
ACCURATE COMMUNICATION COST ESTIMATION IN
STATIC TASK SCHEDULING

Mingfang Wang,' Ben Lee,' Behrooz Shirazi,'? a n d A.R. Hurson'

'Department of Math & Computer Science
University of Central Arkansas
Conway, AR 72032 University Park, PA 16802 Arlington, TX 76019-0015

2Department of Electrical Engineering
Pennsylvania State University

3Department of Computer Science Engineering
University of Texas at Arlington

Abstract

Most of the existing static scheduling schemes either ignore the
communication delay or use a very simple model to estimate it .
The result is tha t when the program is actually executed, its execu-
tion timing is unpredictable due to network behavior and load.
However, if we know the timing information and communication
requirements for the program tasks as well as the network topology
and behavior a t compile time, we can compute (not estimat,e) the
communication delays and network routes before execution. This
information can then be used at execution-time for predictable net-
work timing requirements. In this paper we show tha t optimal net-
work routing is NP-complete. We then propose two heuristic a l p
rithms, with different characteristics and complexity, to compute
sub-optinla1 routing information for static scheduling a t compile
time. This information can be used a t run-time for actual routing.
The heuristics take into account the shortest paths from source to
destination as well as the current network load on different links.
The effectiveness of the proposed algorithms are demonstrated
through simulation results and comparison against lower-bounds for
routing.

1. Introduction
When one schedules communicating tasks in a multiprocessor,

communication costs should be accounted for. In the past, very
simple approaches have been taken for this purpose: Either they
assumed worst-case costs, or costs were assumed to be given. A
more accurate method should be devised in order to keep the
schedulability of tasks as high as possible. Such a method will con-
sider processor connectivity, amount of information transferred
between tasks, contention for communication links, and scheduling
of tasks themselves.

The recent task scheduling algorithms consider the communi-
cation delay in their schemes in an over-simplified manner [l-91.
The often proposed assumptions are that the time needed to send a
message from one Processing Element (PE) to another is either (i) a
const,ant amount, or (ii) a constant times the message size, or (iii)
the distance between two PE's times the message size. The main
reason for t,hese assumptions is tha t the message routing in the
interconnection network is handled by dynamic routing using com-
puter network communication protocols a t run-time [10,11]. Thus,
the run-time network behavior is unpredictable and unknown a t
compile time.

The first two assumptions are obviously un-realistic. The
third assumption under-estimates the communication delay since
this delay depends not only on the distance between PES, but also
on the current load on the network links. Network contention often
increases the communication delay. This has resulted in unpredict-
able program behaviors, which is unacceptable for real-time
applications- the best candidates for static scheduling. However, i t
should be noted tha t given enough information, we can generate the
network routes a t compile time and use them a t run-time for actual
communication. This information includes the program task execu-
tion delays, tasks' communication requirements, message sizes, net-
work topology, and network links' transfer rate capacity. In static
scheduling all this information is known a t compile h e . There-
fore, in this paper we propose algorithms which compute accurate
communication delays and network routes a t compile time. The
obtained routing information is used for static scheduling and for
running the program.

First, we show tha t optimal routing which results in the
minimum communication delay in a message-passing, point-to-point,
store- and-forward interconnected multiprocessor system is an NP-
complete problem. Such systems include multiprocessors with a net-
work topology of a ring, star, hypercube, linear or mesh array of
processors, etc. Then, we present two heuristic algorithms, with dif-
ferent characteristics and complexity, for routing messages in such a
system. These algorithms provide the information which indicate the
links to be used to conduct the communication and the time period
tha t each link is busy transferring the messages. According to this
information, the moment that a message arrives to its destination
can be computed. These algorithms can be considered as procedures
to be called by the task schedulers. When a static task scheduling
algorithm is selecting a P E for a particular task, the communication
delay can be accurately obtained by calling these procedures. Thus,
the static schedule includes network routes for messages as well.
During the run-time the routes chosen a t compile time are used for
communication, resulting in predictable program behavior. This
feature is especially useful in real-time applications in which the
hardware can be configured to meet the real-time constraints.
Finally, we show tha t due to accuracy in computing the communica-
tion delays, the proposed algorithms result in a better task schedule
compared to methods which estimat,e the delays.

Section 2 briefly discusses our basic assumptions and shows
tha t optimal routing is an NP-complete problem. Section 3 gives
the proposed message routing algorithms. Section 4 discusses the
incorporation of the communication delay in the static task schedul-
ing. The performance evaluation and analysis of the algorithms are
discussed in section 5 , and finally section 6 gives a brief conclusion.

This research is supported in part by DARPA under contract no. 5-25089-310

10
0073-1 129/91/0000/0010$01.00 0 1991 IEEE

2. Basic Assumptions and Static Task Scheduling Frame-
work

Multiprocessor systems can be in many different configura-
tions. Here we focus on the loosely coupled, distributed memory
multiprocessor systems. I t is assumed tha t identical PES are con-
nected by a message-passing, point-to-point, store-and-forward
interconnection network (e.g. meshes, hypercubes, etc.) Furthermore,
we assume that the interconnection network is symmetric. For-
mally, we can use a graph representation, GP(VP,EP), to represent
a multiprocessor system. A node v p t W in the graph represents a
P E and an undirected edge e p c EP represents a link connecting two
PES. Let Pil, Piz, ..., Pik be k subsets of the nodes tha t can be
reached from node vpi, i 5 1 VPI , with distance 1, 2, ..., k, respec-
tively. Here, k is the diameter of the graph. Obviously
Pian Pi* = 4 , a f 6 . For a symmetric graph we have:

for any i and j such tha t i, J ’ S I WI. Hypercube, ring, and
wrapped-around mesh are some popular symmetric configurations of
multiprocessor systems [12]. One of the advantages of a symmetric
configuration is tha t during the initial steps of task distribution,
any P E is a suitable PE for an entry task. In addition, there is no
need for special treatment of network boundary conditions for rout-
ing analysis.

A program can be represented by a directed graph,
GC(VC,EC.) Each node vc t VC represents a task which is a portion
of the operations of a program. A task is a side-effect free function
defined in a functional programming language, such as SISAL.
Equivalently, a task can be a procedure or a block in the dataflow
graph representation of the program. Further, we assume a task
must receive all its input messages before i t is enabled for execution.
Upon completion of a task, i t may send several messages to other
tasks.

When a program is t o be run on a multiprocessor system, a
weight function WT:VC-2’ is used t o indicate the amount of time
required to execute each task by a PE. Here, 2’ is the set of
integers and, for simplicity, we measure the execution times in time
units. The directed edges in the graph give the precedence among
the nodes and show the flow of da ta among the dependent tasks.
The amount of da ta transferred through an edge is measured by the
weight function WE:EC-Z’ . Again, for simplicity, the amount of
da ta is measured in da ta units.

Before presenting the proposed algorithms, we can briefly
show tha t optimal routing is an NP-complete problem. This can be
trivially proved by mapping the routing problem into the partition-
ing problem [15]. The partitioning problem is as follows. Given a
finite set A and a “size” . S (Q) (Z’ for each a t A, find a subset A ’ s A
such tha t

c . (a) = c S (Q) ’
ctc A’ a6A-A’

T o see how the mapping can be achieved, consider a very sim-
ple case. Figure 1 shows a multiprocessor system with only two
PE’s connected in a ring structure. Note that there are two bi-
directional links between the PES. Assume that P E 1 is sending n
messages with different sizes t o PE2. PE1 can send messages
through either link. To achieve the minimum communication time,
a decision must be made as to which message should be assigned to
which link so that the loads on the two links are balanced. This is
nothing but the above mentioned partitioning problem.

3. Proposed Algorithms
In this section, we present two heuristics that can be used to

route the messages in our assumed multiprocessor system. We
assume tha t the bandwidth of the links is the same and a P E can
execute a task and perform da ta communication simultaneously.

Figure 1. A 2-PE ring connected system

Thus, the network interface operations are not influenced by the
work-load of a PE. Finally, i t is assumed that a link is dedicated t o
transfer one message at a time. Only after the transfer of the
current message is completed, can this link be used t o transfer
another message. There is no preemption on any transfer. If a link is
free, a message can be sent through the link with a communication
time proportional t o the message size. Without loss of generality, we
assume the communication time on one link (not the entire source-
destination path) t o be equal to the message size. In practice, one
can appropriately scale this time by a constant factor. If a link is
not free, the upcoming message must wait until the current message
completes its transfer. Thus, the communication time for the
upcoming message, on one link, is the waiting time plus the mes-
sage size. If a message is traveling through several links, the total
communication time is the summation of the communication time
spent on each link and the waiting delays.

A good message routing strategy attempts to avoid possible
link blocking which can cause additional waiting delays for a mes-
sage during i ts transfer. An example of blocking is shown in Figure
2. Here, both P E 3 and PE2 are sending messages t o PE1. Assume
tha t messagel is produced by PE3 at moment 0 and message size is
5. Message2 is produced by PE2 at moment 3 and is also of size 5.
With the interconnections given in Figure 2, if messagel is given
higher priority, then the link between PE2 and PE1 will be busy
during the period from 5 t o 10 t o conduct messagel. Thus, message2
can arrive at PE1 no earlier than moment 15. In such a case, mes-
sage2 is blocked for 7 time units. If message2 is sent out first, the
link between P E 2 and PE1 is busy from moment 3 t o 8 for mes-
sage2. When messagel arrives at PE2, it will be blocked until
moment 8 and thus, it can arrive at PE1 at moment 13. Therefore,
the second strategy provides an overall gain of 2 time units over the
first strategy.

Consider a hypercube interconnection network of 8 nodes. Fig-
ure 3 contains 9 example messages sent by 4 different PE’s, PE1,

Figure 2. An example of message blocking

11

message: 0 1 2 3 4 5 6 7 8

start at: 2 3 5 3 5 5 8 4 6

location: 7 7 7 5 5 6 6 1 1

size: 2 2 2 2 2 3 1 2 2

Figure 3. An example of a set of messages

PE5, PE6, and PE7 in this network. PE1 sends messages 7 and 8.
P E 5 sends messages 3 and 4. PE6 sends messages 5 and 6. PE7
sends messages 0, I, and 2. These PE’s constitute the source PE
set . P E 0 is chosen as the destination PE . This example will be
used t o show the results from the heuristic algorithms introduced in
the later par t of this section.

We use two quantities to measure the quality of a message
routing: the total waiting time and the message-passing completion
time. Total waiting time is the summation of all the waiting times
incurred during the message transfers. The completion time is the
moment that all the messages have arrived at the destination PES.

Heuristic Algorithm 1:

Consider a path of nodes for a message routing. The message
is sent from the source to destination node by going through the
intermediate nodes, one link at a time. An ideal pa th for a message
is defined to be the path with the shortest length and the Least
Waiting Time (LWT) on the links of the path. Heuristic algorithm
1 is greedy in the following sense: A t each intermediate node on the
path, the message is sent through a neighboring link which yields
the least waiting time among the links that a PE can choose to send
the message t o the next intermediate node. A node on a path from
the source t o the destination will send the message to one of its
neighbors which is closest t o the destination P E . We say PE, is
closer than PE; to PEd if the shortest path from PEi t o PE* is
shorter than the shortest path form PE; t o PEd. In symmetric
pointto-point networks, such as ring and hypercube, the length of
the shortest path from a source t o a destination can be easily fig-
ured out by a special numbering of the network nodes. For example,
in the case of hypercube, the length of the shortest path between
nodes A and B is determined by the number of 1’s in the binary
exclusive-or of the node numbers for A and B. The algorithm is
given below:

Initially, let PE-SET1 be the set of all the PE’s which are source
PE’s. A P E is a source P E if either one or more tasks executed by
that P E have generated some messages to be sent out or it is on the
path of other messages, requiring it t o receive and send a message
between two of its neighbors. MSi is used to represent the set of
messages in the message queue of PE;. PE,I is the destination PE.
PE-SET2 is a temporary set variable. Different values are assigned
to it in the algorithm.

We use S t o represent a message. Let MOMENT be a function.
MOhfENT(S, PE,) is the moment that message S is generated or
received (to be passed to another P E) by PE;. Normally, a message
S is put in the hfSi queue a t MOMENT(S, PE;). Let DISTANCE be
a function. DISTANCE(PE;, PEj) gives the length of shortest path
between the two PE’s. Let NEIGHBOR be a function.
NEIGHBOR(PEi) gives a set of PE’s which are the neighbors of
PE;; i.e. they are connect,ed via one link.

Let SEi be a message a t the head of the MS, queue. SE< represents
the next message t o be processed by PE;.

Arrays ARRIVAL and PATH are two dimensional arrays used t o
record messages arrival times and paths, respectively.
ARRIVAL[PE;][S] gives the moment tha t S is generated or received
(to be passed t o another P E) by PE;. PATH[PEj][S] gives the PE
which has sent S to PE;.

For every message, indicated as Si, do
For every P E , indicated as PEj, do

If PE; holds Si Then

Else ARRIVAL[PEj][Si] = m ;

ARRIVAL[PE;][Si] MOMENT(Si, PE;)

End For;
End For;
While P E S E T l <> @ do

Let PE, be the PE such that PE, is in P G S E T l and
DISTANCE(PE,, PEd) =

MAX(DISTANCE(PEi, PE,)), PEi is in PE-SET1;

P E S E T 2 := {PE I P E e NEIGHBOR(PE,) and
While MS, < > @ do

DISTANCE(PE, PEd) < DISTANCE(PE,,

IF P E S E T 2 < > @ Then
Find the P E , say PEj, such that

If SE. is sent from PE, t o PE; then
MOMENT(SE., PEj) is minimal
among PEj’s in P E S E T Z ;
/* Finding the link with shorter
waiting queue */

M := MOMENT(SE,, PE,);
Send SE, from PE,, to PEj ;
MSj := MSj U {SE,};
ARRIVAL[PEj][SE,] := M;
PATH[PE;][SE,] := PE,;
If ({PEj} n PE-SET1) = CP Then

PE-SET1 := PE-SET1 U (PEj};
MS, := MS, - {SE,};

End While;
P E S E T l := P E S E T l - {PE@};

End While:

When the algorithm terminates, the routing information is
kept in array PATH and the timing information is kept in array
ARRIVAL. For example, PATH[PEd] [Si] gpes the last intermediate
PE which sends message Si t o the destinatlon PE, PE,. Let this P E
be PE;. We can further trace tha t message Si is sent to PE; by PEj
if PATH[PEi][Si] = PEi. In this way, the whole path t o route mes-
sage Si to destination PEd can be found. In the same manner, the
time when a message arrived at a certain PE can be found in the
array ARRIVAL.

Figure 4 shows the routes generated by algorithm 1, using the
example of Figure 3. The total waiting time of this algorithm is 8
and the completion time is 13.

In the worst case, this algorithm examines all the PES on a
path from the source to destination. Therefore, the complexity of
algorithm 1 is O(n) for each message, where n is the number of PES.

Heuristic Algorithm 2:

There are two type of blockings: a later message blocking an
earlier message (LBE blocking) and an earlier message blocking a
later message (EBL blocking). Here, ”later“ and ”earlier” refer to
the time the message was originally generated. Consider example of
Figure 2 in which message1 is generated by P E 3 a t time 0 (earlier)
and message2 is produced by PE2 at time 3 (later). Both messages
have a 5 unit size, If we send messagel from P E 3 t o P E 1 first, mes-
sage2 will be blocked for 7 time units. Such a blocking is EBL
blocking. If message2 is send out immediately after its generation, it

12

7 -

6 -

5 -

4 .

Figure 4. Network routing b e d on algorithm 1 using masages of Figure 3

will block message1 for 3 time units. This is an LBE blocking. In
this example and many others we tried, the EBL blockings resulted
in longer wait times for the messages. We have used this a heuristic
principle for message routing. In the case that several messages are
competing for a link (thus, blocking becomes unavoidable), we avoid
EBL blockings. The second proposed heuristic algorithm is called
the least blocking algorithm which tries to avoid EBL blocking:

The identifiers used in this algorithm are the same as those defined
in algorithm 1.

For every message, indicated as Si, do
For every P E , indicated as PEj, do

If PEj holds Si Then

Else ARRNAL[PEj][Si] := m;
ARRlVAL[PEj][S;] := MOMENT(Sj, PE;)

End For
End for
While P E S E T l < > CP do

Let PEa be the PE such that PE, in PE-SET1 and
MOMENT(SE,, PE,)=MIN(MOMENT(SE,, PE,)),

for 1 s 6 s 1 PE-SET1 1 ;
P E S E T 2 := {PE I PE in NEIG“BOR(PE,) and

If PE-SETS < > CP Then
For each P E in PE-SET2, indicated as PE,, do

DISTANCE(PE, PEd) < DISTANCE(PEa, PEd)};

Send SE, from PE, t o PE;;

If ARRrVAL[PEi][SE,] > M Then
M := MOMENT(SE,, PE;);

PATH[PEi][SE,,] := PE,;
ARRrVAL[PE;][SE.] := M;
If ({PE;} n PE-SET1) = CP Then

PE-SET1 := P E S E T l U {PE;};
End For;
MS, := MS,;
IF MS, = CP Then P E S E T l := PE-SET1 - {PE,};

End While:

PEL-PEO ,

e9
PEbPEl PEZ-PEO

. PEbPEl , , PEI-PEO ,

Again, the example of Figure 3 is used to show the message
routing produced by this heuristic algorithm. Figure 5 gives the
result.

The total waiting time is 2 and the completion time is 12. For
this particular example, these results are optimal. This algorithm is
a variation of Dijkstra’s shortest path procedure. It also achieves the
least blocking. Thus, similar t o Dijkstra’s algorithm, its complexity
is O(elogn) [l G] for each message, where n is the number of proces-
sors and e is the number of links.

1 .

I .

5 .

4 -

3 -

2 -

L -

0 -

“7 PEl-PEQ

PE1-PEO

EE? @EE?

pm-pm . pocm ,

PE1-FW , . FZS-PE1 , ,

. PES-PU , p u - p m ,

. PEI-PFA , PEbPU , , m - p m ,

, PEcpu) I . PEI-pw , PEbPU

PE4;PEQ . PE7-PFA , PEd-PE4 , ,

I rim
1 1 3 4 5 I 1 8 0 10 11 12 13

PET-PE4 , PWPEQ , s t

Flgure 5 Network muting based on algorithm 2 using example d Figure 3

Theorem 1 below shows tha t both algorithms guarantee that
any message is sent through a shortest path from the source to the
destination.

Theorem 1: In Algorithm1 and AlgorithmS, each message is sent
through a shortest path form its source to i ts destination.

Proof: Assume tha t a message is sent through a path, PE,, PE,-1,
PEk,, ..., P E I , PEd, where PE, is the source P E and PE,, is the
destination PE. The length of this path is k. Since a t each node the
messages are sent to the PE’s tha t are closer (closeness was previ-
ously defined) t o PEd, PEL-, must be closer t o than PE,, pEk-2
must be closer to PE(than and so on. If there is a shorter
path between PE, and PE,, then let its length be j , where j < k , and
i=k-j. Then since the distance between PE, and PEd is j, not k , the
neighbors of the PE, which are chosen t o receive the message cannot
include PE,_l, Instead, there should be some neighbor of the source
P E which is i links closer t o PEd. This implies tha t the message
would never be sent to PE,,, ..., PE,,. In other words, the
path PE,, ..., PE1, PEI; would never be chosen as a path t o
carry the message. This is a contradiction t o the original assump-
tion. Thus, there is no other path between PEa and PEd that is
shorter than k.

4. I n c o r p o r a t i n g C o m m u n i c a t i o n i n S t a t i c Task Schedul ing
The routing algorilhms presented are particularly suitable for

list scheduling algorithms. A task schedule is a mapping from a pro-
gram computation graph GC to a system configuration graph GP. A
list scheduling algorithm repeatedly carries out the following steps
~ 3 1
1.

2.

3.

each

The tasks tha t are ready to be assigned are put into a priority
queue according t o a priority criteria. A task becomes ready
for assignment when all of its predecessors are already
assigned for execution.
Select a PE with the least amount of work already assigned to
i t .
Assign the task at the head of the priority queue to this P E .
There are several met,hods t o generate the priority number for
task. The most common version of the priority scheme is called

Critical P a t h Method (CPM) [14] which gives each task a priority
number according t o the length of its exit path to a terminating
task. The idea is tha t the tasks with a longer critical path length
should be assigned first since many other tasks are dependent on
them. A simpler method called Heavy Node First (IINF) [14] first
orders the tasks level by level, giving higher priority to the entry
level nodes. Entry nodes are the nodes with no predecessor. It will
then order the nodes at each level from heaviest (requiring most

13

execution time) t o lightesb. The level-by-level ordering preserves the
order of precedence and load balancing is achieved by first assigning
heavier tasks t o PES with the least amount of work already assigned
to them. In our simulation experiments, we have used the "F
algorithm. In any case, the proposed algorithms are used as subrou-
tines for these static scheduling methods to provide communication
delays among the tasks as they are assigned to different PES.

Consider task T a t the head of the priority queue. If T i s an
entry task, i t would simply be assigned t o the PE with the least
amount of work already assigned to it. However, if T has some
predecessors, then the best PE to assign T to would be the PE
which can execute it a t earliest possible moment, taking into
account the communication cost from the predecessors to T. A task
cannot be executed until all the communications between this task
and its parents are completed. We call the time tha t a task receives
all of its input messages the Desirable Starting Moment (DSM) of
that task. For different PES, the DSM of a task can be different. We
will use D S M , , t o indicate the DSM of task T on PE;. The DSMi,T
can simply be computed by calling algorithm 1 or 2 and using PEi
as destination. Naturally, if a task has several inputs, the DSM
would be computed according to the time the last input is arrived a t
PE,. T o find a PE to assign T to, we need to compute
MIN(DSA&,T) for all i. There are two problems. First, PEi with the
smallest DSM for task T may not necessarily be able to execute T a t
its earliest possible time. Second, computing DSM;,,. for all i is too
time-consuming.

The first problem stems from the fact tha t a processor with
smallest DSM for a task may already be heavily loaded with other
tasks. Thus, a PE which yields minimum DSM for a certain task
may not be the ideal PE for a task. We define the Actual Starting
Moment (ASM) of a task (T) assigned t o a processor (i) as:

ASMi =MAX(L OAD (PE;), DSM., T) , (1)
where LOAD(PEi) is the summation of the execution time of the
tasks already assigned t o PE, and the ideal times scheduled on this
PE so far. T o select the PE for a task T at the head of the priority
queue, the actual starting moment of each PE should be computed
and compared. The PE with minimum ASM:

MIN(ASM;) for i=1,2, ..., n, (2)
is chosen. Here, n is the number of PES.

For the second problem, it should be noted that if the number
of PES is large, one can use a heuristic t o only consider a subset of
the processors. One such heuristic can select the IC nearest neigh-
bors of the source tasks as possible candidates for assigning the task
to.

Once a task T is assigned to PE,, the routing information for
each input message to T can be obtained from the ARRlVAL and
PATH arrays generated by either algorithm 1 or 2. The route for
each message can then be stored into a 2-dimensional table. This
table is similar in both organization and functionality to the array
P.4TH which was discussed in detail in algorithm 1 . By copying
this table in each processor, a simple table look-up mechanism can
be used a t run-time for actual routing of the messages.

It should be noted that as tasks are assigned t o the PES, we
keep track of the load on the links. Even though algorithm 1 or 2 is
called for each task independently, the routes for a new message are
generated according t o the current load on the network as generated
by previous messages. The algorithms do not consider future net-
work loads.

5. Performance Evaluation and Analysis
In this section we we compare the two algorithms against a

lower-bound time for routing the messages. The proposed algorithms
are then incorporated into the "F static scheduling method. The
resulting scheduler is compared against comparable schedulers which
use other routing algorithms, including dynamic network routes.

In our experiments, the network configuration is assumed t o
be tha t of a lG-node hypercube. The following parameters are ran-
domly generated:

1.
2.

3.
4. The destination PE.
5.

6 .

The size of each message (between 1 and 5)

The total number of messages (between 1 and 80)
The PES which produce the messages.

The number of messages a PE produces.

The moment each message is produced. This moment is con-
fined to a given range. In our tests, we tried 2 time ranges: 10
and 30 time units.
We assume tha t a message consists of several bytes (e.g. in the

range of 40 t o 200 bytes). W e do not consider very small (few bits)
synchronization or very large (KBytes) messages. Thus, we use a
range of 1 t o 5 units for messages. The choice of the total number
of messages and message generation ranges were dictated by the
space and time limitations of our VAX 11/780 system. However,
they are wide enough ranges t o represent most cases

The algorithms are compared against optimal using the RAI
measure, where RAI stands for the Rate of Actual message transfer
time over the Ideal message transfer time. The time needed to send
a message through a link includes WAIT, the waiting time, and
SIZE, the time tha t the link is dedicated to transferring the mes-
sage. Thus, the rate of actual transfer time on a link j for message i
is SIZEi + WAITi,j. In the ideal case, however, there should not be
any waiting time.

The ideal case provides a lower-bound on message
transfer time. Note that this is a loose lower-bound in the
sense that the actual optimal route may have to include
some wait times as well. Thus, RA1 gives an approximate
measure for comparison against the optimal case. The
higher the RA1 for a message, the worse the selected route is
compared to the ideal case. On the other hand, an RA1 close
to 1 indicates that the route is near optimal.

The RAI for a link is given as:

We use p i to indicate the path for message i. pi is a set of links. Let
Li = I p i 1 . Then the RAI for a path is given as:

(4)

(5)

Now consider multiple messages. Let k be the number of messages
sent through the network and R be the set of all paths. The average
RAI for the set of messages is defined as:

14

For a given time range and a given number of PE's, the algo-
rithms are applied to 500 different instances of message distribu-
tions. The RAI presented in the following figures represent the aver-
age measure. In addition, for the same set of parameters, we meas-
ured the RAI for hypercube's dynamic routes as well as randomly
chosen (among the possible shortest paths) routes. Figures 6 and 7
present the average RAI measure vs. the number of messages for
time ranges of 10 and 30, respectively. Note that the time range
defines a range for the time of generation of messages. A time range
of 10 represents a heavy load on the network, i.e. many messages
are generated in a short time. Similarly, a time range of 30
represents a medium load on the network.

When the number of messages is small (up t o about 20 mes-
sages), both algorithms 1 and 2 performed close to optimal. In
other words the average RAI was less than 2 . Note tha t an optimal
routing delay is greater than or equal t o the ideal case delay. This
indicates tha t the generated routes are in the worst case twice as
long as the optimal routes. However, as the number of messages are
increased, the RAI is also increased indicating tha t the generated
routes have become lengthier than the ideal case. It should be noted
tha t as the number of messages is increased, it is more likely tha t
the optimal routes are also lengthier than the ideal case. This is
because the probability of blocking at different links is increased.
Therefore, i t is our conjecture tha t even for large number of mes-
sages, the generated routing delays are close to optimal.

By comparison, the dynamic and random routes are several
times worse than the ideal case. It is also interesting t o note that
algorithm 2 consistently has a lower RAI measure compared to the
other methods. This indicates tha t by comparison, the routes gen-
erated by this algorithm cause the least amount of waiting time on
the links.

In the second study, we evaluated the impact of the proposed
algorithms on the quality of static schedules. We used HNF algo-
rithm (discussed in section 4) for static scheduling. The execution of
the applications scheduled by "F using the proposed algorithms
and other methods which estimate the communication delay are
compared. A practical application, namely FFT is considered.

number of m e y e a

IO m 30 40 BO 70 8 0 -

0: Heuristic algorithm1 0 : Heuristic algorithm2 *: Dynamze roum +' Random route

Figure 6 . RAI measure for Time range = 10 and Number of PE = 16

n u m k of m-

10 20 30 HI 50 60 70 80 L

0: Heuristic algorithm1 V : Heuristic algorithm2 *. Dynamic route. +: Random routes

Figure 7 . RAI measure for Time range = 30 and Number of PE = 16

In our studies, we chose to use algorithm 1 for network route
generations because i t is simpler and has a lower time complexity
compared to algorithm 2 . This algorithm is compared against two
of the existing communication delay estimation methods. The first
scheme assumes no communication delay in static scheduling. In
other words, the assumption is tha t the computation time far out-
weighs the communication time. Thus, the PES are selected for task
allocation solely based on their current load. Since each time the
P E with the Smallest Load is selected, we call this method SL algo-
rithm. The second existing scheme estimates the communication cost
as product of message size and source-destination PE distance. We
call this method Estimated Communication Delay (ECD) algorithm.

We compare algorithm 1 against SL and ECD algorithms
using an &point fast fourier transform computation DAG which is
shown in Figure 8. Each task is identified by a letter and number
pair, where the letter is the task ID and the number is the execution
delay of the task. The message size is fixed at 2 units. A multipro-
cessor with four PE's connected by a hypercube interconnection n e t
work is assumed. When algorithm 1 is used, the run-time communi-
cation is carried out according to routing information generated by
algorithm 1. This schedule takes 21 time units t o complete. When
SL alogrithm is used, i t takes 25 time units t o complete the same
program. Finally, when ECD algorithm is used, an execution delay
of 22 time units resulted for the same program. For the cases of SL
and ECD, dynamic hypercube network routing is used since these
methods do not generate specific routes. It is notable tha t SL and
ECD methods resulted in inferior schedules, since delays due t o n e b
work load on different links were ignored at scheduling time.

15

Each link rcprwnta a m-ge with sire qual to 2

Figure 8. Program DAG 01 FFT.

6. Conclusion
Precise management of da ta communication is an important

topic in static task scheduling in order to obtain realistic schedules.
Optimal routing is an NP-complete problem. Thus, two heuristic
algorithms were introduced with the goal of finding sub-optimal
routes for messages in a point-tepoint, store-and-forward intercon-
nection network. These routes are used to determine the best task
assignment a t compile time. In addition, they can be used to set up
the required routing tables for dynamic routing a t run-time. The
simulation results show that: i) for small number of messages, the
generated routes are no longer than twice a defined loose lower-
bound for the communication delay, and ii)the proposed algorithms
can outperform simple methods which estimate the communication
cost during static scheduling.

7. References

[I] E. G. Coffman, J. L. Bruno, G. L. Graham, W. H. Kohler, R .
Sethi, K. Steiglitz and J. D. Ullman, “Computer and Job-shop
Scheduling Theory, Wiley-Interscience Publication, 1976.

121 H. Kasahara and S. Narita, “Practical Multiprocessor Schedul-
ing Algorithms for Efficient Parallel Processing,”
IEEETrans.Comput. vol. c-33, pp 1023-1029, November 1984.

131 R. L. Graham “Bounds on Multiprocessing Anomalies and
Related Packing Algorithms,” SIAM J. Appl. Math, vol. 17 pp
416-429, March 1969.

[4] B. Kruatrachue “Optimal Grain Determination for Parallel
Processing System” Report 87-60-5, Oregon State University
Computer Science Department, Corvallis, Oregon 97331.

151 S. J. Kim, “A General Approach to Multiprocessor Schedul-
ing’’, TR-88-04, Department of Computer Sciences, The
University of Texas a t Austin, Austin, Texas 78712-1188.

[6] V. Sarkar and J. Hennessy, “Compile-time Partitioning and
Scheduling of Parallel Programs,” Proc. of the
SIGPLAN86Symp.onCompilerConstruction, 1986, p 17.

[7] T. Ravi M. D. Ercgovac, T. Lang and R. R Muntz, “Static
Allocation for a Data Flow Multiprocessor System,” 2nd Int’l
Conf. on Supercomputing, May 1987.

(81 R. Tsai, “A Heuristic for Static Task-to-processor Assignment
Using A Constraint Satisfaction Approach”, Ph . D. Disserta-
tion, Department of Computer Science and Engineering,
Southern Methodist University, Dallas, TX 75275.

[9] B. Lint and T. Agerwala, “Communication Issues in the
Design and Analysis of Parallel Algorithms,”
IEEETrans.SoftwareEngineering, Vol SE7, p 174, March
1981.

[lo] Andrew S.Tanenbaum “Computer Network” Prentice-Hall,
Inc. 1981.

[ll] “iPSC System Overview Manual” Intel Corporation November
1986, Order Number: 310610-001.

[12] IIwang, K. and Briggs, A. F. “Computer Architecture and
Parallel Processing”, McGraw-Hill, Inc., 1984.

113) C. D. Polychronopoulos and U. Banerjee, “Processor Alloca-
tion for Horizontal and Vertical Parallelism and Related
Speedup Bounds”, IEEETrans. Comput. April 1987, p 410.

114) B. Shirazi and M. Wang, “ Design and Analysis of Heuristic
Functions for Static Task Distribution”, Proceeding of
Workshop on the Future Trends of Distributed Computing
System in the 1990s. p 124.

1151 M. R. Garey and D. S. Johnson, “Computers and
Intractability A Guide to the Theory of NP-Completeness”
San Francisco Freeman. 1979.

[16] A. Aho, J.E. Hopcroft, and J.D. Ullman, “Data Structures and
Algorithms,” Addison-Wesley, 1985.

[17] M.F. Wang and Shirazi, B., “Static Network Routing Schedul-
ing,’’ Tech. Report: 88-CSE37, Dept. of Computer Science
and Eng., SMU, Dec. 1988.

[18] R. G. Babb 11, “Programming Parallel Processors” Addison
Wesley, 1988.

[19] A.R. Hurson, B. Lee, B. Shirazi, and M. Wang, “A Program
Allocation Scheme for Dataflow Computers,” Int’l Conf. on
Parallel Processing, pp 415-423, Aug. 1990.

16

