
Program Partitioning for Multithreaded Dataflow Computers

Ben Lee

Department of Electrical and Computer
Engineering

Oregon State University

Abstract

In recent years, there have been numerous proposals
that represent the current generation of dataflow
computers. Although the spectrum of such architectures is
very broad, a special class of these machines called
multithreaded dataflow multiprocessors have recently
received considerable attention. In multithreaded
dataflow computers, one of the major challenges is the
issue of program partitioning. Therefore, this paper
presents a compile-time partitioning strategy for
multithreaded dataflow computers. The proposed scheme
is based on the minimum granularity required to
maximally utilize a given processor pipeline. To
determine such a partition, architectural and program
characteristics, such as the frequency and the delays of
split-phase loads and their effect on the parallelism
required, are considered. Once these parameters are
known, a partition can be chosen that best matches the
capability of a given multithreaded dataflow
multiprocessor.

1. Introduction

Advocates of the dataflow execution model argued
that highly parallel multiprocessors based on the
conventional control-flow concept are limited by two
fundamental issues: memory latency and synchronization
[Z]. Memory latency is the time that elapses between
issuing a memory request and receiving the corresponding
response. In general, as the system becomes large so does
its latency. The processor idling due to memory latency
can be avoided by providing a facility to perform context
switching. However, conventional multiprocessors incur a
very large overhead during a context switch due to the
existence of substantial local state associated with each
process. Synchronization on the other hand is needed to
enforce the ordering of instructions according to their data
dependencies. In a conventional multiprocessor system, a
program is partitioned into processes based on
programming constructs such as loops, procedures, etc.
Synchronization primitives are placed in parallel programs

Krishna Kavi

Computer Science Engineering Department
The University of Texas at Arlington

either explicitly by the programmer or by the compiler to
enforce the execution ordering of the processes. The
problem is the high overhead cost involved in the
implementation of these synchronization primitives [1 11.
Therefore, the natural tendency is to choose a large
granularity to limit the number of synchronization and
context switching. The net effect is that parallelism is
exploited usually at the large-grain level and thus
sacrificing the potential fme-grain parallelism that exists in
many application programs.

In contrast, the dataflow model of computation offers
many attractive properties for parallel processing. First,
the dataflow model of execution is asynchronous, i.e., the
execution of an instruction is based on the availability of
its operands. Therefore, the synchronization of parallel
activities is implicit in the dataflow model. Second,
instructions in the dataflow model do not impose any
constraints on sequencing except the data dependencies in
the program. Hence, the dataflow graph representation of
a program exposes all fonns of parallelism eliminating the
need to explicitly manage parallel execution of a program.
For high-speed computations, the advantage of the
dataflow approach over the control-flow method stems
from the inherent parallelism embedded at the instruction
level. This allows efficient exploitation of fine-grain
parallelism in application programs.

Due to its simplicity and elegance in describing
parallelism and data dependencies, the dataflow execution
model has been the subject of many research efforts.
Since the early 197Os, a number of hardware prototypes
have been built and evaluated [l , 81, and simulation
studies of different architectural designs and compiling
technologies have been performed 181. The experience
gained from these efforts has led to progressive
development in dataflow computing.

One of the most important development is the
emergence of a novel and simplified process of matching
tokens called direct matching [51. Most recent generation
of dataflow machines, such as Monsoon 151, Epsilon-2 [9],
P-RISC [14], and EM4 117,211, all use direct matching
for detecting enabled nodes thereby eliminating the
expensive and complex process of associative search used
in previous dynamic architectures 111. Another important

0-8186-1060-3425/93 $03.00 0 1993 IEEE

development is a shift in viewpoint on the concept of
dataflow and its implementation. Rather than viewing the
dataflow execution model as the consumption of tokens
and the firing of enabled nodes, it can be thought of as the
execution of multiple interacting sequential threads, where
fork and join are extremely efficient [151. The importance
of this observation is two-fold First, there is a
convergence between control-flow and dataflow concepts.
Second, the latency due to split-phase loads can be masked
by interleaving the execution of independent threads.

In light of the aforementioned discussions, one of the
major challenge is the proper utilization of a processor
pipeline through multithreading. It is apparent that to
mask long and unpredictable latency due to split-phase
transactions an appropriate number of independent threads
must be allocated to a processing element. Therefore, this
paper presents a compile-time partitioning strategy for
multithreaded dataflow machines. The goal of the
proposed scheme is to determine the optimum granularity
that results in maximum utilization of a processor pipelime.
To achieve this, the proposed strategy considers
programming and architectural parameters, such as the
frequency and the delays of split-phase loads, and
evaluates a measure of required parallelism that can be
used to construct an appropriate partition.

The organization of this paper is as follows: Section 2
presents the general characteristics of multithreaded
dataflow computers. Section 3 discusses the problem of
program partitioning for dataflow multiprocessors. In
Section 4, we develop a simple analytical model for
multithreading. The discussion is based on the speedup
attainable and the relative parallelism needed to fully
utilize the available resources in a pipeline processing
element. Section 5 presents a partitioning strategy based
on a measure of required parallelism developed in Section
4. Finally, Section 6 provides a brief conclusion.

2. Multithreaded Dataflow Architectures

In this section, a brief overview is provided to identify
and analyze the characteristics of multithreading. In
multithreaded dataflow computers, a thread of
computation is completely described by an instruction
pointer (IP) and a frame pointer (FP) [5]. The pair of
pointers, <P, Fp>, is regarded as a continuation and it
corresponds to the tag part of a token (terminology used in
lTDA [l]). Thus, on each clock cycle, a different
continuation or thread descriptor can be inserted into the
processor pipeline allowing an arbitrary number of
independent thread to be interleaved. The advantage of
multithreading is that rather than blocking the execution of
other threads a number of different threads can be inserted
into the pipe. This effectively masks long memory
latencies due to split-phase loads.

Dataflow multithreaded architectures can be viewed
as either an evolution of dataflow architectures in the
direction of more explicit control over instruction

execution order, or as an evolution of von Neumann
machines in the direction of better support for
synchronization and tolerance of long latency operations.
We present both possibilities by describing the
architectural organizations of Monsoon and P-RISC.

The basic organization of the Monsoon processing
element (PE) consists of an Execution Pipeline connected
by a Token Queue (Figure 1). The Execution pipeline
implements the dataflow instruction cycle based on the
Explicit Token Store @'E) model [SI. Monsoon provides
a fine-grain dataflow capability by having continuations of
the form <P+r, Fp>, where r is encoded as a literal in the
instructions that represents the next instruction in a logical
sequence (i.e., self-scheduling). Monsoon can also
implement a more conventional form of sequential thread
execution by letting r equal to 1. This is accomplished
using a simple recirculate scheduling paradigm where
continuations are immediately reinserted into the
Execution Pipeline (via Direct Recirculation Path). Since
a continuation completely describes a process, the
processor pipeline can possibly contain eight unrelated
threads. Therefore, the processor pipe can tolerate
unpredictable latency due to split-phase loads as long as
there is sufficient number of tokens (i.e., parallelism) in
the Token Queue.

From
Communication

Network

Tcken
Queue

I
I
I
I
I
I

A ; Processing
I unit Direct

Recirculate :
Path I

I . -1 I

; FomToken
I
I
I
I ; Unit

To
Communication

Network

Figure 1. Organization of Monsoon Processing Element.

488

P-RISC was proposed by Nikhil and h i n d at MIT
[141. The organization of a P-RISC processor pipeline is
shown in Figure 2. As the name suggests, P-RISC is
based on an existing RISC-like instruction set where the
instructions are 3-address frame-to-frame operations.
Note that since P-RISC executes 3-address instructions on
data stored in the frames, “tokens” only carry
continuations. For normal arithmeticflogic instructions,
the continuation is simply the next instruction in the
thread-w in von Neumann scheduling (i.e., @+1, Fp>).
However, unlike the Monsoon, IP basically represents a
program counter in the conventional sense and is
incremented in the Instruction Fetch stage. In case of a
non-local memory instruction, such as a procedure call or
an I-structure read, it is directed to an appropriate PE or I-
structure memory via Load/Store and Start units. To
exploit fine-grain parallelism, the instruction set is
extended with FORK and JOIN operations for thread
initiation and synchronization, respectively. These
operations are simple instructions, not operating system
calls, that are executed directly within the normal
processor pipeline.

Conventional
RISC-based

I Processor

J
Operand Store

I

Measages
to/from Manory

& other PES

I I

Figure 2. Organization of a P-RISC Processing Element.

3. Program Partitioning

There have been a number of proposed methods for
partitioning programs on multithreaded dataflow
multiprocessors. These approaches can be classified as
either medium-grain or come-grain. In the medium-grain
approach, the dataflow graph representation of a program
is transformed into set of threads. A thread is a sequence

of statically ordered instructions where once the first
instruction in the thread is executed the remaining
instructions execute without interruption [20]. Therefore,
a thread defines the basic unit of work from the dataflow
model point-of-view, where synchronization is required
only at the beginning of a thread. There is a number of
thread partitioning algorithms that convert dataflow graph
representation of programs to threads [lo, 19,201. The
basic objectives of these algorithms are to maximize
thread lengths and minimize inter-thread synchronization,
and generate “safe partitions” that can be mapped onto
processors [191.

The second approach is to construct a more coarse-
grain partition. The two major factors that have a direct
affect on the granularity of a partition are (i) the inter-
processor communication overhead and (ii) parallelism.
In general, the total inter-processor communication cost is
minimized by clustering as many instructions as possible
in a partition. An extreme case of this is a uniprocessor
system, where inter-processor communication costs are
non-existent. On the other hand, as granularity becomes
larger the opportunity to exploit parallelism is reduced.
Obviously, these are two conflicting objectives and
theEfore a proper compromise must be provided.

The question is then “what is a proper compromise
between parallelism and communication costs?” Since the
problem of finding the optimum partition is NP-complete
[18], heuristic solutions are generally used to solve the
problem. Sarkar and Hennessy proposed a method that
attempts to partition a program graph on the basis of the
optimum granularity dictated by a cost function that
considers an appropriate balance between communication
overhead and the execution time of the partition [181. This
is achieved by starting with the finest granularity partition
that places each node (i.e., an instruction) in a separate
subgraph. Then, iteratively subgraphs are merged to
generate a new partition that provides the lowest cost
function. This process is repeated until an entire program
has been merged into one subgraph. A cost history is then
used to reconstruct the partition with the lowest cost
function.

Although the aforementioned method succeeds in
providing a compromise between exploiting parallelism
and limiting the communication overhead, it has neglected
to consider an important factor in multithreaded dataflow
multiprocessors-split-phase transactions. In other words,
to find an optimum granularity, a partitioning strategy
must consider the proper utilization of the hardware
resources available. For example, a grain of computation
assigned to a processor contains a set of independent
threads. Since an arbitrary number of threads is
interleaved in the processor pipeline, an important
consideration is the amount of parallelism required in a
particular grain to provide fast context switching
capability that masks the memory latency during split-
phase operations. Therefore, the following sections
develop a quantitative measure for determining the
required parallelism in a grain and an algorithm that

489

utilizes such a measure to construct an appropriate
partition.

4. A Simple Analytical Model

In this section, a simple analytical model is derived
for a pipelined processing element. The general
assumption of the architectural characteristics is based on
the dataflow proposals discussed in Section 2. Each
processing element consists of a number of pipelined
stages connected in a circular ring fashion via a token
queue. We consider the execution of a grain (i.e., a
partition) that consists of a set of threads. The execution
of these threads can be based on two different approaches.
In the first approach, a token is removed from the token
queue at each pipeline clock cycle and inserted in the pipe.
In the second approach, a thread is executed sequentially
until it dies (due to split-phase operations or synchronizing
points). The analysis presented in this section is based on
the latter assumptiow however, regardless of the approach,
the net effect is that different threads are interleaved to
mask the latency involved in split-phase operations.

4.1. The Speedup

In order to model the effect of split-phase load
operations, we can consider the fraction f of a code that
involves such delays. In addition, we define a thread as
any sequence of statically ordered instructions. This is in
contrast to the more restricted definition provided in [20].
The following notations are used in the modelling:

Ni-thelengthofathreadi
P - the number of independent threads

0 k - the number of stages in a pipe
z - the average delay in each pipeline stage
t - the total delay in the execution of an instruction
(i.e., t = 2.k)
f - the fraction of the instructions performing split-
phase load operations

0 tw- the average delay involved in a split-phase load
operation

With these parameters, we can define the serial
execution time Ts required to execute a grain of
computation on a nonpipelined processing element as

i =1
P

i l l
where t = z k and Z N i represent the total number of

instructions in a grain. If the same grain of computation is

executed on a pipelined processing element, the ideal
execution time is given ad

P

i =I
TP = Z* Z N i . (5.2)

This is possible since multithreaded dataflow computers
provide instruction-level context switching capability and
hence a pracessor pipe can accept a token at each clock
cycle.2 The maxi" speedup S,, that can be obtained is

i 3 1

hP
z

= R * (1 - f) + f - -.
Equation 5.3 gives the maximum speedup achievable

in a pipelined processing element, given the fraction of a
code that performs split-phase load operations. The
average delay involved in split-phase loads depends on the
characteristics of the communication network and the
structure memory. In general, for scalable architectures
ip will increase with the number of PES and can be
expected to be greater than the delay of a pipeline stage 2.k
that yields the following bounds:

(5.4)

Equation 5.4 indicates that depending on the delay isp the
upper bound on speedup is limited by the number of
pipeline stages or ~ P / T . An important characteristic noted
from Equation 5.3 is that the speedup can be extended
beyond the number of pipeline stages k by a factor of
&/z. The additional parallelism obviously comes from
masking the latency of split-phase operations by
interleaving a number of threads through the ~ipeline.~

Since the masking of delays due to split-phase loads
can occur only as a result of sufficient parallelism within a
grain, it is of interest to determine the parallelism needed
to keep the pipe full. In order to acquire such an
expression, the parallelism needed to mask the latency of
split-phase loads must be isolated from the parallelism
obtained from pipelining itself. The general speedup S
that can be obtained from masking the latency of split-
phase loads is given as

'
*

We assume Ni and P are sufficiently large auch that start-up
delaye arc negligible.
Although a split-phase operation cnuses a thread IO die. we assumed
that these operatma arc conceptually executcd by all the stagca in
the pipeline, thus a 'result" tdcen can be generated every clock
Cycle.
This is consistant with em 'rid naults 0bt.ined from studies of
HEP, which is a multithm& MIMD architecture [I I].

3

490

i=l

where Ts* represents the sequential pipeline execution
timeofp threads.

4.2. A Measure of the Required Parallelism

Equation 5.5 provides an expression for the speedup
attainable by interleaving a number of threads through a
processor pipeline. In order to determine the parallelism
needed to maintain the pracessor pipeline busy, consider
the relationship between speedup S,parallelism P, and
efficiency E. Since the maximum utilization is achieved
when E = 1, the parallelism required is given as [7]

S tsp
E P = - = f -(7 - 1) + 1. (5.6)

The significance of Equation 5.6 is that it provides a
general insight to the required parallelism within a grain.
It states that the parallelism needed to fully utilize a
processor pipe directly depends on the frequency and the
latency of split-phase loads. For a grain that contains no
split-phase loads, only a single thread is sufficient. On the
other hand, asf increases more threads are required to
mask the latencies. For an extreme and probably
unrealistic case wherefis unity, the number of parallel
threads required is &/z.

The question is then how accurate of a measure is
Equation 5.6 for evaluating the necessary parallelism?
The following theorem is provided to answer this
question:

Theorem 4.1: For a set of equal length parallel
threads, where each threads length is equal to m(&/z-l)
form = 1,2,3 ..., containing a fractionfof split-phase load
instructions each incurring a delay of & p / z , the lower
bound on the number of parallel threads and thus
parallelism P required to keep a k-stage pipeline full is P 2
f-(iv /z- 1 ~ 1 .

Proof: For a given set of threads (i.e., a grain),fis
defined as the ratio of the number of split-phase loads to
the total number of instructions in the grain. Thus, the
proof for Theorem 4.1 can be provided by considering the
maximum number of split-phase loads a grain can have
and yet provide full utilization of a processor pipeline. For
a split-phase load operation j , at least Lp/z-1 other
instructions are needed to fill the pipe before the
succeeding instruction j+l can be executed. To determine
the maximum number of allowable split-phase loads

within a grain, consider how often split-phase load
instructions can be encountered without disrupting the
instruction flow through the pipe.

For P parallel threads, at most P-1 successive split-
phase load operations (i.e., interleaving of different
threads) can occur before &/r-(P-l) instructions are
forced to execute sequentially, of which the last instruction
is a split-phase load. Once this requirement is satisfied,
the blocked node j can continue its execution. merefore,
this process can be observed as a repetitive execution
sequence of P-1 consecutive split-phase loads followed by
rq/z-P normal (i.e., non split-phase) instructions. Since
the thread lengths must be the same, the total number of
instruction executed is P-m(?~p/z-l), where m = 1,2,3 ...
The minimum fraction of the split-phase loads to the total
number of instructions in a grain is then given as f S (P-
1)/(6p/z-l>, which yields P 2f(&/z-l)+l.

Q.E.D

Consider an example of such a case shown in Figure 3
consisting of three parallel threads (i.e., P = 3) and tsp/z =
7. The shaded nodes indicate split-phase load instructions
and the dotted lines imply the precedence relationships
between nodes in a thread. The dark lines illustrate the
execution order of the nodes in the threads. As can be
seen by this example, the maximum number of
consecutive split-phase loads is two before five
instructions from a different thread are forced to execute
sequentially. When this condition is satisfied, the blocked
node at cycle 1 can resume its execution at cycle 8. This
process repeats every 6 clock cycles and yields a result
from the processor pipe every clock cycle.

It is clear from the Theorem 4.1 that when a grain
contains a set of threads, the required parallelism obtained
from Equation 5.6 is the absolute minimum. However, the
above analysis assumes a restricted case where a grain
consists of P parallel threads and the distribution of split-
phase loads within the grain is such that the
aforementioned condition is satisfied. However, such
assumptions are not realistic in practice and to quantify the
amount of parallelism required a more general equation is
needed. This is obtained by the following equation that
considers the required parallelism PREQ , where

(5.7)
and E is the error factor. The error factor E reflects the
amount of additional parallelism needed when the
distribution of split-phase loads within a grain is such that
E#O.

Before we determine the error factor needed for the
required parallelism, it is important to characterize the
meaning of parallelism in a given program graph. In
general, a grain of computation contains threads that are
not of equal lengths and therefore it is often more natural
to determine the amount of parallelism that exists in a
grain in terms of its average parallelism PAVG [7]. The

PREQ= P + E

49 1

\ i I .
I I
I .
I I

FlgUR 3. Ideal case execution sequence of a grain with P = 3,
f = 1/3, and L p /z= 7.

average parallelism of a program graph can be expressed
as a ratio of the total serial execution time to the length of
the critical path in a program 171, i.e.,

P

For the simplest case, we have Ncr = Ni for l%P and
thus PAVG = P .

The amount of parallelism needed can now be
estimated for an arbitrary distribution of split-phase loads
within a grain by considering the error factor E that occurs
when a portion of split-phase loads does not have enough
parallelism (i.e., nodes) to mask the delays. However, this
depends on the characteristic of a program and the method
used to partition a program into valid threads [19].
Therefore, we take a more heuristic approach to
detaining the additional parallelism needed in a grain of
computation by considering how often split-phase loads
can be interleaved before additional parallelism is required
to mask the latency. For P parallel threads, this situation
occurs when P consecutive split-phase loads are processed

492

and the Pth split-phase load instruction causes a stall of
tsp/z-P cycles. This situation is depicted in Figure 4. The
threads are identical to that of Figure 3; however, the
distribution of the split-phase loads is such that additional
nodes (and thus addition parallelism) are needed to
maintain full utilization of the processor pipeline. Thus,
the error factor is given by

The parallelism required to keep the processor pipe busy
can be rewritten as

(5.10)

where P is defined by Equation 5.6.
Equation 5.10 is a measure that can be used to

determine the minimum granularity of a partition.
However, a set of threads within a grain may provide the
appropriate average parallelism PAVG and yet does not
really satisfy the necessary requirement PAVG 2 PREQ.
This can be illustrated by the worst case scenario that
occurs when there exists a partially ordered graph that is
of the “reverse -T” form shown in Figure 5. The average
parallelism in such a graph is given by

NPmar-1 PAVG = 1 + -
NCr ’

where NP M represents the maximum parallelism in the
graph. As can be seen, the characteristic of a “reverse-T”
graph is such that PAVG can satisfy a required parallelism
PREQ as long as NPmar and NCr are selected properly.
For example, as long as 2. NCr = NP mar - 1 , PREP = 3 can
be obtained. Yet, it is obvious that an additional
parallelism of (NCr- l) . (PRN-l) /Ncr is needed and we
can define the maximum parallelism required PREQ, as

NP mar- 1 + (Ncr - 1). (PREP - 1) PREQ’= l+-

= PREP+
(5.9)

NCr NCr
Npmar- PREQ

NCr
Thus, the bounds on parallelism required to keep a
processor pipeline full are

P I PEP I PEQ + 6,
where 6 =

(5.10)
NP mar- PREP

NCr
Note that N P - = PREQ yields PREQ*= PREQ In effect,
Equation 5.9 detects the skewness of the parallelism
available in a grain of computation and provides
aconservative estimate on the additional parallelism
needed to keep a processor pipeline full.

Figure 4. An execution sequence of a grain with a distribution of split-phase loads that
requires additional parallelism (P = 3, f = ID, and k p /? = 7).

I a I

6
6

i . . .
I
I I

6
I I I

!

Figure 5. An example of a "reverse-I"' graph.

5. Partitioning Strategy

In the previous section, a minimum granularity
required to keep a processor pipeline full was discussed.
In this section, an algorithm that constructs such a
partition is presented. In order to illustrate the partitioning
algarithm, consider an arbitrary acyclic dataflow graph G
= G (N , A)? where N represents the vertices each
containing a thread and A represents the partial ordering
+ between the threads. Thus, G represents a partially
ordered graph of fully ordered instruction. In order to
locate the various parallel threads in a program graph, the
algorithm uses a variant of topological sorting.

The objective is to identify as many parallel threads as
possible for merging. This is done by processing the
program graph layer by layer where threads in each layer
can be executed in parallel and the layers are linearly
ordered with respect to their precedence constraints. The

Before a dimted graph G is rocessed, it is transformed into an
acyclic graph. Such a tranJormation is done by a depth-fint
traversal marking all backward inting arcs which close loo s
[121:. This ia necessary ~ n l y for E'prtitiming pmss -once i e
pamtloning is done, the actual program graph is processed.

493

... _. __.____I * ~ - -. , __ . .

algorithm starts the partitioning process by labeling the
root vertex as layer I (e.g., ~=i).5 This node is also
considered as a parent vertex. In succeeding steps, all
edges (arcs) originating from the parent vertices (e.g., root
vertex) in layer 1 are removed. We then find all the
vertices with zero in-degrees and label these vertices as
layer 1+1. These vertices are siblings of the parent
vertices. At this point, note the following observations:
First, the parent vertex may belong to a subgraph that has
already been formed or by itself represents a subgraph.
For example, the root vertex itself represents a subgraph
since there are no other parallel threads that can be
combined. Second, the siblings in layer 1+1 represent
parallel threads and thus parallelism. On the basis of these
observations, a program graph is processed recursively in
a parent-sibling order between layers 1 and Z+1.

In order to construct a subgraph of appropriate
granularity, the siblings in layer kl are merged one-by-
one. The merging continues until either the average
parallelism is greater than the required parallelism of the
subgraph or no more siblings exist in layer Z+1. If a
subgraph is formed and there remains additional siblings,
the process is repeated to form a new subgraph. Once all
the siblings in layer 1+1 are merged into subgraphs, each
subgraph represents a compound parent vertex for the
threads in layer 1+2. The algorithm continues until all the
threads in G have been merged into subgraphs. The
general outline of the partitioning algorithm is given as
follows:

Partitioning Algorithm:
step 1:
step 2:

step 3:

step 4:

step 5:

Step 6:

step 7:

h i the root vertex as 1.
Repeat Steps 3-7 until all the vertices in G are
merged into subgraphs.
Remove all arcs originating from the
subgraph(s) in layer 1.
Find all vertices with zero in-degrees. In other
words, find all the sibling of the parent
subgraph@) and label them I+ 1.
In layer 1+1 merge a sibling to form a subgraph
and recalculatef to reflect the new fraction of
split-phase loads in the subgraph.
Determine PAVG of the subgraph. If PAVG is
less than PREP of the subgraph and siblings not
yet merged still exist, repeat Step 5; otherwise,

If siblings that have not been merged still exist,
goto Step 5 and start the constructing of a new
subgraph, otherwise, increment 1 and goto step

goto step 7.

...

layer. This is an indication of insufficient parallelism in
certain parts of the program graph rather than the inability
of the algorithm to find such parallelism (e.g., a mot
vertex represents a subgraph that is inherently sequential).
It is also important to mention that the proposed algorithm
makes no attempt to merge two sequential threads. The
reasons are two-fold First, merging two partially ordered
threads provide no additional parallelism to the subgraph.
Second, for scheduling purposes it is important to
distinguish between a parent subgraph and its sibling
subgraphs. Once a parent is merged with one of its
siblings, it may introduce unnecessary sequential ordering
between siblings.

6. Conclusion

In this paper, we presented a partitioning strategy for
multithreaded dataflow computers. The proposed scheme
is based on the minimum granularity required to mask
latencies due to split-phase loads. In order to quantify
such a measure, an expression was developed that reflects
the amount of parallelism required for a grain, given the
programming behavior and characteristics of the processor
pipeline. This measure was then utilized in the proposed
algorithm to construct a partition that best matches the
program characteristics with the capability of a given
multithreaded dataflow computer.

Once a program graph has been partitioned, the next
task is the scheduling of the subgraphs to processing
elements. A number of methods have been proposed in
the literature can be used to provide an efficient schedule
[13, 181. In particular, the scheme proposed in [13] that
allocates dataflow graphs to dataflow multiprocessors can
be used to schedule subgraphs. The importance of our
partitioning strategy is that it provides the suitable
granularity that best matches the programming behavior
and the characteristics of a processor pipeline.

References

[l] k i n d and Culler, D. E., “Dataflow Architectures,”
Annual Review in Computer Science, 1986. Vol. 1, pp.

[2] Arvind and Iannucci. R. A., “A Critique of
Multiprocessing von Neumann Style,” Proc. 10th Annual
Symposium Computer Architecture, June 1983, pp. 426-
436.
k i n d , Culler, D. E., and Ekanadham, K.. “The Price of

225-253.

[3]
5. Fine-Grain Asynchronous Parallelism: An Analysis of

Dataflow Methods,” Proc. CONPAR 88, Sept. 1988, pp.

Arvind, Nikhil. R. S., and Pingali, K. K., “I-structures:
Data Structures for Parallel Computing,” Proceedings of
the Workhop on Gruph Reduction. Los Alamos. NM.

Note that the partitioning algorithm may not always

merging process may terminate before the parallelism
requirement has been met due to lack of threads in a given

construct a subgraph with sufficient parallelism. The 541-555.
[4]

1986.
If no root vertex exists, n dummy root vertex is introduced.

. - .. , -, . __ . . . -

494

Culler, D. E. and Papadopoulos, G. M., “The Explicit
Token Store,” Journal of Parallel and Distributed
Computing, Vol. 10, No. 1. December 1990, pp. 289-308.
Culler, D. E. et al., “Fine-Grain Parallelism with Minimal
Hardware Support: A Compiler-Controlled Threaded
Abstracted Machine,” 4th Int’l. Conference on
Architectural Support for Programming h g u a g e s and
Operating Systems, Santa Clara, CA, Apnll991.
Eager, D. L. et al., “Speedup Versus Efficiency in
Parallel Systems,” IEEE Tramaction on Computers, Vol.
38, No. 3, March 1989, pp. 408423.
Gaudiot, J.-L. and Bic, L., “Advanced Topics in Data-
Flow Computing.” Prentice Hall, 1991.
Grafe. V. G. and Hoch. J. E., “The Epsilon-2
Multiprocessor System,” Journal of Parallel and
Distributed Computing, 10,1990, pp. 309-318.
Hoch, J. E. et al., “Compile-time Partitioning of a Non-
strict Languages into sequential Threads,” Proceedings
of the 3rd Symposium on Parallel and Distributed
Processing, Dec. 1991.
Iannucci. “Towards a Dataflowhon Neumann Hybrid
Architecture,” Proc. 15th Annual Int’l. Symposium on
Computer Architecture, 1988, pp. 131-140.
Jordan, H. F., “Performance Measurement on HEP - A
Pipelined MIMD Computer,” Proc. 10th Annual Int’l.
Symposium on Computer Architecture, June 1983.
Lee, B., Hurson, A. R., and Feng, T. Y. “A Vertically
Layered Allocation Scheme for Dataflow Computers,”
Journal of Parallel and Distributed Computing, Vol. 11.
1991. pp. 175-187.

Nikhil, R. S. and Arvind, “Can Dataflow Subsume von
Neumann Computing?,’’ Proc. 16th Annual I d l .
Symposium on Computer Architecture, 1989, pp. 262-
272.
Papadopoulos, G. M. and Traub. K. R.. “Multithreading:
A Revisionist View of Dataflow Architectures,” Proc.
18th Annual I d l . Symposium on Computer Architecture,

Saavedra-Barrera, R. H. et al.. “Analysis of
Multithreaded Architectures for Parallel Computing,” 2nd
Annual ACM Symposium on Parllel Algorithms and
Architectures, July 1990.
Sakai, S. et al., “An Architecture of a Dataflow Single
Chip Processor.” Proc. 16th Annual Int’l. Symposium on
Computer Architecture, 1989, pp. 46-53.
Sarkar, V. and Hennessy. J., “Partitioning Parallel
Programs for Macro-Dataflow,”ACM CO@. on Lisp and
Functional Programming. 1986, pp. 202-21 1.
Schauser, K. E. et al., “Compiler-Controlled
Multithreading for Lenient Parallel Languages,” 5th ACM
Conference on Functional Programming Languages and
Computer Architecture, August 1991. pp. 50-72.
Traub, K. R.. “Global Analysis for Partitioning Non-
Strict Programs into Sequential Threads,” Proceedings of
the ACM on LISP and Functional Programming, June
1992, pp. 326334.
Yamaguchi, Y. et al., “An Architectural Design of a
Highly Parallel Datatlow Machine,” Proc. IFIP Congress

1991, pp. 342-351.

1989, pp. 1155-1160.

495

