
  

NetSim: An Object-Oriented Architectural Simulator Suite 
 
 

David A. Zier, Jarrod A. Nelsen, and Ben Lee 
School of Electrical Engineering and Computer Science 

Oregon State University 
Corvallis, OR 97331 

{zier, nelsonja, benl}@eecs.oregonstate.edu 
 

 
Abstract 

NetSim is an object-oriented based architectural simu-
lator suite written in C# and uses Microsoft’s .NET 
Framework.  NetSim consists of several libraries that 
contain various architectural modules that can be 
combined to form many different computer architec-
tures.  The approach to NetSim was to concentrate on 
accuracy and flexibility for any given architecture at 
the cost of simulation speed.  This approach ultimately 
leads to quicker development time that yields more 
accurate results than past architectural simulators.  
Using NetSim, a two-person team was able to develop, 
debug, and validate a PowerPC-like superscalar proc-
essor running SPEC95 and SPEC2000 benchmarks in 
approximately eight weeks. 
 
Keywords: Microarchitecture, cycle-accurate simula-
tor, superscalar architecture, object-oriented.  
 
1. Introduction 
Cycle-accurate, execution-based architectural simula-
tors provide a cheap and reliable way to prototype and 
test the performance capabilities of new architectures.  
Researchers in both industry and academia rely on 
these powerful tools to estimate the viability of a new 
architecture before the design is even brought down to 
the silicon level.  Evaluating a proposed architecture 
with an accurate simulator might take several weeks, 
but creating the simulator can easily take several 
months. 

This paper explores NetSim, an architectural simula-
tor suite written in the object-oriented programming 
language, C#, and utilizes Microsoft’s .NET Frame-
work to increase portability and flexibility.  NetSim 
has been designed to drastically decrease the time nec-
essary to develop new simulators, while maintaining 
and, in some cases, improving the architectural accu-
racy of the simulator.  NetSim removes the usage of 
global variables and cryptic C code by relying on an 
object-oriented model.  Architectural components such 

as registers and functional units are implemented as 
individual classes, or objects, each containing their 
own private data and operators.  This allows for 
quicker development time since designers can now 
think of the simulator as an actual hardware implemen-
tation and not as a software estimation. 

There are many architectural simulators available, 
most of which can be grouped into three categories, (1) 
trace simulators, (2) functional simulators, and (3) cy-
cle-accurate simulators.  Trace simulators are useful 
for characterizing performances of Instruction Set Ar-
chitectures (ISAs) by using pregenerated data and in-
struction traces.  Functional simulators execute a pro-
gram without considering the details of the system’s 
architecture, and are useful for creating emulators.  A 
cycle-accurate simulator attempts to mimic the exact 
behavior of an architecture by modeling the character-
istics of instruction- and data-flow through a system 
with regard to simulation execution cycles.  NetSim 
fits into the third category as a cycle-accurate simulator 
suite. 

One of the most popular cycle-accurate simulators 
is SimpleScalar [1].  SimpleScalar is C based and relies 
on global variables and a cryptic coding style to boost 
the speed and performance of the simulator.  This lends 
to a simulator suite that is very difficult and time con-
suming to modify in order to create a new simulator or 
gather different statistics. 

SimCore [2] is another simulator suite that, like 
NetSim, uses an object-oriented approach.  But, Sim-
Core is solely a functional simulator and is not in-
tended to perform cycle-accurate simulations. 

NetSim, on the other hand, is a simulator suite that 
can be used to quickly implement a wide array of 
simulators.  Currently, NetSim has been used to create 
a fast, functional simulator, FastSim, a fully cycle-
accurate superscalar simulator, SuperSim, and a fully 
cycle-accurate multithreaded simulator, DSMTSim.  
The PISA instruction set [1] was chosen as the initial 



  

target of NetSim due to the availability of the PISA 
compiler provided by SimpleScalar. 

The rest of the paper is organized as follows.  Sec-
tion 2 provides a detailed overview of NetSim and how 
NetSim is structured.  Section 3 discusses the major 
benefits and the pitfalls involved with using NetSim.  
Section 4 briefly describes SuperSim, a superscalar 
simulator created from NetSim.  A performance com-
parison between SuperSim and SimpleScalar’s sim-
outorder is discussed in Section 5.  Finally, Section 6 
concludes the paper and discusses what the future 
holds for NetSim. 

 
2. NetSim 
NetSim is comprised of three main libraries that con-
tain the building blocks to create a variety of simula-
tors.  The libraries are designed as a tier structure, 
where one library is an expansion of the previous.  The 
three libraries are NetSimBase, NetSimHP, and Net-
SimMT that contain the base components, high per-
formance components, and multithreading compo-
nents, respectively. 

 

 

Figure 1: Relationship between the NetSim libraries 
and the simulators. 

Figure 1 illustrates the relationship between the li-
braries and the actual simulators.  The figure shows 
that the libraries rely on other libraries.  For example, 
DSMTSim will need the NetSimMT library.  Since the 
NetSimMT library needs both the NetSimHP and Net-
SimBase libraries, DSMTSim will also need those li-
braries in order to operate correctly. 
 
2.1. NetSimBase 
The base library for NetSim contains the core architec-
tural modules that almost any simulator will need.  
Figure 2 illustrates the main modules and interconnec-
tions for NetSimBase.  These main modules include 
the Instruction Database, Loader, Syscall, Statistics 
Database, Register File, Memory, Resource, Branch 
Predictor, and Cache modules.  With the exception of a 
few of the modules, all of these basic modules are 
needed to successfully simulate a microarchitecture.  A 
few of these modules will be described below. 

A basic, functional simulator that executes one in-
struction at a time has been created as the self-
sufficient module, FastMod.  The purpose of FastMod 
is to be integrated within more advanced simulators as 
a way to fast forward or skip instructions within a pro-
gram while maintaining the state of the simulator.  This 
shortens the overall execution time by skipping the 
non-essential setup instructions, allowing most of the 
simulation time to be spent analyzing the critical com-
ponents of a particular benchmark. 

 

 

Figure 2: The modules of the NetSimBase Library. 

The Instruction Database is simply a code file that 
contains each instruction as a child of the Instruction 
object.  Upon initialization, the database uses reflection 
to instantiate every child class of the Instruction class 
and places the new instance object into a hash table.  A 
binary instruction is then passed to the Instruction Da-
tabase, which then compares the binary instruction 
identifier against the hash table and returns a pointer to 
the instruction object.  Moreover, the instruction object 
contains the code necessary to execute itself.  A new 
ISA may be implemented by reflecting on a different 
code file during the instantiation of the Instruction Da-
tabase.  The details of the retargetability are discussed 
in more detail in Subsection 3.1. 

Figure 3: Creating a memory hierarchy. 

NetSimBase contains Memory and Cache modules 
that may be used to simulate a multi-level memory 
hierarchy with cycle–accurate delays.  Figure 3 dem-
onstrates how one such memory hierarchy can be cre-
ated.  The Memory and Cache modules all inherit the 
same IMemoryBus interface, which allows for very 
complex memory hierarchies to be modeled independ-
ent of the rest of the architecture.  Multiple simulation 
runs can then be used to compare the performance of a 

IMemoryBus mem = new Memory(“Main Memory”); 
IMemoryBus L2  = new Cache(“L2”, mem); 
IMemoryBus IL1 = new Cache(“IL2”, L2); 
IMemoryBus DL1 = new Cache(“DL2”, L2); 



  

basic architecture with any number of different mem-
ory hierarchies. 

 
2.2. NetSimHP 
NetSimHP contains the high-performance modules, or 
rather, those modules that are aware of simulated clock 
cycles.  The NetSimHP modules can be used to create 
more advanced simulators such as a superscalar simu-
lator or a five-stage pipeline simulator. Unlike other 
simulator suites that are available today, NetSim uses 
state machine model to evaluate the cycles and gives a 
more accurate representation of how the actual hard-
ware will perform.  As such, each component inherits 
the ISimComponent interface, which contains two 
methods, Update and Tick.  The Update method is used 
to calculate all of the next state data and to communi-
cate with any external modules, while the Tick method 
is used to transition the next state data to present state 
data and to communicate with internal objects.  The 
state machine model allows developers to concentrate 
more on the interaction between the simulator compo-
nents, and not the order in which the components are 
executed.  Figure 4 shows the necessary code needed 
to execute a simulator clock cycle. 

Figure 4: C# code needed to simulate the clock cy-
cles. 

Some of the modules in the NetSimHP library are 
wrapper classes around modules in NetSimBase that 
allow them to be cycle accurate.  These wrapper mod-
ules include the Branch Predictor, Register File, and 
Functional Unit modules, which inherit the Branch Pre-
dictor, Register, and Resource modules from NetSim-
Base, respectively.  Other modules are more specialized 
for superscalar processors such as the Fetch Unit, Res-
ervation Station, Dispatch Unit, Reorder Buffer, and 
Common Data Bus.  The modules and the basic inter-
connections within NetSimHP are illustrated in Figure 
5. 

Currently, these modules are used to create a super-
scalar processor simulator, SuperSim, which is equiva-
lent to SimpleScalar’s sim-outorder simulator.  Section 
4 will describe SuperSim in more detail, and Section 5 
will compare some of the output statistics and timing 
result between SuperSim and sim-outorder.  

 

 

Figure 5: The Modules of the NetSimHP Library. 

 
2.3. NetSimMT   
The NetSimMT library contains components that are 
configured for a multithreaded environment.  This is 
handled by including an additional field in the instruc-
tion object that identifies which thread the instruction 
belongs to.  Many of the modules within NetSimMT are 
child wrapper classes for modules within NetSimHP.  
These classes can handle the extra thread ID field 
within the instruction, making them viable component 
for a multithreaded environment.  The modules for 
NetSimMT and their interconnections are illustrated in 
Figure 6. 

 

 

Figure 6: The Modules of the NetSimMT Library. 

In addition to the multithreaded superscalar compo-
nents, other components are available that can monitor, 
control, and create threads.  These new components 
include the Loop Detection Unit, Thread Control and 
Initialization Unit, Contexts, and a new Dispatch Unit.  
The modules in this library are currently being used to 
create a simulator for a new multithreaded architecture, 
called Dynamic Simultaneous Multithreading (DSMT), 
and thus aptly titled DSMTSim.  Discussion of DSMT 
is beyond the scope of this paper.  However, interested 
readers may refer to [7] for further discussion on 
DSMT. 

 
3. Benefits and Pitfalls 
This section will detail the benefits derived from creat-
ing an architectural simulator from NetSim and why 
certain choices were made with regard to NetSim.   

ISimComponent[] sim = Init(); 
while( true ) { 
  /* Execute a simulator clock cycle */ 
  foreach( ISimComponent com in sim ) 
    com.Update(); 
  foreach( ISimComponent com in sim ) 
    com.Tick(); 
} 



  

3.1. Benefits 
The major benefits are (1) programmability, (2) archi-
tectural accuracy, and (3) flexibility. 
 
Programmability 
One of the major advantages of developing NetSim 
with C# is the increase in programmability.  C# is an 
object-oriented programming language that is a cross 
between C++ and Java, and blends the advantages of 
both languages into one.  Among these advantages are 
accessing low-level function calls and garbage collect-
ing.  In essence, C# removes the responsibility of pro-
grammer to handle memory clean-up and provides 
libraries full of basic, fast, and efficient data structures 
that are common in most programs.  This level of ab-
straction allows the programmer concentrate on the 
algorithms and objects for the simulator while relying 
on pre-built methods to handle the mundane program-
ming tasks [3][4]. 

C# is built on Microsoft’s .NET Framework, which 
becomes a powerful tool for NetSim.  In fact, the ‘Net’ 
in NetSim is a tribute to the .NET Framework.  Pro-
grams written for .NET are inherently compiled to a 
.NET assembly, which is a type of interpreted lan-
guage.  When ran, a Just-In-Time (JIT) compiler will 
compile the assembly into the machine code.  Thus, 
like Java, any compiled .NET assembly can be exe-
cuted on any platform that supports the .NET Frame-
work.  So far, NetSim has been successfully run on 
both the Windows XP and Linux environments.  Most 
other simulators, SimpleScalar included, are targeted 
for a specific OS environment and processor and trying 
to port the simulator to another environment requires 
extensive modifications to the source code and several 
recompiles.  NetSim does not suffer this penalty and 
can be run in any environment where there the .NET 
Framework is supported without modifying the source 
code. 

The .NET Framework also has the ability to com-
pile multiple programming languages into a single as-
sembly.  This feature allows a developer to use some 
legacy C/C++ code in conjunction with NetSim to cre-
ate a new simulator.  Therefore, .NET lends a great 
deal to the increase in programmability within NetSim. 

 
Architectural Accuracy 
The increase in the amount of architectural accuracy 
can be derived from the object-oriented nature of Net-
Sim.  Microarchitectures are inherently object-oriented, 
and any architecture, from a five-stage pipeline proces-
sor to a superscalar processor, has a high-level block 
diagram that represents the overall architecture of the 
system.  The block diagrams illustrate the major com-
ponents, structures, and communication paths.  By this 

nature, it is very easy to imagine each component in a 
block diagram as a class object and the communication 
lines as public methods. 

In addition, each component can be broken down 
into smaller components, and if need be, to the gate 
level.  This allows for a level of architectural accuracy 
that cannot be matched in a non-object-oriented simu-
lator.  Therefore, NetSim can be used to create a simu-
lator with a direct one-to-one mapping between a block 
diagram and the NetSim components.  The source code 
can be easily followed and the architecture can be ac-
curately simulated.  Moreover, the modules are usually 
small and easy to implement 

In an actual microprocessor, each component is re-
sponsible for only a handful of tasks and manages their 
own data.  This is analogous to a class with a protected 
data structure and private methods that manipulate that 
data.  Simulators based on C and even C++ will global-
ize all data structures and expect certain global func-
tions to interact with the data correctly.  Because of 
this, the simulators will often only mimic the behavior 
of the architecture on the back-end, but perform all the 
calculations and data manipulation ahead of time.  
With NetSim, the calculations and data manipulations 
are done within the correct modules and at the correct 
times. 

An added benefit to using an object-oriented ap-
proach is the ability to easily gather statistics from 
simulations (see Section 5 for examples).  These statis-
tics can be used to quickly identify and evaluate bottle-
necks within an architecture as a means to compare 
different schemes and algorithms for performance.  
Although, it is possible to gather similar statistics in 
other simulators, significant additions and changes are 
required.  With the use of the Statistics Database mod-
ule in NetSim, only 2-3 lines of code are required. 

The Statistics Database keeps track of each func-
tion delegate, or function pointer, within any module 
that produces metrics.  This enables each object to 
keep track of their own data and statistics and to only 
pass the information along to the Statistics Database 
when needed.  This method maintains data abstraction 
within the object-oriented programming environment 
while allowing the Statistics Database to be the sole 
provider of statistics for the entire system. 

 
Flexibility 
Due to the object-oriented techniques used to create the 
NetSim environment, it is relatively easy to alter archi-
tectural components for comparative analysis.  Modify-
ing the behavior of various components in most of the 
currently available simulators can be a very difficult 
task requiring numerous global changes to the code.  
With NetSim, changes can be confined to only the 
components affected. 



  

Changing a single component can be as simple as 
creating a new object that inherits the original compo-
nent and overrides any functions that will behave dif-
ferently.  If extensive changes need to be made to the 
module, then a new object can be created which uses 
the same interface.  The new module can then replace 
the old module within the existing architecture. 

If the changes would require additional information 
to be exchanged between units then it will be necessary 
to add new functions to the components involved.  But 
even in this case, the changes are confined solely to 
these components.  Global changes would be unneces-
sary. 

When creating an entirely new architectural model 
using NetSim, the amount of work is significantly less 
than with other simulators.  Instead of starting from 
scratch, base components would be reused and only 
new or heavily altered components would be written 
from scratch.  For example a 5-stage pipeline simulator 
could reuse components for the fetch stage, the register 
file, the memory, and the functional units.  The only 
components needed to complete it would be the decode 
and write-back stages.  Forwarding could be accom-
plished by using the Common Data Bus object supplied 
in NetSimHP.  With a minimal amount of new code, an 
entirely new simulation model can be implemented. 

NetSim can also be retargeted without making ma-
jor changes to the simulator.  A new Instruction Data-
base can be created based on the target ISA.  This han-
dles instruction decoding and execution so none of the 
core components will require changes.  Currently the 
Loader supports ECOFF and ELF file formats.  If an 
additional format is required then a parsing routine will 
need to be created for it.  There may also need to be 
changes made to the Syscall module.  If the new 
system calls are similar to the existing Unix style calls 
then the changes would most likely be minor.  Depend-
ing on the target this could be a very involved task. 

 
3.2. Pitfalls 
With all the benefits involved with using NetSim, there 
is one major drawback, the time it takes for a simula-
tion to complete.  Since NetSim is object-oriented, 
there is additional overhead involved in the actual exe-
cution of programs.  This overhead comes from the 
additional function calls, dynamic object instantiation, 
and garbage clean up.  Therefore, it will not be possi-
ble to achieve the same speeds that C-based simulators 
can run. 

But this is only a pitfall when looked at in terms of 
simulation time.  When the time to develop the simula-
tor is added to the simulation time, NetSim becomes a 
faster simulator.  For example, a simulation using Net-
Sim might be an order of magnitude longer to run than 

using SimpleScalar, but creating a simulator from Net-
Sim can be almost an order of magnitude faster than 
creating one from SimpleScalar.  A comparison of the 
simulation time is discussed in Section 5. 

 
4. SuperSim 
The first major cycle-accurate simulator developed 
using NetSim is SuperSim.  It models a PowerPC-style 
superscalar architecture with reservation stations dis-
tributed by functional units.  A version of the Toma-
sulo algorithm is used to handle forwarding and de-
pendencies [5]. 

Figure 7 illustrates how SuperSim uses the Net-
SimHP components to create the superscalar processor.  
Note that this figure is almost identical to the block 
diagram of the superscalar architecture Supersim is 
based on.  Not only are the block diagrams similar but 
the interaction between the various modules are also 
handled in the same manor as the original architecture.  

SuperSim also supports a fast forward capability us-
ing FastMod.  This allows the simulator to switch to a 
functional execution mode for any number of instruc-
tions and fast-forward through portions of a program.  
For example, it is possible to fast forward though the 
first 100,000 cycles, run four million cycles in full 
simulation mode, and then fast forward to the end of 
the program.  This allows large benchmarks to be exe-
cuted more quickly while still gathering detailed statis-
tic from the core of the benchmark. 

 

 

Figure 7: SuperSim block diagram using NetSim 
components. 

SuperSim was validated on a large number of 
SPEC95 and SPEC2000 benchmarks [6].  The entire 



  

development process took a two-person team approxi-
mately six weeks for FastSim, and another two weeks 
for SuperSim, including debugging and basic valida-
tion. 

 
5. Simulation Results 
To compare the NetSim environment to SimpleScalar, 
simulations were run using the compiled binaries sup-
plied by Postiff, et al. [8] and used a small subset of 
the SPEC 2000 benchmarks [9].  The simulators were 
run on similar Pentium 4 computers with Linux used 
for sim-outorder and Windows XP used for SuperSim.   
Figure 8 shows the performance of each simulator for 
the four benchmarks in terms of instructions per sec-
ond (IPS) and cycles per second (CPS).  On average, 
sim-outorder was around 18 times faster in executing 
instructions than SuperSim but only about 7 times 
faster for each clock cycle.  It is important to note that 
the cycles per instruction (CPI) of the architectural 
model used by SuperSim is higher than that of sim-
outorder, thus requiring additional clock cycles to exe-
cute the benchmark and creating a lower IPS value.  

Simulator performance

0

100

200

300

400

500

600

mcf equake mesa ammp

Benchmark

k
IP

S
/k

C
P

S NS IPS

NS CPS

SS IPS

SS CPS

Figure 8: NetSim’s (NS) SuperSim and SimpleSca-
lar’s (SS) sim-outorder speed performance. 

The detailed architectural model used by SuperSim 
allows for a wide range of performance statistics to be 
gathered.  This includes data that would be difficult to 
determine in simpler or less accurate simulators.  An 
example of this is seen in Figure 9.  The chart shows 
the issue performance of the dispatch unit as well as a 
detailed breakdown of the causes of all unused issue 
slots.  The failed issue attempts are tracked based on 
which other component caused the failure, either an 
empty instruction queue, a full reorder buffer or no free 
reservation stations of the correct type.  Figure 10 
shows another example where keeping track of the 
busy status of functional units provides a metric for the 
overall function unit utilization.  These metrics can be 
tracked with only a few additional lines of coded in 
each of the respective units. 

Instruction Issue Performance

0%

50%

100%

mcf equake mesa ammp

Benchmark

IQ Empty

No ROB

No RS

Issued

Figure 9: Instruction issue performance on Super-
Sim. 

 

Function Unit Usage

0

10

20

30

40

mcf equake mesa ammp

Benchmark

%
 B

u
s

y Int 1

Int 2

Float

Branch

Figure 7: Statistics of function unit usage on Super-
Sim. 

 
6. Conclusion and Future Work 
NetSim was not intended to be the fastest simulator 
suite, but rather the most flexible and accurate simula-
tor suite.  By using the object-oriented model of C#, 
designers can use NetSim to cut down the simulator 
development time by orders of magnitude and still de-
velop extremely accurate simulators.  This allows de-
signers to concentrate on the evaluation, rather than the 
development, of new design ideas. 

Our future plan is to dramatically improve the 
speed of NetSim.  It would be ideal to start optimizing 
the base components and attempt to get NetSim’s 
FastSim to perform as fast as SimpleScalar’s sim-fast 
simulator.  Additional performance improvement to the 
simulators can be achieved by reducing the number of 
objects constructed and deconstructed during each cy-
cle.  The removal of legacy code and objects as well as 
minimizing the amount of data conversions will also 
enhance the performance. 

Our ultimate goal is to develop a cycle-accurate 
multithreaded simulator, DMSTSim, using NetSim.  
NetSim will play an important role in researching key 
issues in exploiting thread level parallelism, such as 



  

loop detection, thread management, inter-thread de-
pendence speculation, and memory parallelism.  Be-
cause of the architectural accuracy of NetSim, new and 
different types of metrics can be used to determine 
performances and bottlenecks.  This will lead to a bet-
ter multithreaded architecture design. 
 
References 
[1] Burger, D., and T.M. Austin, “The SimpleScalar Tool 

Set, Version 2.0,” Tech. Report 1342, Univ. of Wiscon-
sin, Madison, 1997. 

[2] Kise, K., T. Katagiri, H. Honda, and T. Yuba, “The 
SimCore/Alpha Functional Simulator,” Workshop on 
Computer Architecture Education (WCAE-2004), 2004. 

[3] Troelsen, A., C# and the .NET Platform, Apress, Ber-
keley, CA, 2003. 

[4] Schildt, H., C#: The Complete Reference, Os-
borne/McGraw-Hill, New York, NY, 2002. 

[5] Hennessy, J.L., and D.A. Patterson, Computer Architec-
ture: A Quantitative Approach, Third edition, Morgan 
Kauffman Publishers, San Francisco, CA, 2003. 

[6] Henning, J.L., “SPEC CPU2000: Measuring CPU Per-
formance in the New Millennium,” IEEE Computer, 
July 2000. 

[7] Ortiz-Arroyo, D. and B. Lee, “Dynamic Simultaneous 
Multithreaded Architecture,” 16th International Confer-
ence on Parallel and Distributed Computing Systems 
(PDCS-2003), August 13-15, Reno, Nevada, 2003. 

[8] Postiff, M., et al., “The MIRV SimpleScalar/PISA 
Compiler,” University of Michigan EECS Department 
Tech. Report CSE-TR-421-00. April 2000. 

[9] KleinOsowski, A.J., and D. J. Lilja, “MinneSPEC: A 
New SPEC Benchmark Workload for Simulation-Based 
Computer Architecture Research,” Computer Architec-
ture Letters, Volume 1, June 2002. 

 


