
Appears in IASTED International Conference on Parallel and Distributed Systems (Euro-PDS), July 1-3, 1998, Vienna, Austria.

SIMULATION STUDY OF MULTITHREADED VIRTUAL PROCESSOR

BEN LEE, HANTAK KWAK, and RYAN CARLSON

Department of Electrical and Computer Engineering
Oregon State University

Corvallis, OR 97331, USA
{benl, hantak, carlsor}@ece.orst.edu

SUK-HAN YOON and WOO-JONG HAN

Computer Division
Electronics and Telecommunications Research Institute

Taejon, Korea
{shyoon, wjhan}@computer.etri.re.kr

ABSTRACT1

This paper proposes the Multithreaded Virtual Processor
(MVP) architecture model as a means of integrating the
multithreaded programming paradigm and a modern su-
perscalar processor with support for fast context switch-
ing and thread scheduling. In order to validate our idea, a
simulator was developed using a POSIX compliant
Pthreads package and a generic superscalar simulator
called SimpleScalar glued together with support for mul-
tithreading. The simulator is a powerful workbench that
enables us to study how future superscalar design and
thread management should be modified to better support
multithreading. Our simulation studies show that the per-
formance of MVP is highly sensitive to three interrelated
factors: (a) the data set size relative to the cache size, (b)
the number of hardware contexts, and (c) the amount of
locality that can be exploited among the threads. These
results also show that multithreading creates an additional
stress on the fetch bandwidth. In summary, our results
show that in general the performance improvement is ob-
tained from not only tolerating memory latency, but also
from lower cache miss rates due to exploitation of data
locality. Therefore, the MVP model is well worth in-
vesting extra silicon space to support multithreading.
Moreover, as the gap between processor speed and mem-
ory latency becomes wider, the need to provide multi-
threading support will become more crucial.

Key Words: Multithreading, context-switch, thread
scheduling, multiple hardware contexts, and threads.

1. INTRODUCTION
Small-scale shared-memory multiprocessors, such as
Symmetric Multiprocessors (SMPs), have become the
dominant form of parallel machines for commercial as
well as scientific computing. This dominance has been
due to the availability of powerful, and yet cheap, com-
modity microprocessors that can issue multiple instruc-
tions per cycle and a global shared-memory that signifi-
cantly eases the programming task. In the past few years,

1 This research was supported in part by the Electronics and Telecom-

munications Research Institute (ETRI), Taejon, Korea.

there also have been tremendous efforts in the develop-
ment of large-scale parallel computers and parallel com-
puting clusters. Another equally important trend is the
efforts to provide shared-memory programming on these
machines. These machines span the spectrum; from sys-
tems with physically distributed memories with hardware
support for cache-coherence, to Networks of Worksta-
tions (NOWs) interconnected by a LAN or WAN with
software support for shared-memory abstraction.

As parallel machines become larger, so does the
memory latency. Therefore, the proportion of the proces-
sor time actually spent on useful work keeps diminishing.
The memory latency problem is attributed to two main
bottlenecks: memory system and communication path-
ways. Studies show that the speed of commercial micro-
processors has increased by a factor of twelve over the
past ten years while the speed of memories has only dou-
bled [9]. Therefore, memory latency in terms of proces-
sor clock cycles has grown by a factor of six in ten years.
More importantly, the gap between processor cycle time
and memory cycle time will no doubt continue to increase
in the future. Multiprocessors and multicomputers greatly
exacerbate the memory latency problem. In SMPs, con-
tention due to the shared bus located between the proces-
sor’s L2 cache and the shared main memory subsystem
adds additional delay to the memory latency. The mem-
ory latency problem becomes even more severe for scal-
able Distributed Shared Memory (DSM) systems, since a
miss on the local memory requires a request to be issued
to the remote memory and a reply to be sent back to the
requesting processor. Stalls due to the round-trip com-
munication latency are, and will continue to be, the domi-
nating factor that limits the performance of scalable DSM
systems in the future.

Multithreading is a technique that has emerged as one
of the most promising and exciting avenues to tolerate the
increasing memory latency. A multithreaded system
contains multiple “loci of control” (or threads) within a
single program; the processor is shared by these multiple
threads leading to higher utilization. The processor may
switch between threads not only to hide memory latency,
but other long latency operations, such as I/O latency.
The processor may also interleave instructions from mul-
tiple threads on a cycle-by-cycle basis, which minimize

pipeline breaks due to dependencies among instructions
within a single thread.

The idea of multithreading is not new. Fine-grained
multithreading was implicit in the dataflow model of
computation [10]. Multiple hardware contexts (i.e., reg-
ister files and PSWs) to speed up switching between
threads were implemented in systems such as HEP [16]
and Tera [3]. However, these systems require consider-
able modification to the underlying architecture. There
also has been an effort to integrate multithreading support
on an existing processor MIT Alewife machine uses a
modified SPARC processor called Sparcle [1]. However,
Sparcle is based on an outdated processor design; there-
fore, it is unclear what effect multithreading will have on
modern superscalar architectures. Multithreading has also
been extensively used strictly as a programming paradigm
(i.e., software-controlled multithreading) on general-
purpose hardware to increase applications’ throughput
and responsiveness and to exploit thread parallelism on
SMPs [7]. However, software-controlled multithreading
systems, such as Pthreads [6] and Solaris threads [7], lack
the hardware features necessary to detect and handle
cache misses and therefore the ability to hide memory
latency.

In light of the aforementioned discussion, this paper
presents the development of the Multithreaded Virtual
Processor (MVP), which exploits the synergy between
the multithreaded programming paradigm and the well-
designed wide-issue microprocessors. MVP proves that
by providing an adequate hardware support to an existing
superscalar core, we can take full advantage of the in-
creasingly popular and powerful programming tools that
exploit thread parallelism. Moreover, as the feature size
of logic devices reduces, we feel the silicon area could be
put to better use by providing support for multithreading.

Our simulation studies show that performance of
MVP is greatly influenced by three main factors: (a) the
data set size relative to the cache size, (b) the number of
hardware contexts supported, and (c) the amount of local-
ity that can be exploited among the threads. These results
also show that context switching among threads creates an
additional stress on the fetch bandwidth. Our overall re-
sults show that in general the performance improvement
obtained with MVP is well worth the investment in pro-
viding support for multithreading.

2. MVP
The objective of the proposed MVP is to extend the soft-
ware-controlled multithreading model with hardware sup-
port for tolerating memory latency, and yet provide a
transparent view to the programmer. The organization of
MVP is shown in Figure 1. It consists of a conventional
superscalar processor core augmented with the Hardware
Scheduler and multiple Register Files (RFs), each RF rep-
resenting a thread context. The responsibility of the
Hardware Scheduler is to maintain the control of thread
states that have been scheduled onto MVP.

Threads are created, managed, and scheduled using a
POSIX compliant Pthreads package [6]. Pthreads’ run-
time scheduler schedules user created threads onto the
multiple hardware contexts. Once threads are scheduled
onto MVP, the Hardware Scheduler context-switches
between threads whenever a long latency memory opera-
tion is detected by the memory-management unit. When
a thread returns, the control is returned to the Pthreads’
scheduler. The interaction among the user program,
Pthreads function calls, Pthreads scheduler, and the
Hardware Scheduler is shown in Figure 2. The function-
ality of each state is explained below:
• main() - MVP is executing the main user program.

When a Pthreads routine is invoked, a state transition is
made to Pthreads Library Calls.

• Pthreads Library Calls - Executes a Pthreads routine.
After executing a Pthreads routine, it will either return
to main() or call the Pthreads scheduler (Schedule New
Thread state).

Fetch
Decode/
Dispatch

Reservation
Stations

1 Branch

4 Integer ALU

1 Integer Mult/Div

2 Load/Store

4 FP Adder

1 FP Mult/Div

Execution Unit

ROB

next_PC

Hardware
Scheduler

BTB

Register
File

Figure 1: The organization of the MVP. Schedule
New Thread

Call Pthreads
routine

Thread
Running

Context
Switch

Wait

Return from
Pthreads routine

Call Pthreads
scheduler

Return from
Pthreads
scheduler

Schedule
threads onto
hardware

Cache miss, time out,
or thread exit

No new threads or
contexts are full and
threads are ready

Cache miss
satisfied

No new threads
or contexts are full and
no threads ready

Pthreads
Library Calls

Context(s) &
more threads
available:Call
Pthreads
scheduler

User Program

User Library

Runtime System

main()

Hardware Scheduler

Figure 2: MVP execution model.

• Schedule New Thread - Depending on which Pthreads
routine called the Pthreads scheduler, it will perform
either one of the following operations:
− Checks to see if a thread to be scheduled from the

priority queue (PQ), which is maintained by the
Pthreads scheduler, has a higher priority than the cur-
rently running thread. If so, the thread in the PQ is
scheduled onto a hardware context in MVP; other-
wise, returns from the Pthreads scheduler. Also
checks and processes any signals.

− Selects a thread from the PQ and schedules to an
available hardware context. Also checks and proc-
esses any signals.

• Thread Running - Runs a thread that is in a hardware
context. A transition to the Context Switch state occurs
when a cache miss, a time out, or a thread exits.

• Context Switch - Depending on the state of the ma-
chine, it will perform one of the following operations:
− Context-switches to one of the ready threads in MVP

(i.e., Thread Running state).
− Calls the Pthreads scheduler if a hardware context is

available and threads are waiting to be scheduled in
the PQ (i.e., Schedule New Thread state).

− Waits if hardware contexts are full but no threads are
ready, and no threads are waiting to be schedule from
the PQ.

• Wait - Waits for a thread to become runnable (waiting
for a long latency memory operation). When a thread
becomes runnable (i.e., its cache miss has been satis-
fied), a transition is made to Thread Running state.

There were two design choices made in the process of
developing the MVP execution model. First, instead of
scheduling all the threads into the hardware contexts at
once, the decision was made to schedule them one at a
time. The reason for this was because scheduling one
thread at a time is closer to how the original Pthreads
scheduler accomplished the scheduling and thus less
modification to the code was required. We also felt that
gang scheduling the threads would not necessary provide
improvement in performance because of the minimum
overhead of the Pthreads scheduler. Second, when a
thread execution returns and thus a hardware context be-
comes available, the decision was made to immediately
schedule a new thread from the PQ rather than context
switching to a thread already residing in one of the hard-
ware contexts. This design choice was based on what we
learned from our preliminary studies it is always better
to keep hardware contexts occupied with threads [14].

3. SIMULATION RESULTS
In order to study viability of the MVP model, a detailed
simulator was developed by integrating Pthreads and
SimpleScalar [5] with support for multithreading. Simu-
lation studies were conducted using the following as-
sumptions:
• Functional unit latencies were based on Table 1.
• Cache and main memory organizations and their laten-

cies were based on Table 2. We assumed a two-level,
i.e., L1 and L2, blocking cache scheme. The main
memory latency used in the simulation is rather conser-
vative compared to the current technology, e.g., UltraS-

parc IIi has a main memory latency of 72 cycles [13].
However, we expect the memory latency to grow in the
future. Moreover, for multiprocessor systems, the
shared-bus between processors’ lower level cache and
the main memory adds to the latency [8].

• Context switching to a new thread is initiated when an
L2 cache miss is detected. L1 cache misses were not
supported since the latency is minimal (6 cycles) and
therefore not worth context switching to a new thread.
However, a context-switch can be initiated at any level
of the memory hierarchy as long as sufficient latency
exists.

• The number of instructions fetched, decoded, and dis-
patched is 4. The number of entries in the Reservation
Stations and ROB were each assumed to be 16.

• For branch prediction, we used a 2K-entry Branch Tar-
get Buffer (BTB) with 2-bit branch prediction bits.

• The process of switching from one hardware context to
another involves (a) simply turning off one register
bank and turning on another register bank, (b) flushing
the ROB, and (c) fetching from the new context. As-
suming this is supported entirely in hardware, this proc-
ess is very similar to recovering from a miss-predicted
branch and requires a penalty of 3 cycles.

• The number of threads created for each simulation run
was kept equal to the number of hardware contexts.
We found that varying the number of threads created
had minimal effect on the overall performance. Adding
more threads incrementally increased the amount of
software overhead required to schedule the threads onto
the hardware contexts. However, as long as threads are
not created unnecessarily, the software overhead has
minimal effect on the overall performance.

Five benchmark programs were selected to evaluate
the performance of MVP. Matrix Multiplication (MMT)
and Gaussian Elimination (GE) were hand-coded. The
other three benchmarks, MP3D, Radix Sort (RS), and Fast
Fourier Transform (FFT) were selected from the
SPLASH-2 benchmark suite [18]. The SPLASH-2
benchmarks were originally constructed for shared-
memory machines and uses ANL macros to create and
manage the threads. To port the SPLASH-2 benchmarks
to the simulator, the ANL macros were replaced with their
Pthreads equivalents. No attempts were made to optimize
the codes and no special hardware synchronization
mechanism was provided, as was done in [11].

Table 1: Instruction latencies for various FUs.
Functional Unit Latency Pipelined

Integer ALU 1 Yes
Load/Store Unit 2 Yes
Integer Multiply 3 Yes
Integer Division 12 No
FP Addition 2 Yes
FP Multiplication 4 Yes
FP Division 12 No

 Table 2: Cache and Main Memory latencies.
 L1 I-cache L1 D-cache L2

 Size 16KBytes 16KBytes 256/512 KBytes
 Associativity DM 4-way SA 4-way SA
 Line size 32 Bytes 32 Bytes 32/64 Bytes
 Latency (hit) 1 1 6
 Latency (miss) 6 6 100

Four sets of simulation runs were performed for
comparison purposes. The first set was obtained by run-
ning a single-thread version of the benchmarks on Sim-
pleScalar (Serial version). The other three sets were ob-
tained by running on MVP with 2, 4, and 8 hardware
contexts. These results were obtained by simulating ap-
proximately 160 million instructions (MP3D) to 1.1 bil-
lion instructions (GE and RS).

Figure 3 shows the relative performance of MVP for
the benchmarks. The results were normalized relative to
the performance of the serial versions. Figure 3 shows
that as the data sets become large, MVP begins to over-
come its overhead and performs better than the serial
cases. An example of this effect is displayed by MP3D.
FFT also shows great performance improvement as data
size increases as the algorithm begins to take advantage of
latency tolerance of multithreading. Another interesting
effect is that the use of more hardware contexts does not
necessarily result in improved performance, as seen in
both RS and MP3D. This effect is the result of the
benchmarks’ high synchronization requirements and
small parallel portions. Although the performance de-
grades as the number of contexts increases, the perform-
ance margin narrows as the problem size increases. In
essence, the 4 and 8 hardware contexts would eventually
outperform the 2-hardware contexts case. Both GE and
MMT resulted in improved, but varied performance. In
GE, the performance of MVP for the 300 case appears to
be based on a lower L2 miss rate (compared to the serial
version) caused by the good mapping of the 300 by 300
matrix into the L2 cache. MMT performance also appears
to be seriously affected by cache effects as the 300 case
resulted in a lower L2 miss rate (compared to the serial
version), while the 240 case resulted in a much higher L2
miss rate.

Another interest is the effect that multithreading pro-
duces on the caches. In order to gain a good understand-
ing of how the L2 cache is affected, two sets of graphs
were obtained. The first set, monitored the L2 miss rate
to determine the effects that are seen by the L2 to main
memory bus. The second set, monitored the number of
accesses received by the L2 cache. In essence, this data
set monitors the effect on the L1 cache by the simulated
benchmarks.

The data graphs shown in Figure 4 give some rather
interesting results. It is apparent that, for the most part,
the L2 miss rates for MVP are lower than the serial ver-
sions. This effect is seen in all the benchmarks except
GE. Lower miss rates are due to the fact that the data sets
used by these programs have a very high locality. This
locality creates a situation where one thread can help an-
other. In essence, one thread can cause a cache miss that
will bring in the data that another thread will need later.
To illustrate this point, consider RS. When one of its
threads accesses the global histogram for a data value, it
also brings in other data values that it does not need, but
other threads do. Thus, another thread will find its global
histogram data already in the cache and will not generate
a cache miss. The serial programs cannot do this and thus
result in worse performance by generating a cache miss
for a line, using the small portion of data off that line, and
then replacing the line before the rest of the data on the
line has a chance to be used. MMT generates a similar
effect by the nature of its algorithm. MMT multiplies a
row of one matrix with a column of another. By having
the rows of both matrices distributed in a row-wise block
manner among threads, when one thread cache misses on
a column value, it will load in data that will be used by
another thread. This extra data is obtained by the fact that

AAA
AAA2 HW contexts

4 HW contexts

8 HW contexts

14 16 18 20 22
0

0.2

0.4

0.6

0.8

1

1.2

Sp
ee

du
p

Number of Keys(2n)

RS

Sp
ee

du
p

310Number of Molecules(×)

 1.4

7 8 9 10 11 12
0

0.2

0.4

0.6

0.8

1

1.2
MP3D

10 12 14 16 18 20

Sp
ee

du
p

Number of Elements(2n)

0

0.2

0.4

0.6

0.8

1

1.2

1.4
FFT

180 240 300 360 400
0

0.5

1

1.5

2

2.5

Sp
ee

du
p

Dimension

MMT

180 240 300 360 400
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Sp
ee

du
p

Dimension

GE

Figure 3: Speedup results for various benchmarks.

AAA
AAA
AAA

Serial

2 HW contexts

4 HW contexts

8 HW contexts

Number of Elements(2n)

10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

L
2

C
ac

he
 M

is
s

R
at

e

FFT

7 8 9 10 11 12
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

L
2

C
ac

he
 M

is
s

R
at

e
Number of Molecules(×103)

MP3D

14 16 18 20 22
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

L
2

C
ac

he
 M

is
s

R
at

e

Number of Keys(2n)

RS

Dimension
180 240 300 360 400

0

0.02

0.04

0.06

0.08

0.1

0.12

L
2

C
ac

he
 M

is
s

R
at

e

GE

180 240 300 360 400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

L
2

C
ac

he
 M

is
s

R
at

e

Dimension

MMT

Figure 4: L2 cache miss rates for various benchmarks.

a cache line is essentially part of a row in the matrix.
When a thread generates a cache miss while looking for a
column value, other values belonging to the same row are
retrieved at the same time. Therefore, when another
thread looks for its column value, the column could al-
ready be in the cache. Again, the serial programs tend to
replace the data before it can be reused, thus generating
more cache misses.

Another effect seen by RS is the increased L2 miss
rate as the number of hardware contexts is increased.
This is caused by the sorting portion of the algorithm.
When the threads sort their individual keys of the array,
the data set becomes very disjoint between threads, and
the L2 cache miss rate increases. The sorting portion, as
seen by the graphs, has a more profound effect as the
number of hardware contexts increases. Similarly, GE
also uses very distinct and low locality data sets among
threads. Therefore, a thread, upon generating a cache
miss, would simply bring in more of the rows belonging
to the same thread. The result is that the threads compete
for space within the L2 and results in a higher L2 miss
rate than the serial version.

There also exist two unique effects seen by both GE
(at 300) and MMT (at 240), where the graphs see a rever-
sal of the general trend between the miss rates. It is hy-
pothesized that these results are obtained from the simple
fact that some data set sizes tend to fit the L2 cache layout
much better or much worse than others. Another effect
seen in Figure 4 is that RS and FFT exhibit minimum
cache miss rates for cases 16 and 12, respectively. At
these points, the caches are at the stage where they are
nearly full (so compulsory misses are offset and conflict

misses are at a minimum). Increasing L2 accesses (i.e.,
increasing the data set size) would cause an increase in
conflict and capacity misses, while decreasing L2 ac-
cesses (i.e., decreasing the data set size) would emphasize
the effects of the compulsory misses.

Figure 5 shows the effect on L1 caches. For FFT,
MP3D, and MMT, the results suggest that while multiple
threads work well in the L2 cache, the exploitation of lo-
cality is hindered in the L1 cache. The result is that the
threads conflict with one-another causing more access to
the L2 cache to retrieve the replaced lines. It also appears
that the data separation seen with GE and MMT results in
an almost opposite effect. With these two benchmarks,
the non-local data serves to map the threads better into the
L1 caches than the serial versions and the L2 cache sees
fewer accesses. However, it is important to note that
again, matrix size plays a very important role as both GE
(at 300) and MMT (at 360) show completely opposite
results compared to the rest of the data gathered for those
two benchmarks.

Figure 6 shows the average Instructions executed Per
Cycle (IPC). These were collected in order to study any
new bottlenecks that multithreading might cause to a su-
perscalar pipeline. IPCs were obtained by dividing the
total number of instructions executed by the total number
of cycles. The portions of IPC lost were also analyzed
from each of Fetch stage, Dispatch stage, and Issue stage.
The graphs display the IPC that was lost from the ideal
IPC. In other words, the lost IPC that is shown is simply
the ideal IPC minus the actual IPC. The graphs are fur-

AAAA
AAAA

I-L1 contribution

D-L1 contribution

Dimension

N
um

be
r

of
 A

cc
es

se
s

(×
10

6)

 180 240 300 360 400
0

10

20

30

40

50

60

70

MMT

N
um

be
r

of
 A

cc
es

se
s

(×
10

6)

10 12 14 16 18 20
0

5

10

15

20

25

30

35

Number of Elements (2n)

FFT

N
um

be
r

of
 A

cc
es

se
s

(×
10

6)

 7 8 9 10 11 12
0

1

2

3

4

5

6

7

8

9

Number of Molecules (×103)

MP3D

N
um

be
r

of
 A

cc
es

se
s

(×
10

6)

 14 16 18 20 22
0

5

10

15

20

25

30

35

40

45

Number of Keys (2n)

RS

N
um

be
r

of
 A

cc
es

se
s

(×
10

6)

 180 240 300 360 400
0

10

20

30

40

50

60

70

Dimension

GE

Figure 5: L1 cache miss accesses for various benchmarks.
Four graphs for each point represent, from left to right, serial,

2 HW contexts, 4 HW contexts, and 8 HW contexts.

AAA
AAA
AAA

Actual IPC

FU_lost

Issue_lost

RS/ROB_lost

Fetch_lost

10 12 14 16 18 20

FFT

0

0.5

1

1.5

2

2.5

3

3.5

4

IP
C

Number of Elements (2n)

FFT

MMT

180 240 300 360 400
0

0.5

1

1.5

2

2.5

3

3.5

4

IP
C

Dimension
RS

14 16 18 20 22
0

0.5

1

1.5

2

2.5

3

3.5

4

IP
C

Number of Keys (2n)
MP3D

7 8 9 10 11 12
0

0.5

1

1.5

2

2.5

3

3.5

4

IP
C

Number of Molecules (×103)

GE

180 240 300 360 400
0

0.5

1

1.5

2

2.5

3

3.5

4

IP
C

Dimension

Figure 6: IPC for various benchmarks. Four graphs for each
point represent, from left to right, serial, 2 HW contexts, 4

HW contexts, and 8 HW contexts.

ther broken down to show what percentage of the total
lost IPC was incurred at each of the stages. The pipeline
stage bottlenecks that were modeled are: IPC lost due to
fetch bandwidth (Fetch_lost), RS/ROB full
(RS/ROB_lost), execution units busy (FU_lost), and issue
bandwidth limitations (Issue_lost). Decode and Commit
stage bandwidths were also observed, but was dropped
when it was apparent that bandwidths were never reached
in any of the simulations executed.

Looking at the graphs it is clear that multithreading
creates an additional stress on the fetch bandwidth. This
is due to the fact that program locality is reduced by con-
text switching among threads. Therefore, the fetch band-
width will have to be improved in order to obtain better
performance [8, 15]. Another effect that can be observed
is a decrease in IPC lost in the issue stage. Long latency
data dependencies are avoided by switching threads on a
cache miss. Consequently, more instructions are avail-
able to be issued. Also seen by the graphs is almost no
change by RS and only small amounts of difference expe-
rienced by FFT and MP3D. The reason is the level of
synchronization and therefore parallelism experienced by
the data sets. RS has much synchronization while FFT
and MP3D have some and MMT has none. GE exhibits a
similar effect as MMT even though it also has high
amounts of synchronization. This effect is because GE
has a very large parallel portion in comparison to the syn-
chronized serial portions.

4. CONCLUSION
This paper discussed the simulation study of MVP. Our
results show that the performance improvement comes
from both tolerating memory latency and exploiting data
locality. We are also very encouraged by the potential of
the simulator as a workbench for studying the architec-
tural requirements of future superscalar microprocessors.
Therefore, we plan to pursue a number of research direc-
tions that would further improve the performance of
MVP.

The first task is to continually improve the base MVP
model in three related directions. First, we plan to study
the thread scheduling as a means of improving data local-
ity. Second, we plan to alleviate the bottleneck in the
fetch stage. The current research trend is to combine
branch prediction with instruction alignment to improve
the instruction fetch bandwidth [8]. We plan to pursue
this possibility in the context of multithreading. Finally,
we plan to provide hardware support for synchronization.
The current implementation of MVP relies on software-
controlled mutexes and barriers for synchronization. Our
experiments indicate that the impact of synchronization
overhead is minimal for programs that have relatively
large amounts of parallelism between synchronization
points, or when the number of synchronizations is small.
However, hardware support for synchronization can
greatly benefit programs with heavy synchronization re-
quirements.

We are also working on a new architectural model
called Dynamic MVP (DMVP). DMVP extends Simula-

taneous Multithreading (SMT) [11, 12] with dynamic
thread generation and speculative thread execution.
DMVP has tremendous potential for exploiting both ILP
and Thread Level Parallelism (TLP) in programs, and
represents an alternative to contemporary wide-issue su-
perscalar processors.

5. REFERENCES
[1] Agarwal, A. et al., “Sparcle: An Evolutionary Processor

Design for Large-Scale Multiprocessors,” Proc. of Work-
shop on Scalable Shared Memory Multiprocessor, Kluwer
Academic Publishers, 1991.

[2] Agarwal, A., “Performance Tradeoffs in Multithreaded
Processors,” IEEE Transactions on Parallel and Distrib-
uted Systems, Vol. 3, No. 5, Sept. 1992, pp. 525-539.

[3] Alverson, R. et al., “The Tera Computer System,” Proc.
Int’l. Conference on Supercomputing, June 1990.

[4] Ang, B. S., Chiou, D., Rudolph, L., and Arvind, “Message
Passing Support in StarT-Voyager,” MIT Laboratory for
Computer Science, CSG Memo 387, July 1996.

[5] Burger, D. C., Austin, T. M., and Bennett, S., “Evaluating
Future Microprocessors The SimpleScalar Tool Set,” UW
Computer Sciences Technical Report #1308, July, 1996.

[6] Butenhof, D. R., Programming with POSIX Threads,
Addison Wesley, 1997.

[7] Catanzaro, B., Multiprocessor System Architectures, Pren-
tice Hall, 1994.

[8] Conte, T. et al., “Optimization of Instruction Fetch Mecha-
nisms for High Issue Rates,” Proc. of the 22nd Interna-
tional Symposium on Computer Architecture, June 1995.

[9] Culler, D. and Singh, J. P., Parallel Computer Architec-
ture: A Hardware/Software Approach, Draft, Morgan
Kaufmann, 1997.

[10] Lee, B. and Hurson, A. R., “Dataflow Architectures and
Multithreading,” IEEE Computer, Vol. 27, No. 8, 1994, pp.
27-39.

[11] Lo, J. L. et al., “Converting Thread-Level Parallelism to
Instruction-Level Parallelism via Simultaneous Multi-
threading,” ACM Transactions on Computer Systems,
August 1997, pp. 322-354.

[12] Loikkanen, M. and Bagherzadeh, N., “A Fine-Grain Multi-
threading Superscalar Architecture,” Parallel Architectures
and Compilation Techniques '96, October 1996.

[13] Normoyle, K., “UltraSPARC IIi™ - A Highly Integrated
300 MHz 64-bit SPARC V9 CPU,” HOT Chips IX, August
1997.

[14] Ortiz, D., Lee, B., Yoon, S. H., and Lim, K. W., “A Pre-
liminary Performance Study of Architectural Support for
Multithreading,” 30th Hawaii International Conference in
System Science, Software Track, January 7-10, 1997.

[15] Rotenberg, E. S., Jacobson, Q., Sazeides, Y., and Smith, J.,
“Trace Processor,” Micro-30, Dec. 1997.

[16] Smith, B., “The Architecture of HEP,” in Parallel MIMD
Computation: HEP Supercomputer and applications, edited
by J. S. Kowalik, MIT Press 1985.

[17] Smith, J. E. and Sohi, G. S., “The Microarchitecture of
Superscalar Processors,” Proc. of the IEEE, December
1995.

[18] Woo, S. C. et al., “The SPLASH-2 programs: Characteriza-
tion and Methodological Consideration,” Proc. 22nd An-
nual Symposium on Computer Architecture, June 1995, pp.
24-36.

