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Abstract

This paper presents a comparison of power-aware
video decoding techniques that utilize Dynamic Voltage
Scaling (DVS) capability. Three techniques were simu-
lated and compared in terms of power consumption, accu-
racy, and deadline misses. The simulation results show
that the dynamic per-frame technique, where the decoding
time prediction adapts to the particular video being de-
coded, is the most promising approach due to its feasibil-
ity of implementation and comparable performance to the
ideal case. Our findings also indicate that in general, as
the number of available processor settings increases, the
amount of power saving increases, but the number of
deadline misses increases as well. More importantly,
most of these deadline misses are within 10-20% of the
playout interval and thus insignificant. However, video
clips with high variability in frame complexities combined
with inaccurate decoding time predictions may degrade
the video quality. Finally, our results show that a proces-
sor with 13 voltagel/frequency settings is sufficient to
achieve near maximum performance with the experimen-
tal environment and the video workloads we have used.

Keywords: Dynamic voltage scaling, video decoding, low-
power techniques, decoding time prediction.

1. Introduction

Power efficient design is one of the most important
goals for mobile devices, such as PDAs, handhelds, and
mobile phones. As the popularity of multimedia applica-
tions for these portable devices increases, reducing their
power consumption will become increasingly important.
Among multimedia applications, delivering video will
become the most challenging and important applications
of future mobile devices. Video conferencing and multi-
media broadcasting are already becoming more common,
especially in conjunction with the Third Generation (3G)
wireless network initiative [8]. However, video decoding
is a computationally intensive, power ravenous process.
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In addition, due to different frame types and variation
between scenes, there is a great degree of variance in
processing requirements during execution. This high
variability in video streams can be exploited to reduce
power consumption of the processor during video de-
coding.

Dynamic Voltage Scaling (DVS) has been shown to
take advantage of the high variability in processing re-
quirements by varying the processor’s operating voltage
and frequency during run time [4, 7]. In particular, DVS
is suitable for eliminating idle times during low work-
load periods. Recently, researchers have attempted to
apply DVS to video decoding to reduce power [9, 10, 12,
13]. These studies present approaches that predict the
decoding times of incoming frames or Group of Pictures
(GOPs), and reduce or increase the processor setting
based on this prediction. As a result, idle processing
time, which occurs when a specific frame decoding
completes earlier than its playout time, is minimized.

Even if decoding time prediction is very accurate, the
maximum DVS performance can be achieved only if the
processor can scale to very precise processor settings.
Unfortunately, such a processor design is impractical
since there is cost associated with having different proc-
essor supply voltages. Moreover, the granularity of
voltage/frequency settings induces a tradeoff between
power savings and deadline misses. For example, the
fine-grain processor settings may even increase the
number of deadline misses when it is used with an inac-
curate decoding time predictor. Coarse-grain processor
settings, on the other hand, lead to overestimation by
having voltage and frequency set a bit higher than re-
quired. This reduces deadline misses in spite of predic-
tion errors, but at the cost of reduced power savings.
Therefore, the impact of available processor settings on
video decoding with DVS needs to be further investi-
gated.

Based on the aforementioned discussion, this paper
provides a comparative study of the existing DVS tech-
niques developed for low-power video decoding, such as
GOP [12] and Direct [10, 13], with respect to prediction
accuracy and the corresponding impact on performance.



In addition, an alternative method called Dynamic is pro-
posed as an improvement to these techniques. The Dy-
namic approach is designed to perform well even with
high-motion videos by dynamically adapting its predic-
tion model based on the decoding experience of the par-
ticular video clip being played. An extensive simulation
study based on SimpleScalar processor model [5], Wattch
power tool [3] and Berkeley MPEG Player [2] has been
conducted to compare these DVS approaches. We inves-
tigated two important tradeoffs: The impact of decoding
time predictions and granularity of processor settings on
DVS performance in terms of power savings, playout
accuracy, and characteristics of deadline misses.

The rest of the paper is organized as follows. Section
2 presents existing DVS techniques on low-power video
decoding and their decoding time predictors. Section 3
discusses the simulation environment and presents the
simulation results on how the accuracy of decoding time
predictor and the granularity of processor settings affect
DVS performance. Finally, Section 4 provides a conclu-
sion and elaborates on future work.

2. Prediction-based DVS Approaches

Prediction algorithms employed in several DVS ap-
proaches differ based on the following two criteria: Pre-
diction interval and prediction mechanism. Prediction
interval refers to how often predictions are made and
processor settings are changed. The existing approaches
use either per-frame or per-GOP scaling. Prediction
mechanism refers to the way the decoding time of an in-
coming frame or GOP is estimated. Currently, all the
approaches utilize some form of frame size vs. decoding
time relationship [1]. Some methods are based on a fixed
relationship, while others use a dynamically changing
relationship. In the fixed approach, a linear equation de-
scribing the relationship between frame sizes and frame
decoding times is provided ahead of time. In the dynamic
approach, the frame-size/decoding-time relationship is
dynamically adjusted based on the actual frame sizes and
decoding times of a video stream being played. The dy-
namic approach is better for high-motion videos where
the workload variability is extremely high. In other cases,
the fixed approach performs better than the dynamic ap-
proach but its practical value is limited because the rela-
tionship is not usually available before actually decoding
the stream.

Three DVS techniques for video decoding and the cor-
responding prediction algorithms are discussed and com-
pared: GOP is a per-GOP and dynamic approach, Direct is
a per-frame and fixed approach, and Dynamic is a per-
frame and dynamic approach. Another proposed method
completely bypasses the decoding time prediction to
eliminate the possibilities of errors due to inaccurate
scaling predictions [9]. This is done by preprocessing

video streams to add accurate video complexity infor-
mation during the encoding process. However, this ap-
proach is impractical since it requires modification in the
widely used standard video stream format. We do not
include this method in the study.

2.1. Per-GOP Approach with Dynamic Equa-
tion (GOP)

GOP dynamically recalculates the slope of the frame-
size/decode-time relationship based on the decoding
times and sizes of past frames [12]. At the beginning of
a GOP, the sizes and types of the frames of an incoming
GOP are observed. This information is then applied to
the frame-size/decode-time model, and the time needed
to decode the GOP is estimated. Based on this estimate,
the lowest frequency and voltage setting that would sat-
isfy the frame rate requirement is selected. The dynamic
slope adjustment was originally presented by Bavier et
al. [1]. Here, the slope adjustment is implemented by
utilizing the concept of Decoding Time Per Byte
(DTPB). DTPB essentially represents the slope of the
frame-size/decode-time equation and this value is up-
dated as the video is decoded using the actual decoding
times of the just-decoded frames.

2.2. Per-Frame Approach with Fixed Equation
(Direct)

Direct was used by Pouwelse et al. in their imple-
mentation of StrongARM based system for power-aware
video decoding [10, 13]. In this technique, the scaling
decision is made on a per-frame basis. Based on a given
linear model between frame sizes and decoding times,
decoding time of a new frame is estimated and then it is
associated to a particular processor setting using a direct
mapping.

In order to obtain the frame size of the new frame,
the video decoder examines the first half of the frame as
it is being decoded. Then, the size of the second half of
the frame is predicted by multiplying the size of the first
half with the complexity ratio between the first and sec-
ond halves of the previous frame. If the decoding time
of the first half of the frame is higher than half of the
estimated decoding time, it means that the decoding is
too slow; the processor setting is then increased.

In addition, they present a case in which the frame
sizes are known a priori [13]. This is achieved by feed-
ing the algorithm with the size of each frames gathered
offline. Thus, voltage/frequency scaling is done at the
beginning of each frame by looking at the frame size,
estimating the decoding time, and scaling the processor
setting accordingly. Our simulation study of Direct is
based on this case.



2.3. Per-Frame Approach with Dynamic Equa-
tion (Dynamic)

Dynamic is a per-frame scaling method that dynami-
cally updates the frame-size/decoding-time model and the
weighted average decoding time.

The mechanism used to dynamically adjust the frame-
size/decode-time relationship is similar to one presented
by Bavier et al. [1]. In Dynamic, the adjustment is made
by focusing on the differences of the decoding times and
frame sizes. The average decoding time of previous
frames of the same type is used as the initial value for
predicting the next frame. The possible deviation from
this average value is then predicted by looking at the
weighted difference of frame sizes and decoding times of
previous frames. This predicted fluctuation time is then
added to the average decoding time to obtain the predicted
decoding time of the incoming frame.

3. Performance Evaluation and Discussions

In this section, we present the simulation results com-
paring the performances of different DVS schemes intro-
duced in Section 2, and also show the quantitative results
on the effect of different processor setting granularities.
Performance measures are average power consumption
per frame (APF), error rate, and deadline misses. Before
proceeding, the simulation environment and the workload
video streams are first described in Subsections 3.1 and
3.2, respectively.

3.1. Simulation Environment

Our simulation environment consists of modified Sim-
pleScalar [5], Wattch [3], and Berkeley MPEG Player [2].
SimpleScalar is used as the basis of our simulation
framework. The simulator is configured to resemble the
characteristics of a five-stage pipeline architecture, which
is typical of processors used in current portable multime-
dia devices. The proxy system call handler was modified
and a system call for handling voltage and frequency
scaling was added. Thus, the MPEG decoder makes a
DVS system call to the simulator to adjust the processor
setting.

For video decoding, the Berkeley MPEG decoder was
modified to make DVS system calls. A DVS system call
modifies the voltage and frequency values presently used
by SimpleScalar. Therefore, before processing a frame, a
system call to the simulator is performed to start the
power consumption count and to obtain the time at which
the decoding started. After the decoding process com-
pletes, another system call is made to stop the power con-
sumption count. Finally, at the time when the frame is
supposed to be displayed, another system call is issued to

Table 1: The characteristics of the clips used in the

simulation.
Clip Name Children Red’s Nightmare Under Siege
Type Low-motion Animation High-motion
fps 29.97 25 30
I 62 41 123
P 238 81 122
B 599 1089 486
Total 899 1211 731
Size 320 x 240 320 x 240 352 x 240
Time-Size | Decoding time = Decoding time = Decoding time =
Equation | 88.8 x Frame size + | 53.9 x Frame size + | 69.6 x Frame size +
10° 2x10° 2x10°
R 0.94 0.89 0.94

indicate the frame display time. This information is
needed to check whether the frame missed its playout
time due to miss-prediction, and by how much.

For the simulation study, the overhead of processor
scaling was assumed to be negligible. In practice, there
is a little overhead related with the scaling. Previously
implemented DVS systems have showed that processor
scaling takes about 70 us to 140 us [4, 10, 13]. Since
this overhead is significantly smaller than the granularity
in which the DVS system calls are made, they have a
negligible effect on the overall results.

3.2. Workload Video Streams

Three MPEG clips were used in our simulations.
These clips were chosen as representatives of three types
of videos - low-motion, animation, and high-motion. A
clip showing a public message on child care is selected
for a low-motion video (Children) and a clip named
Red’s Nightmare is selected as an animation video.
Lastly, a clip from the action movie Under Siege is se-
lected to represent a high-motion video. Table 1 shows
the characteristics of the clips, including frame-
size/decode-time equations, which were generated after
preprocessing each clip. The R? coefficient represents
the accuracy of the linear equations, i.e., the closer R* is
to unity, the more likely the data points will lay on the
predicted line.

3.3. Prediction Accuracy on DVS Performance

Figures 1 and 2 summarize power savings and error
results. The ideal case (Ideal) was also included as a
reference. The ideal case represents perfect prediction
with voltage/frequency set to any accuracy required, and
thus represents optimum DVS performance. This was
done by using previously gathered actual frame decoding
times to make scaling decisions.
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Figure 1: Relative APF for various DVS approaches.
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Figure 2: Errors for various DVS approaches.

Figure 1 shows the power savings in terms of average
power consumption per frame relative to using no DVS
for all frames as well as for each frame type. All three
approaches achieve comparable power savings to the ideal
case, except GOP with Children (i.e., only 35% im-
provement). GOP performs the worst because it applies
the same processor setting over multiple types of frames
in a GOP. This consequently wastes the potential power
savings that can be made for P- and B-frames, which typi-
cally have shorter decoding times than I-frames. On the
average, Dynamic provides the most power saving (80%
improvement) but it is only slightly better than Direct
(77%).

Figure 2 shows the accuracy of the three DVS ap-
proaches in terms of error, defined as the ratio of standard
deviation of inter-frame playout times [14] to playout
interval. GOP has the highest overall average error
(39.3%) for the three clips. Dynamic was the most accu-
rate with average error of 8%, closely followed by Direct
with 10.5%. Neglecting the error results of GOP, the
amount of error for each frame type depends heavily on
the variability of decoding times for Direct and Dynamic.
For example, for Red’s Nightmare, both P-and B-frames
resulted in significant errors (17% and 10% for Direct, and
29% and 13% for Dynamic). This was also the case for P-
frames in Under Siege.

3.4. Impact of Processor Settings Granularity

The results of power consumption and accuracy pre-
sented in the previous subsection were based on 13 fre-
quency/voltage settings. Thus, even if very accurate de-
coding time predictions are made, the granularity of volt-
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Figure 3: Relative APF for various settings.
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Figure 4: Errors for various settings.

age/frequency settings will invariably affect the per-
formance of DVS. It seems that having fine-grain volt-
age scales would lead to better performance than having
coarse-grain scales. Nevertheless, a clearer understand-
ing is needed about the impact of various processor
scaling granularities have on video decoding in terms of
power consumption and accuracy.

To show the aforementioned tradeoff, we experi-
mented with various scaling schemes consisting of 4, 7,
13, 25, and 49 scales with the minimum setting of 0.79
V, 59 MHz and maximum of 1.65 V, 251 MHz. Each of
these schemes was simulated using the Dynamic ap-
proach. This approach was chosen as a representative
among others due to its promising performance and high
potential for realistic implementation.

The results are shown in Figures 3 and 4. Figure 3
shows the relative average power consumption per frame
compared to using no DVS. As can be seen, power con-
sumption decreases as the number of processor settings
increase. However, power saving only increases slightly
beyond 13 scales. Thus, using 13 available settings
seems to be sufficient to achieve relative average power
per frame comparable to the ideal case (e.g., 18% vs.
16% for Children, 19% vs. 17% for Red’s Nightmare,
and 23% vs. 20% for Under Siege, respectively).

Figure 4 shows the accuracy of the DVS approaches
for the various settings. In general, the error decreases
with the availability of more processor settings. This is
true for Children and Under Siege, where changing the
available number of processor settings from 4 to 49 set-
tings significantly reduces the error. However, this is
not the case for Red’s Nightmare. The error decreases
for the processor settings of 4 to 13, but for the number
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Figure 6: % of deadlines misses for different set-
tings.

of settings more than 13, the ratio increases slightly due to
large errors for P- and B-frames. Therefore, with the finer
granularity, more of the inaccuracies are getting scaled
more precisely (e.g., propagated).

3.5. Characteristics of Deadline Misses

Figure 5 shows the deadline misses for the three DVS
approaches. As can be seen, the Direct approach resulted
in the smallest percentage of deadline misses. This is
because we are using a frame-size/decoding-time equation
that is based on the specific characteristic of each clip.
Thus, the frame-size/decoding-time model is well suited
for the particular clip being run. For Direct, the Under
Siege clip resulted in the most number of misses (7.8%).
The reason is that the clip is a high-motion video, which
deviates most from the calculated linear model.

However, the Dynamic approach handles the Under
Siege clip comparatively well (9.7% deadline misses)
because its adaptive capability in predicting decoding
times. The Children clip resulted in the most number of
misses (23.92%) for Dynamic. Unlike the other methods,
the highest number of deadline misses occurred for the
clip with the least amount of scene variations. This is
because the dynamic decoding time estimation used per-
forms too aggressively for the clip that has smooth
movement. GOP also uses an adaptive mechanism simi-
lar to the Dynamic approach. However, the deadline

misses are minimized by having longer scaling intervals
(i.e., per-GOP instead of per-frame). Moreover, its
scaling decision includes all types of frames. Thus, P-
and B-frames, which typically have shorter decoding
times than I-frames, would likely be overestimated since
the setting used has to also satisfy the playout times for
I-frames.

Figure 6 shows the deadline misses for various
granularity voltage/frequency scales using Dynamic.
The number of deadline misses increases linearly as the
granularity of the processor settings becomes finer, ex-
cept for the Children clip. This is because by having
more available settings, the scaling decisions rely more
on the estimation of the decoding times. Thus, an esti-
mation error would easily propagate to cause a deadline
miss. Essentially, the main factor that would affect the
relationship between the granularity of the processor
scale and DVS performance is the distribution of the
frame decoding times. The power savings and deadline
misses would depend on whether the processor settings
available could satisfy the expansion of the decoding
times to the frame playout intervals.

Figure 7 shows the characteristics of deadline misses
in terms of how much the desired playout times were
exceeded for various DVS approaches and different
processor settings. The x-axis shows the extent of the
deadlines misses relative to the playout interval, catego-
rized as 10%, 20%, 30%, 40%, and greater than 40%.

The y-axis represents the percentage of deadline
misses over an entire clip. For example, a 5% value on
the y-axis with the 10% category on the x-axis means
that 5% of the frames in the clip that miss the deadline
missed it by 10% of the desired playout interval (e.g., for
25 fps, or 40 ms playout interval, these frames are
played out between 40 to 44 ms after the preceding
frames). The z-axis categorizes the results for different
clips and frame types.

For the Direct and Dynamic approaches, most of the
misses are within 10% of the playout interval. In addi-
tion, virtually all of the misses for three approaches lie
within the 20% range. For GOP, the deadline misses are
more erratic since they are concentrated in 10% and
>40% ranges. Thus, deadline misses in the GOP scheme
have a higher potential of disrupting the quality of video
playback. Conversely, deadline misses in Direct and
Dynamic are less likely to affect the quality of the videos
[6]. Additionally, even though the number of deadline
misses increases as more processor settings are made
available, the extent to which these deadlines are missed
remains relatively constant within the 20% range for all
the clips. Moreover, most of the misses are still within
the 10% range.
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Figure 7: The degree of deadline misses for various DVS approaches and different processor settings.

4. Conclusion

This study compared the existing DVS techniques for
low-power video decoding. Out of the three approaches
simulated, Dynamic and Direct provided the most power
savings. Among the two, Dynamic is much more practi-
cal, because it is able to dynamically adapt to any video
stream. The implementation of such an approach would
not change any external behavior of the system. Thus,
this approach is very suitable for portable multimedia
devices, which require low-power consumption.

Our study also further quantifies the deadline misses
that occurred by looking at the degree to which the play-
out times are exceeded. The results indicate that, for the
Dynamic and Direct approaches, most of the deadline
misses are within 20% of the playback interval. There-
fore, it is less likely to degrade the quality of the video. In
addition, in designing a DVS capable processor for video
decoding, higher number of processor settings is prefer-
able. By having more available settings, more power
saving can be achieved without any additional risk of sac-
rificing quality of the video. More deadline misses may
occur, but they are still within a tolerable range [6].

As future work, it would be interesting to investigate
the usage of DVS system on streaming video. In such a
case, packet jitters from the network also need to be con-
sidered. It would also be useful to assess the cost of im-
plementing very fine-grain scales on DVS processor.
Finding more accurate prediction mechanisms and new

ways to exploit DVS for low power video decoding is
also critical. However, our simulation results show that
the existing approaches have already reached near-
maximum performance (and similar conclusion has been
made in [10]), but opportunity for improvement still
exists. Lastly, it would be beneficial to find ways to use
DVS on other parts of a system, such as applying DVS
to memory or network interface.
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