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Abstract 

In recent years, there have been numerous proposals 
that represent the current generation of dataflow 
computers. Although the spectrum of such architectures is 
very broad, a special class of these machines called 
multithreaded dataflow multiprocessors have recently 
received considerable attention. In  multithreaded 
dataflow computers, one of the major challenges is the 
issue of program partitioning. Therefore, this paper 
presents a compile-time partitioning strategy for 
multithreaded dataflow computers. The proposed scheme 
is based on the minimum granularity required to 
maximally utilize a given processor pipeline. To 
determine such a partition, architectural and program 
characteristics, such as the frequency and the delays of 
split-phase loads and their effect on the parallelism 
required, are considered. Once these parameters are 
known, a partition can be chosen that best matches the 
capability of a given multithreaded dataflow 
multiprocessor. 

1. Introduction 

Advocates of the dataflow execution model argued 
that highly parallel multiprocessors based on the 
conventional control-flow concept are limited by two 
fundamental issues: memory latency and synchronization 
[Z]. Memory latency is the time that elapses between 
issuing a memory request and receiving the corresponding 
response. In general, as the system becomes large so does 
its latency. The processor idling due to memory latency 
can be avoided by providing a facility to perform context 
switching. However, conventional multiprocessors incur a 
very large overhead during a context switch due to the 
existence of substantial local state associated with each 
process. Synchronization on the other hand is needed to 
enforce the ordering of instructions according to their data 
dependencies. In a conventional multiprocessor system, a 
program is partitioned into processes based on 
programming constructs such as loops, procedures, etc. 
Synchronization primitives are placed in parallel programs 
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either explicitly by the programmer or by the compiler to 
enforce the execution ordering of the processes. The 
problem is the high overhead cost involved in the 
implementation of these synchronization primitives [ 1 11. 
Therefore, the natural tendency is to choose a large 
granularity to limit the number of synchronization and 
context switching. The net effect is that parallelism is 
exploited usually at the large-grain level and thus 
sacrificing the potential fme-grain parallelism that exists in 
many application programs. 

In contrast, the dataflow model of computation offers 
many attractive properties for parallel processing. First, 
the dataflow model of execution is asynchronous, i.e., the 
execution of an instruction is based on the availability of 
its operands. Therefore, the synchronization of parallel 
activities is implicit in the dataflow model. Second, 
instructions in the dataflow model do not impose any 
constraints on sequencing except the data dependencies in 
the program. Hence, the dataflow graph representation of 
a program exposes all fonns of parallelism eliminating the 
need to explicitly manage parallel execution of a program. 
For high-speed computations, the advantage of the 
dataflow approach over the control-flow method stems 
from the inherent parallelism embedded at the instruction 
level. This allows efficient exploitation of fine-grain 
parallelism in application programs. 

Due to its simplicity and elegance in describing 
parallelism and data dependencies, the dataflow execution 
model has been the subject of many research efforts. 
Since the early 197Os, a number of hardware prototypes 
have been built and evaluated [l ,  81, and simulation 
studies of different architectural designs and compiling 
technologies have been performed 181. The experience 
gained from these efforts has led to progressive 
development in dataflow computing. 

One of the most important development is the 
emergence of a novel and simplified process of matching 
tokens called direct matching [51. Most recent generation 
of dataflow machines, such as Monsoon 151, Epsilon-2 [9], 
P-RISC [14], and EM4 117,211, all use direct matching 
for detecting enabled nodes thereby eliminating the 
expensive and complex process of associative search used 
in previous dynamic architectures 111. Another important 
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development is a shift in viewpoint on the concept of 
dataflow and its implementation. Rather than viewing the 
dataflow execution model as the consumption of tokens 
and the firing of enabled nodes, it can be thought of as the 
execution of multiple interacting sequential threads, where 
fork and join are extremely efficient [151. The importance 
of this observation is two-fold First, there is a 
convergence between control-flow and dataflow concepts. 
Second, the latency due to split-phase loads can be masked 
by interleaving the execution of independent threads. 

In light of the aforementioned discussions, one of the 
major challenge is the proper utilization of a processor 
pipeline through multithreading. It is apparent that to 
mask long and unpredictable latency due to split-phase 
transactions an appropriate number of independent threads 
must be allocated to a processing element. Therefore, this 
paper presents a compile-time partitioning strategy for 
multithreaded dataflow machines. The goal of the 
proposed scheme is to determine the optimum granularity 
that results in maximum utilization of a processor pipelime. 
To achieve this, the proposed strategy considers 
programming and architectural parameters, such as the 
frequency and the delays of split-phase loads, and 
evaluates a measure of required parallelism that can be 
used to construct an appropriate partition. 

The organization of this paper is as follows: Section 2 
presents the general characteristics of multithreaded 
dataflow computers. Section 3 discusses the problem of 
program partitioning for dataflow multiprocessors. In 
Section 4, we develop a simple analytical model for 
multithreading. The discussion is based on the speedup 
attainable and the relative parallelism needed to fully 
utilize the available resources in a pipeline processing 
element. Section 5 presents a partitioning strategy based 
on a measure of required parallelism developed in Section 
4. Finally, Section 6 provides a brief conclusion. 

2. Multithreaded Dataflow Architectures 

In this section, a brief overview is provided to identify 
and analyze the characteristics of multithreading. In 
multithreaded dataflow computers, a thread of 
computation is completely described by an instruction 
pointer (IP) and a frame pointer (FP) [5]. The pair of 
pointers, <P, Fp>, is regarded as a continuation and it 
corresponds to the tag part of a token (terminology used in 
lTDA [l]). Thus, on each clock cycle, a different 
continuation or thread descriptor can be inserted into the 
processor pipeline allowing an arbitrary number of 
independent thread to be interleaved. The advantage of 
multithreading is that rather than blocking the execution of 
other threads a number of different threads can be inserted 
into the pipe. This effectively masks long memory 
latencies due to split-phase loads. 

Dataflow multithreaded architectures can be viewed 
as either an evolution of dataflow architectures in the 
direction of more explicit control over instruction 

execution order, or as an evolution of von Neumann 
machines in the direction of better support for 
synchronization and tolerance of long latency operations. 
We present both possibilities by describing the 
architectural organizations of Monsoon and P-RISC. 

The basic organization of the Monsoon processing 
element (PE) consists of an Execution Pipeline connected 
by a Token Queue (Figure 1). The Execution pipeline 
implements the dataflow instruction cycle based on the 
Explicit Token Store @'E) model [SI. Monsoon provides 
a fine-grain dataflow capability by having continuations of 
the form <P+r, Fp>, where r is encoded as a literal in the 
instructions that represents the next instruction in a logical 
sequence (i.e., self-scheduling). Monsoon can also 
implement a more conventional form of sequential thread 
execution by letting r equal to 1. This is accomplished 
using a simple recirculate scheduling paradigm where 
continuations are immediately reinserted into the 
Execution Pipeline (via Direct Recirculation Path). Since 
a continuation completely describes a process, the 
processor pipeline can possibly contain eight unrelated 
threads. Therefore, the processor pipe can tolerate 
unpredictable latency due to split-phase loads as long as 
there is sufficient number of tokens (i.e., parallelism) in 
the Token Queue. 
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Figure 1. Organization of Monsoon Processing Element. 
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P-RISC was proposed by Nikhil and h i n d  at MIT 
[ 141. The organization of a P-RISC processor pipeline is 
shown in Figure 2. As the name suggests, P-RISC is 
based on an existing RISC-like instruction set where the 
instructions are 3-address frame-to-frame operations. 
Note that since P-RISC executes 3-address instructions on 
data stored in the frames, “tokens” only carry 
continuations. For normal arithmeticflogic instructions, 
the continuation is simply the next instruction in the 
thread-w in von Neumann scheduling (i.e., @+1, Fp>). 
However, unlike the Monsoon, IP basically represents a 
program counter in the conventional sense and is 
incremented in the Instruction Fetch stage. In case of a 
non-local memory instruction, such as a procedure call or 
an I-structure read, it is directed to an appropriate PE or I- 
structure memory via Load/Store and Start units. To 
exploit fine-grain parallelism, the instruction set is 
extended with FORK and JOIN operations for thread 
initiation and synchronization, respectively. These 
operations are simple instructions, not operating system 
calls, that are executed directly within the normal 
processor pipeline. 
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Figure 2. Organization of a P-RISC Processing Element. 

3. Program Partitioning 

There have been a number of proposed methods for 
partitioning programs on multithreaded dataflow 
multiprocessors. These approaches can be classified as 
either medium-grain or come-grain. In the medium-grain 
approach, the dataflow graph representation of a program 
is transformed into set of threads. A thread is a sequence 

of statically ordered instructions where once the first 
instruction in the thread is executed the remaining 
instructions execute without interruption [20]. Therefore, 
a thread defines the basic unit of work from the dataflow 
model point-of-view, where synchronization is required 
only at the beginning of a thread. There is a number of 
thread partitioning algorithms that convert dataflow graph 
representation of programs to threads [lo, 19,201. The 
basic objectives of these algorithms are to maximize 
thread lengths and minimize inter-thread synchronization, 
and generate “safe partitions” that can be mapped onto 
processors [191. 

The second approach is to construct a more coarse- 
grain partition. The two major factors that have a direct 
affect on the granularity of a partition are (i) the inter- 
processor communication overhead and (ii) parallelism. 
In general, the total inter-processor communication cost is 
minimized by clustering as many instructions as possible 
in a partition. An extreme case of this is a uniprocessor 
system, where inter-processor communication costs are 
non-existent. On the other hand, as granularity becomes 
larger the opportunity to exploit parallelism is reduced. 
Obviously, these are two conflicting objectives and 
theEfore a proper compromise must be provided. 

The question is then “what is a proper compromise 
between parallelism and communication costs?” Since the 
problem of finding the optimum partition is NP-complete 
[18], heuristic solutions are generally used to solve the 
problem. Sarkar and Hennessy proposed a method that 
attempts to partition a program graph on the basis of the 
optimum granularity dictated by a cost function that 
considers an appropriate balance between communication 
overhead and the execution time of the partition [ 181. This 
is achieved by starting with the finest granularity partition 
that places each node (i.e., an instruction) in a separate 
subgraph. Then, iteratively subgraphs are merged to 
generate a new partition that provides the lowest cost 
function. This process is repeated until an entire program 
has been merged into one subgraph. A cost history is then 
used to reconstruct the partition with the lowest cost 
function. 

Although the aforementioned method succeeds in 
providing a compromise between exploiting parallelism 
and limiting the communication overhead, it has neglected 
to consider an important factor in multithreaded dataflow 
multiprocessors-split-phase transactions. In other words, 
to find an optimum granularity, a partitioning strategy 
must consider the proper utilization of the hardware 
resources available. For example, a grain of computation 
assigned to a processor contains a set of independent 
threads. Since an arbitrary number of threads is 
interleaved in the processor pipeline, an important 
consideration is the amount of parallelism required in a 
particular grain to provide fast context switching 
capability that masks the memory latency during split- 
phase operations. Therefore, the following sections 
develop a quantitative measure for determining the 
required parallelism in a grain and an algorithm that 
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utilizes such a measure to construct an appropriate 
partition. 

4. A Simple Analytical Model 

In this section, a simple analytical model is derived 
for a pipelined processing element. The general 
assumption of the architectural characteristics is based on 
the dataflow proposals discussed in Section 2. Each 
processing element consists of a number of pipelined 
stages connected in a circular ring fashion via a token 
queue. We consider the execution of a grain (i.e., a 
partition) that consists of a set of threads. The execution 
of these threads can be based on two different approaches. 
In the first approach, a token is removed from the token 
queue at each pipeline clock cycle and inserted in the pipe. 
In the second approach, a thread is executed sequentially 
until it dies (due to split-phase operations or synchronizing 
points). The analysis presented in this section is based on 
the latter assumptiow however, regardless of the approach, 
the net effect is that different threads are interleaved to 
mask the latency involved in split-phase operations. 

4.1. The Speedup 

In order to model the effect of split-phase load 
operations, we can consider the fraction f of a code that 
involves such delays. In addition, we define a thread as 
any sequence of statically ordered instructions. This is in 
contrast to the more restricted definition provided in [20]. 
The following notations are used in the modelling: 

Ni-thelengthofathreadi 
P - the number of independent threads 

0 k - the number of stages in a pipe 
z - the average delay in each pipeline stage 
t - the total delay in the execution of an instruction 
(i.e., t = 2.k ) 
f - the fraction of the instructions performing split- 
phase load operations 

0 tw- the average delay involved in a split-phase load 
operation 

With these parameters, we can define the serial 
execution time Ts required to execute a grain of 
computation on a nonpipelined processing element as 

i =1 
P 

i l l  
where t = z k  and Z N i  represent the total number of 

instructions in a grain. If the same grain of computation is 

executed on a pipelined processing element, the ideal 
execution time is given ad 

P 

i =I 
TP = Z*  Z N i .  (5.2) 

This is possible since multithreaded dataflow computers 
provide instruction-level context switching capability and 
hence a pracessor pipe can accept a token at each clock 
cycle.2 The maxi" speedup S,, that can be obtained is 

i 3 1  

hP 
z 

= R * (1 - f) + f - -. 
Equation 5.3 gives the maximum speedup achievable 

in a pipelined processing element, given the fraction of a 
code that performs split-phase load operations. The 
average delay involved in split-phase loads depends on the 
characteristics of the communication network and the 
structure memory. In general, for scalable architectures 
ip will increase with the number of PES and can be 
expected to be greater than the delay of a pipeline stage 2.k 
that yields the following bounds: 

(5.4) 

Equation 5.4 indicates that depending on the delay isp the 
upper bound on speedup is limited by the number of 
pipeline stages or ~ P / T .  An important characteristic noted 
from Equation 5.3 is that the speedup can be extended 
beyond the number of pipeline stages k by a factor of 
&/z. The additional parallelism obviously comes from 
masking the latency of split-phase operations by 
interleaving a number of threads through the ~ipeline.~ 

Since the masking of delays due to split-phase loads 
can occur only as a result of sufficient parallelism within a 
grain, it is of interest to determine the parallelism needed 
to keep the pipe full. In order to acquire such an 
expression, the parallelism needed to mask the latency of 
split-phase loads must be isolated from the parallelism 
obtained from pipelining itself. The general speedup S 
that can be obtained from masking the latency of split- 
phase loads is given as 

' 
* 

We assume Ni and P are sufficiently large auch that start-up 
delaye arc negligible. 
Although a split-phase operation cnuses a thread IO die. we assumed 
that these operatma arc conceptually executcd by all the stagca in 
the pipeline, thus a 'result" tdcen can be generated every clock 
Cycle. 
This is consistant with em 'rid naults 0bt.ined from studies of 
HEP, which is a multithm& MIMD architecture [I I]. 

3 
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i=l 

where Ts* represents the sequential pipeline execution 
timeofp threads. 

4.2. A Measure of the Required Parallelism 

Equation 5.5 provides an expression for the speedup 
attainable by interleaving a number of threads through a 
processor pipeline. In order to determine the parallelism 
needed to maintain the pracessor pipeline busy, consider 
the relationship between speedup S,parallelism P, and 
efficiency E. Since the maximum utilization is achieved 
when E = 1, the parallelism required is given as [7] 

S tsp 
E P = - = f -(7 - 1) + 1. (5.6) 

The significance of Equation 5.6 is that it provides a 
general insight to the required parallelism within a grain. 
It states that the parallelism needed to fully utilize a 
processor pipe directly depends on the frequency and the 
latency of split-phase loads. For a grain that contains no 
split-phase loads, only a single thread is sufficient. On the 
other hand, asf increases more threads are required to 
mask the latencies. For an extreme and probably 
unrealistic case wherefis unity, the number of parallel 
threads required is &/z. 

The question is then how accurate of a measure is 
Equation 5.6 for evaluating the necessary parallelism? 
The following theorem is provided to answer this 
question: 

Theorem 4.1: For a set of equal length parallel 
threads, where each threads length is equal to m( &/z-l) 
form = 1,2,3 ..., containing a fractionfof split-phase load 
instructions each incurring a delay of & p / z ,  the lower 
bound on the number of parallel threads and thus 
parallelism P required to keep a k-stage pipeline full is P 2 
f-( iv /z- 1 ~ 1 .  

Proof: For a given set of threads (i.e., a grain),fis 
defined as the ratio of the number of split-phase loads to 
the total number of instructions in the grain. Thus, the 
proof for Theorem 4.1 can be provided by considering the 
maximum number of split-phase loads a grain can have 
and yet provide full utilization of a processor pipeline. For 
a split-phase load operation j ,  at least Lp/z-1 other 
instructions are needed to fill the pipe before the 
succeeding instruction j+l can be executed. To determine 
the maximum number of allowable split-phase loads 

within a grain, consider how often split-phase load 
instructions can be encountered without disrupting the 
instruction flow through the pipe. 

For P parallel threads, at most P-1 successive split- 
phase load operations (i.e., interleaving of different 
threads) can occur before &/r-(P-l) instructions are 
forced to execute sequentially, of which the last instruction 
is a split-phase load. Once this requirement is satisfied, 
the blocked node j can continue its execution. merefore, 
this process can be observed as a repetitive execution 
sequence of P-1 consecutive split-phase loads followed by 
rq/z-P normal (i.e., non split-phase) instructions. Since 
the thread lengths must be the same, the total number of 
instruction executed is P-m( ?~p/z-l), where m = 1,2,3 ... 
The minimum fraction of the split-phase loads to the total 
number of instructions in a grain is then given as f S (P- 
1)/(6p/z-l>, which yields P 2f(&/z-l)+l. 

Q.E.D 

Consider an example of such a case shown in Figure 3 
consisting of three parallel threads (i.e., P = 3) and tsp/z = 
7. The shaded nodes indicate split-phase load instructions 
and the dotted lines imply the precedence relationships 
between nodes in a thread. The dark lines illustrate the 
execution order of the nodes in the threads. As can be 
seen by this example, the maximum number of 
consecutive split-phase loads is two before five 
instructions from a different thread are forced to execute 
sequentially. When this condition is satisfied, the blocked 
node at cycle 1 can resume its execution at cycle 8. This 
process repeats every 6 clock cycles and yields a result 
from the processor pipe every clock cycle. 

It is clear from the Theorem 4.1 that when a grain 
contains a set of threads, the required parallelism obtained 
from Equation 5.6 is the absolute minimum. However, the 
above analysis assumes a restricted case where a grain 
consists of P parallel threads and the distribution of split- 
phase loads within the grain is such that the 
aforementioned condition is satisfied. However, such 
assumptions are not realistic in practice and to quantify the 
amount of parallelism required a more general equation is 
needed. This is obtained by the following equation that 
considers the required parallelism PREQ , where 

(5.7) 
and E is the error factor. The error factor E reflects the 
amount of additional parallelism needed when the 
distribution of split-phase loads within a grain is such that 
E#O. 

Before we determine the error factor needed for the 
required parallelism, it is important to characterize the 
meaning of parallelism in a given program graph. In 
general, a grain of computation contains threads that are 
not of equal lengths and therefore it is often more natural 
to determine the amount of parallelism that exists in a 
grain in terms of its average parallelism PAVG [7]. The 

PREQ= P + E  
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FlgUR 3. Ideal case execution sequence of a grain with P = 3, 
f = 1/3, and L p  /z= 7. 

average parallelism of a program graph can be expressed 
as a ratio of the total serial execution time to the length of 
the critical path in a program 171, i.e., 

P 

For the simplest case, we have Ncr = Ni for l%P and 
thus PAVG = P .  

The amount of parallelism needed can now be 
estimated for an arbitrary distribution of split-phase loads 
within a grain by considering the error factor E that occurs 
when a portion of split-phase loads does not have enough 
parallelism (i.e., nodes) to mask the delays. However, this 
depends on the characteristic of a program and the method 
used to partition a program into valid threads [19]. 
Therefore, we take a more heuristic approach to 
detaining the additional parallelism needed in a grain of 
computation by considering how often split-phase loads 
can be interleaved before additional parallelism is required 
to mask the latency. For P parallel threads, this situation 
occurs when P consecutive split-phase loads are processed 
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and the Pth split-phase load instruction causes a stall of 
tsp/z-P cycles. This situation is depicted in Figure 4. The 
threads are identical to that of Figure 3; however, the 
distribution of the split-phase loads is such that additional 
nodes (and thus addition parallelism) are needed to 
maintain full utilization of the processor pipeline. Thus, 
the error factor is given by 

The parallelism required to keep the processor pipe busy 
can be rewritten as 

(5.10) 

where P is defined by Equation 5.6. 
Equation 5.10 is a measure that can be used to 

determine the minimum granularity of a partition. 
However, a set of threads within a grain may provide the 
appropriate average parallelism PAVG and yet does not 
really satisfy the necessary requirement PAVG 2 PREQ. 
This can be illustrated by the worst case scenario that 
occurs when there exists a partially ordered graph that is 
of the “reverse -T” form shown in Figure 5.  The average 
parallelism in such a graph is given by 

NPmar-1 PAVG = 1 + - 
NCr ’ 

where NP M represents the maximum parallelism in the 
graph. As can be seen, the characteristic of a “reverse-T” 
graph is such that PAVG can satisfy a required parallelism 
PREQ as long as NPmar and NCr are selected properly. 
For example, as long as 2. NCr = NP mar - 1 ,  PREP = 3 can 
be obtained. Yet, it is obvious that an additional 
parallelism of (NCr- l ) . (PRN-l ) /Ncr  is needed and we 
can define the maximum parallelism required PREQ, as 

NP mar- 1 + (Ncr - 1). (PREP - 1) PREQ’= l+- 

= PREP+ 
(5.9) 

NCr NCr 
Npmar- PREQ 

NCr 
Thus, the bounds on parallelism required to keep a 
processor pipeline full are 

P I PEP I PEQ + 6, 
where 6 =  

(5.10) 
NP mar- PREP 

NCr 
Note that N P -  = PREQ yields PREQ*= PREQ In effect, 
Equation 5.9 detects the skewness of the parallelism 
available in a grain of computation and provides 
aconservative estimate on the additional parallelism 
needed to keep a processor pipeline full. 



Figure 4. An execution sequence of a grain with a distribution of split-phase loads that 
requires additional parallelism (P = 3, f = ID, and k p  /? = 7). 

I a I 

6 
6 

i . . . 
I 
I I 

6 
I I I 

! 

Figure 5. An example of a "reverse-I"' graph. 

5. Partitioning Strategy 

In the previous section, a minimum granularity 
required to keep a processor pipeline full was discussed. 
In this section, an algorithm that constructs such a 
partition is presented. In order to illustrate the partitioning 
algarithm, consider an arbitrary acyclic dataflow graph G 
= G ( N ,  A)? where N represents the vertices each 
containing a thread and A represents the partial ordering 
+ between the threads. Thus, G represents a partially 
ordered graph of fully ordered instruction. In order to 
locate the various parallel threads in a program graph, the 
algorithm uses a variant of topological sorting. 

The objective is to identify as many parallel threads as 
possible for merging. This is done by processing the 
program graph layer by layer where threads in each layer 
can be executed in parallel and the layers are linearly 
ordered with respect to their precedence constraints. The 

Before a dimted graph G is rocessed, it is transformed into an 
acyclic graph. Such a tranJormation is done by a depth-fint 
traversal marking all backward inting arcs which close loo s 
[121:. This ia necessary ~ n l y  for E'prtitiming pmss -once  i e  
pamtloning is done, the actual program graph is processed. 
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algorithm starts the partitioning process by labeling the 
root vertex as layer I (e.g., ~=i).5 This node is also 
considered as a parent vertex. In succeeding steps, all 
edges (arcs) originating from the parent vertices (e.g., root 
vertex) in layer 1 are removed. We then find all the 
vertices with zero in-degrees and label these vertices as 
layer 1+1. These vertices are siblings of the parent 
vertices. At this point, note the following observations: 
First, the parent vertex may belong to a subgraph that has 
already been formed or by itself represents a subgraph. 
For example, the root vertex itself represents a subgraph 
since there are no other parallel threads that can be 
combined. Second, the siblings in layer 1+1 represent 
parallel threads and thus parallelism. On the basis of these 
observations, a program graph is processed recursively in 
a parent-sibling order between layers 1 and Z+1. 

In order to construct a subgraph of appropriate 
granularity, the siblings in layer kl are merged one-by- 
one. The merging continues until either the average 
parallelism is greater than the required parallelism of the 
subgraph or no more siblings exist in layer Z+1. If a 
subgraph is formed and there remains additional siblings, 
the process is repeated to form a new subgraph. Once all 
the siblings in layer 1+1 are merged into subgraphs, each 
subgraph represents a compound parent vertex for the 
threads in layer 1+2. The algorithm continues until all the 
threads in G have been merged into subgraphs. The 
general outline of the partitioning algorithm is given as 
follows: 

Partitioning Algorithm: 
step 1: 
step 2: 

step 3: 

step 4: 

step 5: 

Step 6: 

step 7: 

h i  the root vertex as 1. 
Repeat Steps 3-7 until all the vertices in G are 
merged into subgraphs. 
Remove all arcs originating from the 
subgraph(s) in layer 1. 
Find all vertices with zero in-degrees. In other 
words, find all the sibling of the parent 
subgraph@) and label them I+ 1. 
In layer 1+1 merge a sibling to form a subgraph 
and recalculatef to reflect the new fraction of 
split-phase loads in the subgraph. 
Determine PAVG of the subgraph. If PAVG is 
less than PREP of the subgraph and siblings not 
yet merged still exist, repeat Step 5; otherwise, 

If siblings that have not been merged still exist, 
goto Step 5 and start the constructing of a new 
subgraph, otherwise, increment 1 and goto step 

goto step 7. 

... 

layer. This is an indication of insufficient parallelism in 
certain parts of the program graph rather than the inability 
of the algorithm to find such parallelism (e.g., a mot 
vertex represents a subgraph that is inherently sequential). 
It is also important to mention that the proposed algorithm 
makes no attempt to merge two sequential threads. The 
reasons are two-fold First, merging two partially ordered 
threads provide no additional parallelism to the subgraph. 
Second, for scheduling purposes it is important to 
distinguish between a parent subgraph and its sibling 
subgraphs. Once a parent is merged with one of its 
siblings, it may introduce unnecessary sequential ordering 
between siblings. 

6. Conclusion 

In this paper, we presented a partitioning strategy for 
multithreaded dataflow computers. The proposed scheme 
is based on the minimum granularity required to mask 
latencies due to split-phase loads. In order to quantify 
such a measure, an expression was developed that reflects 
the amount of parallelism required for a grain, given the 
programming behavior and characteristics of the processor 
pipeline. This measure was then utilized in the proposed 
algorithm to construct a partition that best matches the 
program characteristics with the capability of a given 
multithreaded dataflow computer. 

Once a program graph has been partitioned, the next 
task is the scheduling of the subgraphs to processing 
elements. A number of methods have been proposed in 
the literature can be used to provide an efficient schedule 
[13, 181. In particular, the scheme proposed in [13] that 
allocates dataflow graphs to dataflow multiprocessors can 
be used to schedule subgraphs. The importance of our 
partitioning strategy is that it provides the suitable 
granularity that best matches the programming behavior 
and the characteristics of a processor pipeline. 
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