since it offers low end-to-
end delay for video playout [5], [7]. UDP performance is
further improved by employing EC techniques to reduce the
impact of data loss [8], [9]. However, if important data,
such as SPS, PPS, and slice headers are lost, the decoder
simply cannot reconstruct the video even with the aid of EC.
UDP packet loss is tolerated by employing Unequal Error
Protection (UEP), which prioritizes important data [5], [10],
[11]. More advanced UEP methods incorporate Forward Error
Correction (FEC) [10], [11]. These methods are orthogonal to
the proposed FDSP-BP, and thus, they can be used together.

Another approach to improve wireless video streaming is
bitstream prioritization to ensure proper delivery of important
data to the destination. In [12], a cross-layer packetization and
retransmission strategy is proposed, where a video bitstream is
prioritized based on distortion impact, delay constraints, and
changing channel conditions. However, these parameters are
heavily dependent on accurate feedback, which is bandwidth
taxing. A modified slicing scheme that provides in-frame
packet prioritization is proposed in [13], which exploits the
unequal importance of different regions within a frame. These
prioritization techniques, however, do not consider slice head-
ers, SPS and PPS information for prioritization and hence are
prone to slice and frame losses. Furthermore, authors in [12]
do not consider H.264 videos while authors in [13] employ
custom modifications to H.264 slicing making it unsuitable
for any H.264-encoded videos.

This paper expands the scope of our prior research on the

]

Slicea: First 8 dropped, last 7 received

Slice5: Last 2 packets dropp%’,' . L‘I The entire slice is lost

Latter part of slice is
lost

(c) The received frame with Error Concealment (EC).

Fig. 1. Effect of packet vs slice header loss.

FDSP streaming protocol [4] to include bitstream prioritization
(BP). The newly proposed method, FDSP-BP, allows further
prioritization of an H.264 bitstream by specifying percentages
of I-frames as a parameter to further protect visual quality.
FDSP-BP has several advantages over existing methods. First,
it operates on any H.264-encoded video without the need
for modifications to the encoding scheme. Second, it offers
flexibility for future enhancements to bitstream elements of the
H.264 codec that may be prioritized, such as data partitions
and slice groups. Third, usage of both UDP and TCP allow
FDSP-BP to operate for real-time applications as well as stored
video streaming.

IV. FDSP OVERVIEW

FDSP was proposed as a new network streaming method
for HD H.264 content [4]. For the sake of completeness, this
section provides a brief overview of the underlying details of
FDSP. An important aspect of FDSP is that it was developed
with H.264 video reconstruction in mind. The primary aim of
FDSP is to give decoders the best chance for frame reconstruc-
tion by protecting slice headers using reliable transmission.

Fig. 2 shows the architecture of FDSP with the added
Bitstream Prioritization (BP) input and modified MUX mod-

SPS, PPS,

pkt/slice SH
Dual Tunneling

|
| |
| |
| |
H.264 | H.264 RTP TCP |
vi-deo —[> Syntax [—| Packetiz — DEMUX |
I Parser er ubpP |
| |
| Rest of |
| Eﬂ data |
L e e = Jd
—_————— e —
Receiver 7 |
| rebuf MUX |
| ¢ Dual Tunneling |
|
TCP |
. H.264 Merge
Display [« t<D(TS)?
| Decoder = | uDP :
| ? UDP Buffer |
| rebuf flag
| (pause merging) |

Fig. 2. Flexible Dual-tunnel Streaming Protocol (FDSP) Architecture [4]
augmented with modified MUX and DEMUX modules for FDSP-BP.

NAL Units sps‘pps‘ IDR Slice | Slice [Slice| Slice PPS‘ Slice
ffirst slice/
RTP Packets g‘ Payload | [S| Payload | [€| Payload | [€[Payload| g‘ Payload ‘
l+— 1450 B — ke <1450 B »| new slice

Fig. 3. IETF RFC 6184 RTP packetization of H.264 NAL Units modified to
allow parameter set NAL Units to be grouped with VCL NAL Units (slices).
RTP packets that hold H.264 slice headers are shown in orange.

ule. The four main components of the sender are (1) H.264
Syntax Parser, (2) RTP Packetizer, (3) DEMUX, and (4)
Dual Tunneling (UDP+TCP). The H.264 Syntax Parser is
responsible for identifying critical NAL units of the bitstream
(i.e., SPS, PPS, and slice headers) and works together with the
RTP Packetizer, which applies a slightly modified variation of
IETF RFC 6184 for the packetization scheme [14]. Details of
the packetization approach are given in Fig. 3. Then, MUX
uses the information provided by the H.264 Syntax Parser to
steer the critical RTP packets containing SPS, PPS or slice
headers to the TCP tunnel, whereas packets classified as less
important are sent to the UDP tunnel. Dual Tunneling keeps
both UDP and TCP sessions active during video streaming.

The receiver contains the following three modules: (1) Dual
Tunneling, (2) MUX, and (3) an H.264 decoder. As Dual Tun-
neling receives TCP and UDP packets, MUX is responsible for
discarding those UDP packets that arrive beyond their playout
deadlines. If a UDP packet is on time, it is merged with TCP
packets of the same timestamp to form a complete frame,
which is then sent to the decoder. The entire streaming process
works in substream segments, where each substream is set to
10 sec.

V. FDSP BITSTREAM PRIORITIZATION

In FDSP, the number of packets selected for transmission
over TCP depends on the number of slices present in the
encoded video. For instance, in a single-slice encoding, only
one RTP packet per frame is DEMUXed to the TCP socket.

H.264 GOP
sequence

B ’ P ‘ B ‘ I ‘
Bl Slice headers - covered by default FDSP protection (BP = 0%)
[Slice data to be prioritized (BP = 25 %)

Fig. 4. BP applied to a 4-slice H.264 video sequence. When BP is sapplied,
packets are selected sequentially from the start of the frame.

Based on the RTP packetization scheme shown in Fig. 3 with
10-second substreams and a frame rate of 30 fps, this amounts
to sending only 1470 bytes of TCP data per frame (including
TCP header), and results in a data rate of 0.35 Kbps. This
data rate increases linearly with the number of slices. Thus,
TCP data for a 4-slice video requires a throughput of 1.41
Kbps, which is still low considering a typical HD H.264 video
generates an average bitrate of 4 Mbps. Our analysis shows
that even in some bottleneck scenarios, TCP data is able to
arrive well before its playout deadline.

The proposed FDSP-BP scheme takes advantage of the
available slack time between when a substream is ready and
its playout deadline to send additional high priority data over
TCP. This is done by setting a percentage of packets for
reference frames (i.e., I-frames and/or P-frames) that will be
included for TCP transmission. A packet counter is added to
the RTP Packetizer module to track the number of packets
per frame, which is then fed to the DEMUX module. The
BP value is provided as a second input in order to implement
the new de-multiplexing technique for separation of data as
shown in Fig. 2. Fig. 4 illustrates the application of the BP
parameter to an I-frame. This means that in addition to sending
SPSs, PPSs, and slice headers via TCP, a certain number
of packets, counted from the start of an I-frame and within
the percentage set by BP, will be sent over TCP. All other
packets of the I-frame that do not fall under the category of
a slice header/SPS/PPS or within the PBP percentage will be
transmitted over UDP.

Although packets for both I-frames and P-frames can be
included for TCP transmission, this paper analyzes the benefits
of applying BP only on I-frames.

A. FDSP-BP Rebuffering

In the original implementation of FDSP [4], instances of
rebuffering during video streaming did not take place. This
is because only slice headers were targeted for prioritization,
which represents a very small amount of data, and thus
no deadline violations for TCP packets occurred. With the
inclusion of BP, the chances of rebuffering are higher for
FDSP-BP due to additional TCP data being streamed. To
accommodate for this, the method by which incoming UDP
packets are handled is modified within the MUX module.

For the default operation of FDSP, the portion of the first
substream that is sent over TCP causes an initial delay, after

which UDP packet flow is initiated from the sender. Thus, an
additional 150 ms of jitter time elapses at the receiver before
playback begins. Then, incoming UDP packets are checked
against their deadlines, D, according to the following equation:

D(TS) = Tinit + Tjitter + TS x A, (1)

where Tj,;; is the initial buffering delay, T}, is the jitter
time, T'S is the RTP timestamp, and A is the time interval
between frames, (1/fps). UDP packets are treated as real-time
packets once transmission begins at 77;,,;;, and must adhere to
the deadline D in Eq. 1. UDP packets arriving on or before
their deadline, D, are merged with the corresponding TCP
packets, while UDP packets arriving beyond D are discarded.
However, TCP packets are treated much differently. A/l TCP
packets for a given substream must be available for playback to
continue; otherwise, video playback must be paused to allow
for rebuffering.

When rebuffering occurs, Eq. 1 must be adjusted to accom-
modate for the duration that video is paused. Thus, FDSP-BP
introduces two new inputs within the MUX module as shown
in Fig. 2. In particular, the merging process now requires
rebuf flag, which is a flag that is raised when the TCP data
for a given substream has not completely arrived by the
corresponding playout deadline, and 7.y, s, which is the time
spent during an instance of rebuffering. Whenever rebuf flag is
raised, merging of TCP and UDP data is suspended. Once all
TCP data for the corresponding substream has arrived, the flag
is de-asserted and merging resumes. Thus, for FDSP-BP, Eq. 1
is modified as follows to incorporate successive rebuffering
instances:

D(TS)i = Tinit + Tjitter + TS X A+ Y Tipuys (2)

where, i represents the rebuffering instance, and 77, rep-
resents the time spent rebuffering for that instance.

VI. EXPERIMENTAL SETUP

The primary video selected for our experiments consists of
4350 frames of full HD video (1920x 1080 @30fps, 181 sec-
onds) from “The Hobbit” movie trailer. The video is encoded
using x264 with an average bit rate of 4 Mbps with four slices
per frame. Our simulation environment is Open Evaluation
Framework For Multimedia Over Networks (OEFMON) [15],
which is composed of a multimedia framework, DirectShow,
and a network simulator, QualNet 5.0.2 [16]. OEFMON,
which originally worked only with single-slice video, was
further modified to allow for simulation of multi-slice H.264
video. Within OEFMON, an 802.11a ad-hoc network is setup
with a bandwidth of 54 Mbps and the primary video described
above is streamed using FDSP-BP. Three constant bitrate
(CBR) background streams induce interference within carrier
sense multiple access (CSMA) range of the primary video
stream.

The simulation configuration is shown in Fig. 5, where
the primary video described above is streamed between the
pair of nodes 1 and 2. The remaining node pairs generate

Fig. 5. Network Scenario.

100

80 [~
60 [~

- 9
40 o 438%

TCP/UDP ratio (%)

20 o

1-PBP (%)

TCP [UDP

Fig. 6. The ratio of UDP and TCP packets for the test video as BP is increased
from 0% to 100%.

background traffic with CBR data. Distances between each
source and destination pair is 5 m and the distance between
pairs of nodes is 10 m. These distances were chosen to mimic
the proximity of multiple neighboring streaming devices in an
apartment setting. Two network case studies are considered
for evaluating FDSP-BP. The first case evaluates a partially
congested network where the aggregate background traffic is
25 Mbps. The second case is a fully congested network where
the aggregate background traffic is 50 Mbps. The test video
packetized according to the discussion in Sec. IV consists of
60,044 RTP packets. Fig. 6 shows the ratio of total packets
sent over TCP and UDP as BP is increased from 0% to 100%
for the test video. For BP = 0%, which represents the default
FDSP operation, nearly 30% of all packets are sent over TCP.
In this case, all packets sent over TCP contain only slice
headers with SPS and/or PPS information. When BP = 100%,
entire I-frames are sent over TCP. For this case, approximately
44% of all packets are transmitted over TCP. It is worth noting
that, in general, these ratios will depend on the number of
slices per frame and the GOP sequence of videos.

VII. RESULTS

This section presents the performance results of FDSP-BP
for partially and fully congested networks in comparison to
pure-UDP and pure-TCP methods.

Fig. 7 compares the performance of pure-UDP, pure-TCP,
and FDSP-BP in terms of packet loss and rebuffering time
as a function of BP. Note that the UDP packet loss reported
in the graphs considers both true packet loss and delayed

6000 25

5000 |-

4000 -~

FDSP UDP Loss —e— | 15
Pure UDP Loss
FDSP Rebuf Time —<—
TCP Rebuf Time —+— | 1

3000

2000 [

UDP Packet Loss (packets)
Total Rebuffering Time (s)

1000 -

BP (%)

(a) Partially congested network with aggregate 25 Mbps CBR back-
ground traffic.

18000 100
16000
—~ 14000 - -1 80 .
% o
$ 12000 - g
= 10000 - FDSP UDP Loss —e— | 60 ')
a Pure UDP Loss £
= 8000 FDSP Rebuf Time —&— 9:;
% TCP Rebuf Time —+— | 49 @
© (-4
% 6000 (10) B
1 O
p=} L 8 =
4000 8 420
3
2000 @ ©)
0 ©_ — 1 1 1 0
0 20 40 60 80 100

BP (%)
(b) Fully congested network with aggregate 50 Mbps CBR background
traffic.

Fig. 7. Performance of pure-UDP, pure-TCP, and FDSP-BP for (a) partially
congested network and (b) fully congested network scenarios with CBR
background traffic. The numbers enclosed in parentheses on the graph for
part (b) represent the number of rebuffering instances.

packets. True packet loss results when IP queue drops occur
or when the MAC layer retransmission limit is exceeded. On
the other hand, delayed packets are those UDP packets that
were received but exceeded their playout deadlines.

Fig. 7a shows the results for the partially congested network
scenario. The figure clearly shows that using FDSP-BP even
without BP, i.e., BP = 0%, has an immediate impact on the
number of lost packets compared to pure-UDP streaming.
Comparison of packet loss ratio (PLR) for pure-UDP vs.
FDSP-BP with BP = 0% yields a drop from 9.47% to 5.16%.
BP values of 25%, 50%, 75%, and 100%, yield PLRs of
2.65 %, 1.92 %, 0.98%, and ~0% (only 3 UDP packets are
lost), respectively. In comparison to pure-TCP, FDSP-BP has
no instances of rebuffering for all values of BP. In contrast,
pure-TCP incurs four instances of rebuffering with a total
rebuffering time of 19 sec., which amounts to 10% of the
total video length.

Fig. 7b shows FDSP-BP performance for the fully congested
network. This figure also includes the number of rebuffer-
ing instances (in parenthesis) encountered during FDSP-BP
streaming. For example, no instances of rebuffering take place
when BP = 0%. However, in contrast to the partially congested
network case, rebuffering occurs as BP increases due to limited

45 T

=X LA
| W L H |] | :
A]

PSNR (dB)

51 pure-UDP ——
FDSP-BP 50% —=—
0 L L L L L | i
0 500 1000 1500 2000 2500 3000 3500 4000 4500
Frame

45 T T T T T T T T

40 \ T ‘ ‘

T TeT T

30 - H B
~ L
8 5F-----d-1-----FH - et 1 = -
: |]
% 20 | f i
B ‘ [\”‘ ‘

°[‘J *]

10 - } 1 ' b

51 pure-UDP ——

FDSP-BP 75% —=—
0 L L L L L | i
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Frame
45 T

j/ }J 1F | |

5F pure-UDP ———
FDSPI-BP 100%I —

PSNR (dB)

0 L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Frame

Fig. 8. PSNR results for the fully congested network case. Note the gradual
improvement in PSNR as BP is increased. Improvements in PSNR result from
less UDP packet loss. The grey dotted line at 25 dB represents the threshold
for poor quality [17].

bandwidth availability leading to increased TCP delay. How-
ever, the total rebuffering time and the number of rebuffering
instances are significantly less than that of pure-TCP based
streaming. FDSP-BP incurs 28.6 sec. of rebuffering time with
10 instances of rebuffering when BP is 100%. With BP =
75%, there is 19.7 sec. of rebuffering time with 8 instances of
rebuffering. With BP = 50%, there is 11.1 sec. of rebuffering
time with 3 instances of rebuffering. In comparison, pure-
TCP streaming results in 85.2 sec. of rebuffering time and
13 instances of rebuffering, which is four times higher than
FDSP-BP with PB=50%.

Fig. 8 presents PSNR comparisons between FDSP-BP
streaming and pure-UDP streaming for the fully congested
network case. Note that when two frames are equivalent, its
PSNR yields infinity. However, a PSNR value of 37 dB for a
given frame is considered excellent quality [17]. Therefore, our
PSNR results saturate at 40 dB, which for most practical pur-
poses represents perfect frame reconstruction. Average PSNR
values for FDSP-BP are 38.44 dB, 39.39 dB, and 39.92 dB

Fig. 9. The visual impact of increasing BP for the fully congested network
case. The first screenshot is for pure-UDP streaming. Note that the frame is
lost and duplication of a previously reconstructed frame (frame 530) is used.
The second screenshot is for FDSP-BP streaming with BP = 50%, and the
third screenshot is for FDSP-BP with BP =100%

with BP values of 50%, 75%, and 100%, respectively. On the
other hand, pure-UDP streaming is very loss-prone and yields
an average PSNR of 32.76 dB. These PSNR results show that
FDSP-BP streaming does an excellent job of maintaining high
perceived video quality.

Fig. 9 shows examples of frame quality improvement when
BP is applied. These frames represent what is viewed by a
user when frame 580 is expected to be displayed for pure-
UDP streaming, FDSP-BP with BP = 50%, and FDSP-BP
with BP = 100%. For the case of pure-UDP streaming (top
image), 49 consecutive frames are lost (frames 531 to 580).
Thus, for the duration of those frames, the last successfully
decoded frame stored in the display buffer (i.e., frame 530)
is continuously displayed, lasting for 1.63 seconds. For both
cases of BP = 50% and 100%, since FDSP-BP guarantees
slice header delivery through TCP, all four slice headers are
properly received for frame 580. However, for BP = 50%
(middle image), not all slice data is available due to UDP
packet loss. As can be seen, information is missing for slices
3 and 4 leading to error concealment using Weighted Pixel
Averaging (WPA). For the case of BP = 100%, degradation in
the image is unnoticeable.

VIII. CONCLUSION

This paper introduced Bitstream Prioritization (BP) into the
framework of the FDSP streaming protocol [4], i.e., FDSP-BP.
FDSP-BP was evaluated for prioritizing packets of I-frames.
An HD H.264-encoded video was streamed over a partially
congested network and fully congested network to analyze
the impact of the I-frame prioritization technique of FDSP-
BP. Compared to the original implementation (i.e., BP = 0%),
the new prioritization technique significantly improved video
quality as the prioritization percentage was increased. Further-
more, significantly lower rebuffering times and instances were
observed for FDSP-BP compared to pure-TCP streaming as
well as notably better video quality than pure-UDP streaming.

As future work, FDSP-BP will be expanded into a band-
width aware, dynamic streaming system where the BP per-
centage and sub-stream length are modified based on network
conditions to minimize UDP packet loss and TCP retransmis-
sions.

REFERENCES

[1] “AirPlay.” [Online]. Available: http://www.apple.com/itunes/airplay/

[2] “Chromecast.” [Online]. Available: http://www.google.com/intl/en-
us/chrome/devices/chromecast/

[3] “How to Connect Laptop to TV with Intel Wireless Display
(WiDi).” [Online]. Available: http://www.intel.com/content/www/us/en/
architecture-and- technology/intel- wireless-display.html

[4] J. Zhao, B. Lee, T.-W. Lee, C.-G. Kim, J.-K. Shin, and J. Cho, “Flexible
dual tcp/udp streaming for h.264 hd video over wlans,” in Proc. of the 7th
International Conference on Ubiquitous Information Management and
Communication (ICUIMC ’13). New York, NY, USA: ACM, 2013, pp.
34:1-34:9.

[5] S. Wenger, “H.264/AVC over IP,” IEEE Trans. Circuits Syst. Video
Technol., vol. 13, no. 7, pp. 645-656, Jul. 2003.

[6] 1. E. Richardson, The H.264 Advanced Compression Standard, 2nd ed.
John Wiley and Sons, Ltd., 2010.

[71 D. Wu, Y. Hou, W. Zhu, Y.-Q. Zhang, and J. Peha, “Streaming video
over the internet: approaches and directions,” IEEE Trans. Circuits Syst.
Video Technol., vol. 11, no. 3, pp. 282-300, Mar. 2001.

[8] Y. Wang and Q.-F. Zhu, “Error control and concealment for video
communication: a review,” Proc. IEEE, vol. 86, no. 5, pp. 974-997,
May 1998.

[9] Y. Xu and Y. Zhou, “H.264 video communication based refined error
concealment schemes,” IEEE Trans. Consum. Electron., vol. 50, no. 4,
pp- 1135-1141, Nov. 2004.

[10] A. Nafaa, T. Taleb, and L. Murphy, “Forward error correction strategies
for media streaming over wireless networks,” IEEE Commun. Mag.,
vol. 46, no. 1, pp. 72-79, Jan. 2008.

[11] J. Kim, R. M. Mersereau, and Y. Altunbasak, “Distributed video stream-
ing using multiple description coding and unequal error protection,”
IEEE Trans. Image Process., vol. 14, no. 7, pp. 849-861, Jul. 2005.

[12] M. van der Schaar and D. Turaga, “Cross-layer packetization and retrans-
mission strategies for delay-sensitive wireless multimedia transmission,”
IEEE Trans. Multimedia, vol. 9, no. 1, pp. 185-197, Jan. 2007.

[13] I. Ali, M. Fleury, S. Moiron, and M. Ghanbari, “Enhanced prioritization
for video streaming over QoS-enabled wireless networks,” in Wireless
Advanced (WiAd’11), Jun. 2011, pp. 268-272.

[14] Y.-K. Wang, R. Even, T. Kristensen, and R. Jesup, “RTP Payload Format
for H.264 Video,” RFC 6184 (Proposed Standard), Internet Engineering
Task Force, May 2011.

[15] C. Lee, M. Kim, S. Hyun, S. Lee, B. Lee, and K. Lee, “OEFMON:
An open evaluation framework for multimedia over networks,” IEEE
Commun. Mag., vol. 49, no. 9, pp. 153-161, Sep. 2011.

[16] QualNet 5.0.2 User’s Guide, Scalable Network Technologies, Inc., 2010.

[17] J. Gross, J. Klaue, H. Karl, and A. Wolisz, “Cross-layer optimization
of OFDM transmission systems for mpeg-4 video streaming,” Computer
Communications, vol. 27, no. 11, pp. 1044 — 1055, Jul. 2004.

