
X32V: A Design of a Configurable Processor Core for Embedded Systems

David Zier1, Jumnit Hong1, Savithri Venkatachalapathy1, Jarrod Nelson1, John Mark Matson2,
Ben Lee1, Younghwan Bae3, and Hanjin Cho3

1School of Electrical Engineering and Computer Science
 Oregon State University

Corvallis, Oregon
{zier, hongju, venkasav, nelsonja, benl}@ece.orst.edu

2Intel Corporation
 Hillsboro, Oregon

john.m.matson@intel.com

3Electronics and Telecommunications Research Institute (ETRI)
Daejeon, Korea

{yhbae, hjcho}@etri.re.kr

Abstract
This paper introduces the X32V configurable proces-
sor core.  X32V is geared towards low-power, low-
memory embedded systems, such as cell phones,
PDAs, and digital cameras.  X32V uses a feature that
allows for variable length instructions that ultimately
decrease the amount of program memory required for
applications.  In addition, X32V supports additional
modules that increase flexibility.  Currently, a mul-
timedia extension module and a floating-point mod-
ule have been developed and integrated into the
X32V schema.  An X32V prototype was developed
as an execution based, cycle-accurate simulator.  Pre-
liminary testing of X32V has been performed using
benchmarks based on portions of MPEG-4 decoding.

1. Introduction
Current trends in embedded applications are requiring
more features and a shorter time-to-market.  With the
advent of System On Chip (SOC), the need to design
a custom processor and secondary components has
created enormous challenges for embedded system
designers [1].  A synthesizable, configurable proces-
sor offers an effective way to improve time-to-market.
A configurable processor allows the designer to create
a custom microprocessor by configuring the processor
core or adding specialized modules [2, 3].  These
modules can provide the benefits of a coprocessor
without the communication or area overhead usually
encountered.

Currently, there are several companies offering
configurable and extensible processor cores including
Tensilica [2] and ARC cores [3].  The eXpandable
32-bit Variable, or X32V, processor core offers three

modes with various instruction lengths, which allows
added flexibility when balancing memory require-
ments and performance.  At the core, X32V only
supports an integer instruction set, which is useful in
most situations, but X32V also provides extensive
support for additional expansions through the use of
add-on modules.  

To prototype X32V and test the performance of
various configurations, a cycle-accurate, execution-
based simulator was developed.  This simulator used
the SimpleScalar Toolset [4] as the base framework
for simulating memory, system calls, cache, re-
sources, and statistics gathering.

One of the goals for the X32V processor core was
to gear it towards small multimedia applications,
such as those found in cell phones, digital cameras,
and other handheld devices.  In order for the micro-
processor to be viable in a multimedia application, it
would need to be able to very quickly decode and
encode JPEG and MPEG type media.  As a result,
one of the first modules created for X32V was a mul-
timedia extensions module, called EM3.  Several
multimedia benchmarks were run on the simulator to
test the validity of X32V and EM3.

The paper is organized as follow: Section 2 de-
scribes the various modes and instruction formats
that are supported by the X32V processor core.  Sec-
tion 3 discusses the configurable components of
X32V.  The compiler is described in Section 4. EM3
is described in Section 5 along with some perform-
ance results from using EM3.  Finally, Section 6
concludes the paper.



2. X32V Instruction Modes
X32V supports three different modes of variable
length instructions.

• Default (32-bit instructions)
• Light (32/16-bit instructions)
• Ultra-Light (32/24/16-bit instructions)
In default mode, a 32-bit instruction word is

fetched from memory every clock cycle.  In this
mode, all the instructions are fetched on word aligned
boundaries.  The default mode provides large imme-
diate values and room for expansion. Figure 1 illus-
trates the various instruction formats supported in
Default mode.

Light mode can fetch both 32-bit and 16-bit in-
structions.  The compiler will map any 32-bit in-
structions into their equivalent 16-bit formats if the
instruction is compressible.  Since all instructions are
fetched 32-bit at a time, 32-bit instructions can span
across a memory word.  This incurs a 1-cycle penalty
because the next 32-bit word needs to be fetched to
get the complete instruction.  Figure 2 illustrates the
16-bit instruction formats used by the Light mode.

Ultra-light mode allows instructions to be fetched
as 32-bit, 24-bit, or 16-bit.  The compiler will map
any instructions that are compressible into 24-bit or
16-bit instructions.  There can be up to a four-cycle
penalty on a branch or jump that is made to a non-
word aligned instruction in memory since there can
potentially be three partial instructions in the fetched
word.  The benefit of the Ultra-light mode is that it
provides the smallest program binaries and thus saves
memory space.  Figure 3 illustrates the 24-bit in-
struction format that is used in the Ultra-light mode.

To support multiple instruction lengths, the fetch
unit has a buffer to hold any partial instruction
fetched from memory, which is determined by the
first byte in the opcode.  This portion will be part of
the next instruction fetched.  On the next fetch cycle,
the remaining part of the instruction will be com-
bined with the portion of the instruction in the buffer
to form the complete instruction.

A case study was done to determine the effective-
ness of having default, light, and ultra-light modes.
SimpleScalar [4] was used to conduct the study that
required a one-to-one mapping of X32V instructions
to SimpleScalar instructions.  This mapping allowed
an accurate estimation of code size from a compiled
SimpleScalar binary.  The benchmarks used in the
study were from the MediaBench suite [5] and an
MPEG-4 encoder/decoder provided by ETRI.  Each
benchmark is described below:

  ADPCM: Adaptive differential pulse code
modulation. A simple form of audio encoding.

 EPIC: An experimental image compression util-
ity based on a bi-orthogonal critically sampled
dyadic wavelet decomposition and a combined
run-length/Huffman entropy coder.

 G. 721 Enc/Dec: Voice compression standard.
 JPEG Enc: Standardized compression method

for full color and gray-scale images.
  MPEG-2 Enc: Standard high quality movie

compression.
 PEGWIT: A program used in public key en-

cryption and authentication.  It uses elliptic
curve over GF(2255), SHA1 for hashing, and a
symmetric block cipher.

PERL scripts were created to analyze the output
from the SimpleScalar compiled binaries.  The first
script analyzed the binaries for branches and jumps,
determining penalties when branching to non-aligned
word boundaries.  The second script mapped Sim-
pleScalar instructions onto X32V instructions in de-
fault, light, and ultra-light modes to show the com-
pressed binary sizes.  

32-bit Instruction Format
4 4 4 4 16

Load / Store 0000 op1 rd rs1 disp
Immediate 0001 op1 rd rs1 imm
Branch 0010 op1 rd rs1 Label

4 4 4 4 4 4 4 4
Register 0011 op1 rd rs1 rs2 op2 op3 op4

4 4 24
Jump / Call 0100 op1 label / imm

Fig 1. Instruction formats for Default mode.

16-bit Instruction Format

Load/Store, Imm, branch none

4 4 4 4
Register R-1 1010 op1 rd rs1

R-2 1011 op1 rd rs1

4 4 8
Jump / Call 1100 op1 label / imm

Fig 2. 16-bit format for Light mode.

24-bit Instruction Format
4 4 4 4 8

Load / Store 0101 op1 rd rs1 disp
SR Load Store 0101 op1 op2 rs1 disp
Immediate 0110 op1 rd rs1 imm
Branch 0111 op1 rd rs1 label

4 4 4 4 4 4

Register 1000 op1 rd rs1 rs2 op2

4 4 16
Jump / Call 1001 op1 label / imm

Fig 3. 24-bit format for Ultra-Light mode.



These results are shown in Figures 4 and 5.
X32V resulted in an 8% decrease in code size when
compressing instructions into light mode and a 27%
decrease in code size in ultra-light (see Figure 4).
There is about a 3% cycle overhead in both light and
ultra-light modes (see figure 5).  The cycle overhead
consisted of additional cycles introduced when read-
ing misaligned memory instructions.  These results
show that the Ultra-light mode demonstrates the best
combination of code compression with minimal per-
formance loss.

3. Configurable Component Modules
X32V supports a configurable core that can be
changed during the design phase by the inclusion of
various modules.  Currently, the floating-point and
multimedia modules have been developed as cycle-
accurate simulator components and can be added or
removed depending upon the processor’s intended
purpose.  The base simulator consists of several

complex components that are needed to support com-
ponent modules.  Some examples are a complex for-
warding mechanism, support for multicycle func-
tional units, a fetch unit capable of fetching mis-
aligned program memory, and a memory unit that is
capable of reading data of any size and alignment
from data memory.  Additionally, a complex inter-
face was created to include configurable modules.

3.1. Modular Support
A module is additional hardware that can interpret a
group of new instructions.  Depending on the mod-
ule, this hardware consists of an extension to the
decoder, functional units that will execute the instruc-
tion, and possibly an additional register file that can
hold the module specific data.  To simulate this
hardware, additional source and header files contain-
ing cycle-accurate simulator components that proto-
typed these hardware modules were created.  They
were integrated into the simulator through the use of
several interfaces shared by each module.

The basic underlying architecture of X32V is a 5-
stage pipeline with several common data buses that
are used for interfacing between the stages, write
back, and forwarding.  One of the key features for
modularity is the support of multi-cycle functional
units [6].  Since each functional unit shares the
common data buses, it is very easy to include addi-
tional functional units.  

In order to keep all of the functional units work-
ing seamlessly together, X32V maintains in-order
execution through the use of a reservation shift regis-
ter (RSR) [6].  The RSR simplifies scheduling by
tracking the cycle on which any instructions will
finish the execution stage.

3.2. Current Modules
Currently, there are only two modules that have been
implemented and tested for performance: The float-
ing-point modules that support both 32-bit and 64-
bit floating-point numbers and the multimedia mod-
ule (EM3) that performs SIMD type integer opera-
tions. Both of these modules share a common regis-
ter file, which means that floating-point registers are
aliased to the EM3 registers.  Figure 6 illustrates the
integration of both the floating-point and EM3 mod-
ules within the X32V pipeline.  This integration is
exactly how X32V is currently simulated.  EM3 is
further discussed in Section 5.

0%

2%

4%

6%

8%

A
D

P
C

M

EP
IC

G
72

1 
D

ec

G
72

1 
E

nc

JP
E

G
 E

nc

M
P

E
G

 2
 E

nc

M
P

E
G

 4
 E

nc

P
E

G
W

IT

P
e

rc
e

n
t 

O
v

e
rh

e
a

d

Light
Ultra Light

Fig 5. Overhead comparison of different modes.

0

50000

100000

150000

200000

A
D

P
C

M

EP
IC

G
72

1
D

ec
G

72
1

E
nc

JP
EG

E
nc

M
P

E
G

 2
E

nc
M

P
E

G
 4

E
nc

P
E

G
W

IT

S
iz

e
 (

B
y

te
s

)

Default
Light
Ultra-Light

Fig 4. Binary size comparison of different modes.



4. Compiler Support
In order to facilitate the simulation and profiling of
X32V instructions, a compiler was developed.  The
design principles of modularity and configurability
influenced our approach while porting the egcs 1.1.2
compiler tool set for X32V [7].  At the time of this
writing, the 32-bit Default mode is supported along
with the provisions to support the 16- and 24-bit
instructions for the Light and Ultra-light modes as
well.   Macro modules in the fp-bit floating-point
library handle the floating-point operations while the
newlib library provides the run-time support.

The porting process involved identifying an archi-
tecture similar to X32V and making the relevant
modifications to the machine descriptions and calling
conventions [8].  The Application Binary Interface
(ABI) for X32V is defined with register R16 desig-
nated as the Stack Pointer and registers R5 and R6
designated as the Index and Frame registers.  The
parameter passing is done through registers R8 and
R9, with the latter holding the return value.

The associated makefile defines certain flags for
the target X32V configuration. When set appropri-
ately, egcs compiles the binaries for Default, Light
and Ultra-light modes as well as any modules that are
included in the current configuration.  At the moment
when the compiler comes across an unsupported in-
struction, a NOP is inserted.  This technique prevents
the compiler from crashing and continues outputting
binaries.

The EM3 instructions are implemented by using
specific library routines and macros that mimic the
behaviors of those instructions.  Additional instruc-
tions can be supported with ease, as the entire ma-
chine dependent code is limited to a few specific
files.  This allows both the compiler and simulator to
be highly configurable.

5. Multimedia Support
One of the major goals for X32V is to enhance em-
bedded systems, such as cell phones or PDAs, with
multimedia capabilities.  In order to be competitive
in this arena, X32V required a module that would
enhance multimedia operations such as MPEG decod-
ing and encoding.  This module is known as the Ex-
pandable Multimedia Module (EM3).

EM3 takes advantage of Single-Instruction Multi-
ple-Data (SIMD) operations.  There are many success-
ful microprocessors on the market today that rely, in
one form or another, on the benefit of multimedia
extensions; MMX, SSE, and SSE2 for Intel’s
Pentium processors [9], 3DNow for the AMD’s Ath-
lon processors [10], VIS for Sun’s Ultra SPARC
processors [11], and Vectra for Tensilica’s Xtensa
microcontroller [12].  EM3 has the advantage of us-
ing an in-house instruction set that is not restricted to
any standards, thus allowing the EM3 instruction set
to combine the best aspects of several existing mul-
timedia extensions.  EM3 currently supports 32-bit
and 24-bit instruction sizes.

Fig 6. X32V architectural diagram with floating-point and EM3 modules.



5.1. EM3 Register Formats
X32V supports various floating-point operations,
which require a floating-point register file that consist
of 16 32-bit floating-point registers.  Since floating-
point operations and integer multimedia operations
are rarely executed at the same time, the EM3 multi-
media register file (MMR) is aliased to the floating-
point register file.  EM3 supports multiple data types
including 8-, 16-, or 32-bit signed or unsigned inte-
gers.  Figure 7 illustrates the various data formats
that are available.  It is important to note that the 16-
bit and 32-bit formats both support signed integer
values.  Signed 8-bit integer data is not supported,
since this data type is rarely used in multimedia ap-
plications.

5.2. EM3 Instruction Types
The entire EM3 instruction set can be broken down
into five different categories; ALU operations, multi-
plication/division operations, data conversion opera-
tions, data movement operations, and special opera-
tions.

EM3 instructions that fall into the ALU opera-
tions category involve all of the basic integer arith-
metic and logical operations.  These instructions in-
clude addition, subtraction, AND, OR, XOR, NOT,
compliments, and shifts.  Each of these instructions
can operate on all three of the register data formats.
These instructions perform a one-to-one SIMD opera-
tion, meaning each segment is operated on independ-
ently of the other segments.  The addition, subtrac-
tion, and compliment instructions can also operate on
16- and 32-bit signed integer data.

 Multiplication and division operations involve
long cycle times and are some of the most compli-
cated operations in the EM3 instruction set.  These
instructions can operate on all the register formats,
both signed and unsigned and can produce different
output formats.  For example, multiplication on a
16-bit unsigned register format can produce a 16-bit
saturated result, a full 32-bit result, the upper 16-bits

of the result, or the lower 16-bits of the result. These
types of operations fall into the category of one-to-
many SIMD operations, meaning each segment can
generate a result consisting of many segments.  

Data conversion operations are essential when
handling SIMD data as they allow conversion from
one register format to another register format.  The
conversion processes are done using the pack and
unpack instructions that compress or expand data into
the target register format.  Being able to move be-
tween formats quickly and efficiently can improve
both performance and precision.

Data movement operations consist of instructions
that involve moving data to and from the EM3 regis-
ter file.  These instructions are not SIMD instruc-
tions, but serve the purpose of creating greater flexi-
bility and performance by allowing data to be moved
between the GPR and the MMR as well as providing
special memory instructions to load and store data
from/to memory.  All the memory instructions move
32-bit data from memory, but allow the alignment to
be based upon the format of the register.  For exam-
ple, a memory load instruction using an 8-bit format
loads 32 bits of data from memory with byte align-
ment.  This is accomplished by using a buffer in a
manner similar to the one used when fetching instruc-
tions.

Special operations consist of experimental instruc-
tions that are used to increase the performance of
multimedia applications.  These instructions gener-
ally do not follow the same format as the aforemen-
tioned instructions but allow for the expandability of
the EM3 instruction set.  A good example of a spe-
cial operation instruction is the swap instruction.
The swap instruction allows a programmer to select
four individual bytes from two EM3 registers and
places those bytes in any order into another EM3
register.  This instruction alleviates the need to call
multiple pack and unpack instructions in order to
move several bytes around and is useful when per-
forming matrix multiplications or grabbing all of the
8-bit Red components from an RGB word.  Future
special operation instructions will include a Pixel
Distance instruction and Fast Matrix Multiply in-
struction.

5.3. EM3 Performance
To test the performance of the EM3 instructions and
X32V in general, two benchmarks were created based
on specific algorithms within MPEG-4.  The first
benchmark models the color conversion process
(YCC) and the second benchmark models both the
Inverse Discrete Cosine Transform (iDCT) and the
color conversion processes.  Each benchmark has two
versions, one version uses only the integer instruc-
tion set and the other uses the EM3 multimedia ex-
tensions.  These benchmarks served two purposes;

31 24 23 16 15 8 7 0 MMR
8-bit
Data

Byte3 Byte2 Byte1 Byte0 32-bit

7 0 7 0 7 0 7 0  Data

31 16 15 0  MMR
16-bit
Data

Word1 Word0 32-bit

15 0 15 0 Data

31 0 MMR
8-bit
Data

DWord0 32-bit

31 0 Data

Fig 7. EM3 register formats.



the first was to validate the simulator and the second
was to study the benefits of the configurable architec-
ture.

To make the benchmark as much like MPEG-4
decoding as possible, the benchmarks were written to
use sub-sampled macro blocks.  For each 16×16
block of 24-bit RGB pixels, there were 256 Y sam-
ples, 64 Cb samples, and 64 Cr samples.  To allow

for quick validation, the benchmark writes the data to
a file as a 24-bit color bitmap image.  Figure 8
shows an example of the images created by the
benchmarks.  This image uses the standard Windows
.bmp file format to allow for easy viewing.  The ef-
fects of sub-sampling are illustrated clearly in Figures
9 and 10.

The most time consuming aspect of both bench-
marks were the large number of fractional multiplica-
tions required.  These multiplications were imple-
mented using integer multiply instructions followed
by a right shift.  Within the iDCT benchmark, the 2-
D iDCTs required in MPEG-4 decoding were per-
formed as a 1-D iDCT on all the rows of the 8×8
sub-blocks followed by a 1-D iDCT on all the col-
umns of the 8×8 sub-blocks.  To maintain the re-
quired accuracy, 7 fractional bits were used in our
cosine values and 4 fractional bits were kept for all
our intermediate results.  These fractional bits limited
the final errors to within ±1 ulp, as required by most
standards.

By using the EM3 operations, YCC used 3 times
fewer cycles than when just using integer operations.
The iDCT portion of the combined EM3 benchmark
was about 50% faster than the same portion of the
integer version.  Table I contains the exact cycle
counts from running each of the benchmarks for both
the EM3 version and the integer version and Figure
11 illustrates these results.  It should also be noted
that the images created by the EM3 versions were
identical to the images from the integer versions.
The SIMD operations used by the EM3 version did
not cause any additional round off or truncation er-
rors.

TABLE I
BENCHMARK CYCLE COUNTS

Benchmark YCC iDCT BOTH

EM3 6,620,878 15,455,928 22,076,806
Integer 20,098,719 24,816,902 44,915,621

Fig 9. Close up of the original image.

Fig 8. Resulting image from the EM3 multimedia
benchmark.

Cycle Count Comparison

0

10

20

30

40

50

YCC DCT BOTH

Benchmark

M
il

li
o

n
s

 o
f 

C
y

c
le

s

EM3 Int

Fig 11. Media benchmark results

Fig 10. Result from the EM3 simulation.



By configuring the processor with additional func-
tional units, it is possible to obtain a very large in-
crease in performance.  The additional functional
units allow the processor to target a specific applica-
tion without the additional cost or overhead associ-
ated with a dedicated co-processor.  

6. Conclusion
Due to the advances in small, handheld computa-
tional devices, there has been a strong demand for
cheap, low-power, configurable microprocessors.
X32V was designed as a general-purpose microproc-
essor that could be configured for specific tasks and
requirements.  

One of the features that make X32V unique
amongst other configurable microcontrollers is its
ability to support variable instruction lengths that
ultimately allow a designer to improve code density.
X32V supports the use of modules that allow a de-
signer to target X32V for a specific system.  To sup-
port multiple configurations, a retargetable compiler
was developed.  With the compiler, the X32V be-
comes a highly cost effective method for modern
applications since time is not spent on building
unique compilers for each situation.

Of all the modules created for X32V, EM3 has
proven to be a key element in improving the per-
formance of running multimedia applications.  As
research continues, the EM3 module will continue to
grow and improve the performance of MPEG-4 appli-
cations.

7. References
[1] Takaki, S. et. al., “Hardware/Software Partitioning

Methodology for Systems on Chip (SOCs) with

RISC Host and Configurable Microprocessor,” In-
ternational Workshop on IP based System-on-Chip
Design, 2003.

[2] Gonzalez, R.E., “Xtensa: A Configurable and Exten-
sible Processor,” IEEE Micro, Vol. 20, No. 2,
March/April 2000.

[3] Sethia, A., “Solving System on Chip Design Chal-
lenges with the ARCform Development Platform,”
White Paper, ARC Cores Ltd., San Jose, CA, 2001.

[4] Burger, D., and T.M. Austin, “The SimpleScalar Tool
Set, Version 2.0,” ACM SIGARCH Computer Archi-
tecture News, Vol. 25, Issue 3, June 1997.

[5] Lee, C., M. Potkonjak, and W.H. Mangione-Smith,
“MediaBench: A Tool for Evaluating and Synthe-
sizing Multimedia and Communications Systems,”
30th Annual International Symposium on Microar-
chitecture (MICRO-97), Dec. 1997.

[6] Hennessy, J.L., and D.A. Patterson, Computer Archi-
tecture: A Quantitative Approach, 3rd Edition,
Morgan Kaufmann Publishers, San Francisco, 2003.

[7] Stallman, R., Using and Porting GCC, Free Software
Foundation, Boston, 1990.

[8] Aho, A.V., R. Sethi, and J.D. Ullman, Compilers:
Principles, Techniques and Tools, Addison Wesley
Publications, Boston, 1986.

[9] Mital, M., A. Peleg, and U. Weiser, “MMX Technol-
ogy Overview,” Intel Technology Journal , Q3,
1997.

[10] Advanced Micro Systems, AMD Technology Man-
ual , Advanced Micro Systems, Sunnyvale, CA,
2000.

[11] Sun Microsystems, VIS Instruction Set User’s
Manual, Sun Microsystems, Santa Clara, 1997.

[12] Leibson, S., “SOC-Based Signal Processing: Meet-
ing Performance Goals With Tailored DSPs,” Global
Signal Processing Expo & Conference (GSPx
2003), 2003.   


