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Abstract 
The issue of scalability is key to the success of 

massively parallel processing. Due to their distributed na- 
ture, message-passing multicomputers are appropriate for 
achieving scalar performance. However, the nzessage- 
passing programming model lacks programmability due to 
difficulties encountered by the programmers to partition 
and schedule the computation over the processors and to 
establish efficient inter-processor communication in the 
user code. Therefore, this paper presents a compile-time 
scheduling heuristic, called BLAS, that maps programs 
onto the processors of a message-passing multicomputer. 
In contrast to other methods proposed in the literature, 
BLAS takes a nwre global approach in attempt to balance 
the tradeoff between exploitation of parallelism and reduc- 
ing communication overhead. To evaluate the effective- 
ness of BLAS, detailed simulation studies of scheduling 
SISAL programs are presented. 

1 Introduction 

Two types of parallel programming models have be- 
come prevalent for highly parallel architectures. In the 
shared-memory model, synchronization among processes 
is achieved using shared variables stored in memory with a 
global address space. Due to their natural extension to 
single-CPU systems, shared-memory multiprocessors are 
considered among the easiest parallel computers to pro- 
gram [8]. However, when it comes to building massively 
parallel processors, a major drawback of shared-memory 
multiprocessors is the lack of scalability. In contrast, mul- 
ticomputers based on the message-passing nwdel have dis- 
tributed memories, and synchronization among processes 
is performed using inter-processor communication (WC). 
These systems consist of a collection of multiple comput- 
ers or processors interconnected by message-passing net- 
works (e.g., mesh, hypercube, fat tree, etc.) that provide 
point-to-point static connections among the processors. 
Due to their distributed nature, multicomputers based on 
the message-passing model are better in achieving scalable 
performance. 

A major drawback in programming multicomputers is 
the difficulty of properly coding message-passing primi- 
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tives in the user program. This difficulty is due to the pro- 
cesses or tasks residing on different processors. They 
must use communication primitives, such as send and 
r e c e i ve, and therefore the programmer is forced to be 
constantly aware of the data movements between pro- 
cesses. Another difficult problem is the job of partitioning 
and scheduling of tasks to maximize the inherent concur- 
rency in a program while minimizing IPC costs. These are 
two conflicting objectives which are strongly influenced 
by program and architectural characteristics. 

In light of the aforementioned discussions, a method 
called the Balanced Layered Allocation Scheme (BLAS) is 
proposed that automates the process of partitioning and 
scheduling program graphs onto the processors of multi- 
computers. BLAS is a compile-time method that has been 
implemented to process general program graphs repre- 
sented as directed acyclic graphs. BLAS has also been 
modified to accept SISAL program graphs represented in 
the intermediate form IF2 [13]. Through simulation, the 
effectiveness of BLAS is compared against two scheduling 
algorithms-internalization [IO] and dynamic level 
scheduling [12]. 

2 Partitioning and scheduling 

The two major issues involved in mapping programs 
across the processors of a multicomputer are partitioning 
and scheduling [8, 121. Partitioning refers to the decom- 
position of a program into tasks or processes. On the other 
hand, scheduling refers to the assignment and the ordering 
of these tasks to processors. These two problems are 
referred to as the mapping problem. An effective mapping 
scheme must consider the tradeoff between the amount of 
parallelism exposed and the amount of communication 
overhead incurred. The mapping problem is further 
complicated due to the existence of variety of architectural 
differences as well as interconnection topologies. 

Partitioning programs to tasks is important for a num- 
ber of reasons. A task defines the basic unit of work for 
scheduling and thus the granularity of a computation. 
Therefore, the main goal in partitioning programs to tasks 
is to maximize parallelism while minimize the overhead 
required to support the tasks [ 121. 
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Once a program has been decomposed into tasks, 
these tasks are assigned and scheduled onto the available 
processors. The scheduling process is driven by a number 
of target parameters, such as program and architectural 
characteristics. For example, program characteristics 
define the partial ordering among the tasks in a program 
and is therefore a constraint on how the tasks should be 
assigned to a processor. Architectural characteristics, such 
as latency of the network, also place a constraint on the as- 
signment process. Therefore, the major objective in 
scheduling tasks onto processors is maximizing the inher- 
ent concurrency in a program while minimizing IPC. 

cause the communication overhead associated with the 
predecessor-successor nodes assigned to different 
processors is not considered. For this reason, there have 
been numerous heuristic solutions that consider 
communication overhead, which can be compared on the 
basis of their proximity to optimal solutions and 
complexities [ 1 I]. 

2.1 Preliminaries 

The input to our scheduler is a partially ordered pro- 
gram graph (POPG), which is a directed acyclic graph 
representation of a program G = G(N, A), where N repre- 
sents the set of tasks or nodes and A represents the partial 
ordering < between nodes. Therefore, a directed path from 
node n; to node nj implies that n; precedes nj (i.e., I+ < 
nj). Moreover, an execution time ti associated with jri E 
N. A communication time Cij is associated with all the 
arcs aiiE A . and each aii is assumed to carry a label D0 
that specifies the amount of data transferred from Iii to 
node “j. We assume a POPG is partially ordered in the 
sense that some partitioning is done prior to the scheduling 
process. In other words, the granularity of the nodes in 
POPG is coarser than instruction-level parallelism (as in 
d&flow). 

A related work proposed by Sarkar attempts to mini- 
mize the schedule length on an unbounded number of pro- 
cessors [lo]. Sarkar’s algorithm, called internalization, 
initially places each node in a separate block and then con- 
siders the arcs of the program graph in descending order of 
communication costs. In an iterative fashion, each Gil 
associated with XC aij is set to zero by merging the nodes 
ni and nj into a single block as long as the schedule 
length does not increase (this method is also known as 
edge-zeroing [7]). This process completes when all the 
arcs have been scanned. The scheduling phase then 
merges the blocks until the number of blocks is equal to 
the number of processors. The complexity involved 
determining whether two blocks should be merged is 
O(N + A). Since there are A such iterations, the 
complexity of the internalization algorithm is at least 
O(A(N + A)). 

The scheduling problem consists of assigning the 
nodes N on the set of processor P = ( pl, . . . . p,, ) that sat- 
isfy the partial ordering and optimizes the overall perfor- 
mance. That is, the objective function is to maximize the 
speedup S, which is defined as the single processor execu- 
tion time Ts divided by the parallel execution time on 
multiple processors T,. The upper bound on speedup S is 
defined by the average parallelism S, of a program, 
which can be characterized as the ratio of Ts to the length 
of the critical path in the program Tcp . 

Sih and Lee have proposed a method called the 
Dynamic Level Scheduling (DLS) algorithm that also con- 
siders communication costs [ 121. The algorithm first con- 
siders the static levels of the nodes, where the static level 
of a node is a weight that equals the maximum execution 
time from that node to the exit node. Basically, the sched- 
uler considers the difference between the static level of a 
node and the maximum of the earliest time the node can 
start execution on a processor j (including communication 
costs) and the time the last node assigned to the processor i 
finishes execution. This difference is called the dynamic 
level of a node for a particular processor. The idea is to 
evaluate the dynamic levels of all combinations of ready 
nodes and available processors in an attempt to find the 
best node-processor combination for scheduling. Sih and 
Lee also propose to streamline the algorithm by selecting 
only a single ready node and limiting the number of pro- 
cessors for which dynamic levels are evaluated. 

2.2 Related work 

There have been a number of proposed methods for 
optimally scheduling tasks for limited cases [ 11. However, 
if the execution times vary or if the number of processors 
is greater than two, the problem of optimally scheduling a 
program to processors is NP-complete [lo]. The schedul- 
ing problem is further complicated by the fact that IPC ex- 
ists between nodes assigned to different processors. 
Therefore, heuristics are used solve the scheduling prob- 
lem suboptimally in polynomial time. 

These methods indicate the two contrasting philoso- 
phies on how scheduling should be performed. 
Internalization algorithm attempts to find the best partition 
possible before blocks are merged onto the processors. On 
the other hand, the DLS algorithm is more of a variation of 
list scheduling where a ready node/processor combination 
with the higher precedence (i.e., dynamic level) is sched- 
uled first. Therefore, in general, the internalization algo- 
rithm results’in a better schedule while DLS algorithm is 
faster [12]. 

A number of heuristic algorithms based on critical 
path list schedules have been developed [l, 3, 71. 
However, these methods are not applicable in general be- * 

The key to partitioning a POPG into blocks for the in- 
ternalization algorithm is knowing the IPC costs associ- 
ated with the arcs. The IPC cost between a predecessor 
and a successor processor in a multicomputer with a static 
network is a function of the startup cost, the size of the 
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message, the bandwidth, the hop time, and the number of 
hops between the processor. For commercial parallel 
machines the startup cost dominates the IPC latency. For 
example, The startup overhead for CM-5 can be as high as 
86~~s while the time to actually transport a single packet of 
a message is only 0.126~~~ [91. Moreover, the inter-hop 
distances associated with the arcs are usually not known 
until nodes of a POPG is actually assigned to the 
processors. Thus, the internalization algorithm establishes 
a priority for merging nodes based on a parameter usually 
not known until the assignment takes place. The DLS al- 
gorithm, on the other hand, does not suffer from this prob- 
lem. The earliest time a node can start execution on a pro- 
cessor is determined only after all its predecessor nodes 
have been assigned to processors: therefore, a good esti- 
mation of the IPC cost can be obtained. However, the 
drawback of the DLS algorithm is the scheduling policy 
tends to be greedy, i.e., the assignment process considers 
only the current ready nodes. 

In this paper an alternative method called Balanced 
Layered Allocation Scheme (BLAS) is proposed, which 
eliminates deficiencies with the aforementioned schedul- 
ing policies. BLAS achieves this by taking a more global 
approach to scheduling nodes. The development of BLAS 
emanated from our initial work on scheduling dataflow 
programs on Multistage Interconnection Networks (MIN) 
based dataflow computers, called Vertically Layered (VL) 
allocation scheme [8]. 

3 The proposed method 

3.1 Balanced Layered Allocation Scheme (BLAS) 

BLAS consists of three phases: separation, assign- 
ment, and ordering. The objective of the separation phase 
is to identify as many sets of serially connected nodes as 
possible. Each set of serially connected node is called a 
virtual thread. Only the expected execution times ti are 
considered in determining the virtual threads. 1 The sepa- 
ration phase starts by identifying the critical path of a 
POPG. These nodes are defined as belonging to the vir- 
tual thread Ncp. Since the critical path defines the longest 
path from the root node to the exit node, assignment of the 
critical path to a single processor minimizes IPC associ- 
ated with the critical nodes. For simplicity, if no unique 
critical path exists, the algorithm arbitrary chooses one. 

Once the critical path is identified, the set of nodes 
N,, is marked and queued into a First-In-First-Out 
(FIFO) queue Q while maintaining to their precedence 
constraints. All other virtual threads are determined in an 
iterative manner as follows: Let Nz:ked represent the set 
of nodes that have already been arranged into virtual 

1 BLAS can be easily modified to consider POP& with known IPC 
cost in the separation phase (see Section 6). 

threads at step k-l (initially we have N,&,,.,, = Ncp). A 
node ni is removed from Q and the set of nodes compris- 
ing the longest directed path N,& emanating from ni is 
formed such that 
N&jked n NdP = {0} and N;;,, u N& = N;,,,,, . 
The method used in finding the longest directed path ema- 
nating from ni involves the same procedure as finding the 
critical path without considering the marked nodes. The 
separation phase is similar to the linear clustering algo- 
rithm proposed by Kim and Browne [6]. 

The assignment phase starts by arbitrary assigning 
N, to a processor. Then, each virtual thread NLp, for 
k= 1, 2, 3, . . . . is dequeued from Q and assigned to proces- 
sors in an iterative fashion. In this manner, the effects of 
execution times and communication costs can be weighed 
against the different processor assignments for NLP. 
After weighing the effects of NdP on each processor, the 
virtual thread NdP is assigned to the processor that pro- 
vides the best tradeoff between exposing parallelism and 
minimizing IPC overhead. Currently, there are two pro- 
cessor selection criteria used by BLAS. The first method 
considers all the processors for assignment. The second 
method, which is faster, considers only adjacent proces- 
sors. 

For the iterative assignment of Ndp to each proces- 
sor P, the assignment phase considers the following 
properties: 
(1) Let Tr represent the completion time of processor i 

when Nhp is assigned to processor P. Then the 
completion time, TP, is given by 

Tp=max(T~~P=O, I, . . . . p-l], 

where p is the number of available processors. 
(2) Each set of nodes Nbp is then assigned to the pro- 

cessor P that yields the lowest completion time, Tmin, 
where 

Tmin =min(TP ) P=O, I, . . . . p-l}. 

If Tmrn yields more than one minimum, a processor is arbi- 
trarily chosen. A completion time can be evaluated in a 
similar manner as determining the critical path in the sepa- 
ration phase by processing the POPG in a topological or- 
der that also includes IPC costs. The assignment phase is 
completed when Q is empty. 

The final phase of our scheduler involves ordering of 
the nodes within the processors. This is necessitated by 
the fact that a number of virtual threads can be assigned to 
a processor: therefore, static ordering of the nodes is re- 
quired. For dataflow computers, due to the self scheduling 
property of the dataflow model of computation, the order- 
ing phase is not needed. However, multicomputers based 
on the control-flow model of computation lack this prop- 
erty and require the static ordering of the nodes. 
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The ordering phase starts by considering the earliest 
time ei a node nj can start execution on processor Pi. 
This can be done by basically following the same proce- 
dure as in the separation phase with the inclusion of the 
PC costs, i.e., 

ej = maX (ei+ri +Cy> if Pi# Pj, 
is(PN,) 

where PNj represents the set of all the predecessor nodes 

of nj, and (PNj) denotes the index set of PNj . The 
nodes assigned to a processor is scheduled based on the 
topological order of e’s. 

3.2 An example 

To illustrate the BLAS algorithm, consider the prob- 
lem of scheduling the nodes of POPG shown in Figure 1 to 
a two-dimensional hypercube using all processor selection 
method. For illustrative purposes, we arbitrarily assume 
that communication cost between adjacent processors II; 
and nj is twice the average execution time of a node, i.e., 
CV = C,, = 10 units of time, and the average execution 
time of the nodes in the graph of Figure 1 is 5 units of 
time. Thus, based on the store-and-forward routing 
scheme, we have C,,, = 10, C,, = 10, C,, = 10, C, = 10, 
Cm = 20, and C,, = 20. 

Applying the separation algorithm to the POPG in 
Figure 1 yields the following set of virtual threads: 
@larked = N,,=(Nl, N2, N5, N9, Nil, N13]. NhP 
=(N3, N7, NlO, N12}, NLP ={N4, N8), and NhP 
=(N6}. 

The assignment phase starts by dequeuing the virtual 
thread N,=(Nl, N2, N5, N9, Nil, N13) from Q and ar- 
bitrarily assigning it to processor 2 (Figure 2). The set of 
nodes N’ LDP={N3, N7, NlO, N12) is then dequeued and it- 
eratively assigned to every possible processor to determine 
which assignment yields the lowest completion time. For 
example, assigning the virtual thread NhP to processor 0 
yields: 
T,o =32, T; =0, T; =38, T; =O,and To =38. 
Assigning the virtual thread NLP to processor 1 yields: 

T; =O, T; =42, T; =38, T; =O, and T’ =42. 
Assigning the virtual thread NbP to processor 2 yields: 
To2 =O, Tf =0, T$ =57, Ti =O,and T2 =57. 
Assigning the set of nodes NLP to processor 3 yields: 
T,3=O,T;=O,T;=38,T;=32,and T3=38. 

% 
N13 

6 

Figure 1: An example of a POPG. 

1 layer 0 1 layer 1 1 layer 2 1 layer 3 I 

I I I I I 
i i 

I 
Figure 2: Arbitrary assignment of the critical path. 
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Figure 3: The state of the processors after the 

assignment of N:,,={N3, N7, NlO, N12). 

I layer 0 I layer 1 I layer 2 I layer 3 

I I I I I 

II 

I I I I I 
Figure 4: The final assignment of the program graph in 

Figure 1. 

According to these results, NADP is assigned to the proces- 
sor that yields the lowest completion time, i.e., 
7’m;n=min(To=38,T’=42,T2=57.T3=38). 
Therefore, NhDP can be assigned to either processor 0 or 3. 
Processor 3 is chosen arbitrarily as illustrated in Figure 3. 
After all the nodes in Figure 1 have been assigned, a lay- 
ered graph shown in Figure 4 is generated. 

There are a number of important observations that can 
be made about the characteristics of our scheduling algo- 
rithm. First, the particular assignment in Figure 4 results 
in the optimum schedule. Second, the heuristics for de- 
termining virtual threads employ a priority by giving the 
highest priority to the critical path and then to the longest 
directed paths emanating from the nodes that have been al- 
ready converted to virtual threads. Finally, the scheduling 
process provides an ideal tradeoff between parallelism and 
IPC overhead. For example, consider the assignment of 
the virtual thread NhP ={N4, N8). Any other assign- 
ment of NhP other than processor 0 results in an in- 
creased completion time. After the static ordering of the 
nodes for each processor, the final schedule is shown in 
Figure 5. Note that the same schedule would have been 
generated by using the adjacent processor selection 
method . 

The absolute worst-case time complexity of our 
scheduling algorithm is O(N(N + A)), where N is the 
number of nodes and A is the number of arcs. This is 
based on the assumption that the time complexity of de- 
termining LDPs decreases incrementally with each itera- 
tion. In reality, the time complexity decreases at a much 
faster rate with each iteration and therefore results in a 
time complexity of O((p+ V)(N +A)), for V <<N, 
where p is the number of processors and V is the number 
of virtual threads. 

4 Transformation of SISAL programs to 
POPGs 

Major motivation of Streams and Iterations in a Single 
Assignment Language (SISAL) is to provide a parallel 
language that promotes the development of correct parallel 
programs by isolating the programmer from the 
overwhelming complexities of parallel computing [2]. 
This is achieved in SISAL by exposing implicit 
parallelism through data independence and guaranteeing 
determinate results with their side-effect free semantics. 

SISAL front-end compiles programs into intermediate 
forms, called IF1 and IF2. These intermediate forms are 
based on acyclic graphs that define dependences among 
the instructions in a program. Therefore, they are an ap- 
propriate mean to develop a conceptual framework for un- 
derstanding program behavior and thus scheduling pro- 
grams. IF1 (and its optimized counterpart IF2) consists 
four components [ 131: Nodes represent operations; edges 
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0 3 8 13 15 18 20 22 24 32 36 38 

Figure 5: The final schedule for the POPG in Figure 1. 

correspond to values that are passed from one node to an- 
other, types can be attached to each edge or function; and 
graph boundaries define subgraphs, each consisting of a 
group of nodes and edges. The graph boundaries and 
nodes have numbered ports to distinguish multiple inputs 
and outputs. Values that cross graph boundaries are refer 
to as imports and exports. IF1 nodes are hierarchical and 
can be of two types: simple or compound. The outputs of 
a simple node is a direct function of its inputs (there are 
over fifty simple nodes). A compound node contains 
subgraphs and its output depends on the interaction among 
these subgraphs. There are five compound nodes in IFl: 
Select,TagCase, Forall,While, and Until. 

Before SISAL programs can be scheduled using 
BLAS, they must be converted to equivalent POPGs. 
There are two main parts to the conversion process: (1) 
Transformation of implicit dependences of IF2 to explicit 
dependences and (2) transformation of loops. The first 
transformation is required because inputs and outputs of 
graph boundaries are not connected as in the dataflow 
sense. Therefore, implicit dependences are converted to 
data dependences by identifying matching export and im- 
port port numbers as well as considering the semantics of 
the compound node. This is done by using an associariou 
list that defines a mapping between the subgraphs and 
their intended use by the compound node. In order for the 
transformation to take place, three types of dependencies 
must be considered within a compound node [ 131: 
. Data dependence between the compound node and its 

subgraphs - This occurs when a compound node 
passes some of its input values to its subgraphs. or 
when a subgraph returns values that become the re- 
sults of the compound node. 

. Data dependence among subgraphs - This occurs in 
loops, where the loop values calculated in the loop 
body are passed to the result part and back into the 
loop body. 

l Control dependence - This occurs when a predicate 
determines which expression to evaluate, or when an 
iterative loop is to terminate. 

The transformation process uses the information provided 
by the association lists to construct an equivalent POPG. 
The conversion process only maintains the acyclic depen- 
dences. 

The transformation of loops is performed in order to 
unravel parallelism in loop constructs. In SISAL, the main 
source of parallelism comes from Forall loops. 
Therefore, body subgraphs of Forall compound nodes 
are duplicated according to the number of parallel itera- 

tions. It is important to note that instruction-level paral- 
lelism within a subgraph is not exposed. Our studies indi- 
cate exploiting parallelism within a subgraph result in no 
real benefit due to their fine-grain nature. Thus, the nodes 
within a subgraph are serialized to form a single macro 
node. Nested Forall loops are also handled in a similar 
manner. 

Another type of transformation is performed on While 
and Until loops. The While and Until compound 
nodes repeatedly apply the loop body to a set of values, 
stopping and returning results when the test becomes false. 
The difference between the two constructs is that While 
performs the test for termination before the body is exe- 
cuted while Unt i 1 performs the termination test after the 
body has executed. The transformation process basically 
serializes the execution of the loop bodies according to the 
number of iterations. This parameter can be defined ex- 
plicitly by the programmer, derived by the compiler, or 
refined by monitoring previous executions of SISAL pro- 
gram. Currently, we rely on data obtained from the execu- 
tion of SISAL programs. 

The final transformation occurs with conditionals, i.e., 
Select compound nodes. The Select is used to handle 
two-way selection (i.e., “if-then-else”) and contains the 
Selector subgraph representing a predicate and two 
Alternative subgraphs corresponding to true or false 
branches. Since the result of the predicate is known only 
at run-time, we assign a probability to each of the 
Alternative subgraphs such that ptrl‘e + Pfalse = 1. By de- 
fault, all subgraphs other than the Select node has a prob- 
ability of 1. The conversion process to POPGs is done by 
multiplying the true and false subgraph execution times 
with its respective probabilities to form a single node. 

5 Simulation studies 

In this section, the performance of BLAS is compared 
with the internalization and the DLS algorithms. Instead 
of streamlined version, DLS algorithm was implemented 
to evaluate dynamic levels over all combinations of ready 
nodes and available processors to provide a fair compari- 
son. 

There were a number of input program graphs used 
for this comparison. The first set consisted of several hy- 
pothetical graphs generated by hand containing between 
13 to 193 nodes. The second set of graphs was obtained 
by transforming IF2 graphs generated from SISAL pro- 
grams. 
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Our target architectures for the simulation studies 
were hypercube and mesh with the following assumptions: 
(1) 

(2) 

For the hypothetical graphs, the execution times for 
the nodes were uniformly distributed over 
[tminl f,,]. For IF2 graphs generated from SISAL, 
the execution time ti for each node is assigned from 
IF2 Execution Cost Profile. This is a machine depen- 
dent parameter obtained from SISAL, where each 
simple node (i.e., instruction) is associated with num- 
ber of clock cycles and is representative of modern 
processor execution costs. 
The IPC costs are based on nCUBE 3 using cut- 
through routing [4]: 

Dij 
C,=i,+ht,+BW, ifi#j 

where t, is the startup latency, t, is the per-hop time, 
h represents the number of hops the message travels. 
Dii is the length of the message, and BW is the chan- 
nel bandwidth. The startup latency fs consists of the 
time to prepare the message, the time to execute the 
routing algorithm, and the time to establish an inter- 
face between the local processor and the router. 
Based on the nCUBE 3, t, is assumed to be around 5 
ps or 250 processor cycles. The terms ht, + Dv / BW 
is called the transport time, and it represents the time 
spent from when the head of the message leaves pro- 
cessor i to when the tail of the message arrives at pro- 
cessor j. nCUBE 3 is claimed to have a network 
bandwidth of nearly SOMbytes/s; therefore, for small 
messages we assume the transport time is dominated 
by the term ht,. With intermediate per-hop latency 
of 200 ns (or 10 cycles), Cii is given as 

Cy = 250 + h. 10 cycles if i fj . and 
c, = 0 ifi=j. 

Based on these assumptions. the ratio of startup time 
to per-hop time I,/(,, was kept constant at 25. In order to 
take into effect the granularity of computation, the IPC 
costs were varied based on a ratio of communication to 
execution time, C/T. This was done by keeping the aver- 
age execution time T fixed while the communication cost 
C was varied. This allowed us to study the performance 
of the scheduling algorithm under varying granularity of 
computation. 

To illustrate the results of the simulation studies, L2 
and 10x10 matmult were chosen as representative 
PGPGs. L2 is a 193-node hand generated hypothetical 
graph that performs assignment and sequencing [8]. The 
execution times for the nodes were uniformly distributed 
over [ 10,401 with an average execution time of 25. 10x10 
ma tmul t is a 134-node matrix multiplication program 
generated from IF2. The range of node execution time is 
[0,250] with an average node execution time of 99. In or- 
der to increase the granularity. the inner-loop containing 
multiplication and reduction for each i and j iterations was 
lumped into a single node. We have experimented with 

parallelizing of the inner-loop: however, due to its fine- 
grained nature (compared to the IPC costs) the expansion 
provided no real benefit. Figures 6 and 7 depict the total 
execution times versus number of processors for L2 for 
varying C/T ratios on a hypercube and a fix@ 
mesh, respectively. Figures 8 and 9 show the performance 
for 10x 10 mat mu 1 t for varying C/T ratios on a hyper- 
cube and a fix fi mesh, respectively. 

As expected, the execution time for the BLAS de- 
creases as the number of processors increases for both 
POPGs. Moreover, as the IPC overhead increased, so did 
the execution times illustrating the important effect com- 
munication overhead has on the overall performance. L2 
and 10x 10 matmu 1 t have maximum parallelism of 17 
and 25, respectively, therefore no real benefit is gained by 
adding additional processors beyond maximum paral- 
lelism. In addition, as C/T ratio increases, less number of 
processors is required before the performance begins to 
saturate. 

In general, BLAS (both all processor and adjacent 
processor selection methods) outperformed both intemal- 
ization and DLS algorithms. For the internalization algo- 
rithm, the two step process of minimization of the execu- 
tion time on an unbounded number of processors followed 
by an assignment to a fixed number of processors does not 
necessarily provide a good mapping. This is because the 
order in which the nodes are clustered is usually very cru- 
cial to partitioning step of the internalization algorithm. 
However, when the IPC overhead is almost constant or 
unknown. due to small number of messages, the clustering 
the nodes based on this parameter becomes less effective. 
Another problem with the internalization is that after the 
nodes are partitioned into blocks, the blocks are assigned 
onto the processors using a modified priority list schedul- 
ing, which tends to be greedy. 

The DLS algorithm also has similar problems due to 
its greedy nature. In fact, the DLS algorithm exhibits an 
interesting behavior when the number of available proces- 
sors is small. Whenever, dynamic levels are evaluated for 
two nodes generated from a fork, i.e., nodes which have 
the same parent node. the node with the higher static level 
will be scheduled onto the same processor as the parent 
node. Depending on the dynamic level, the second child 
node will either be scheduled onto the same processor as 
the parent node or to another processor. Often the node 
will be scheduled onto another processor despite the fact 
that the overall performance would have been better if the 
node was scheduled onto the same processor as the parent 
node. Thus, when the number of processors is small, 
thrashing of IPC occurs and the performance degrades. 
This problem does not occur when the number of proces- 
sor is sufficiently large because there are more processors 
to choose from. This problem is more severe for the 
matmult because of its symmetrical nature containing 
mainly of joins and forks. 

Figure 10 shows a comparison between the two pro- 
cessor selection methods for matmu 1 t . This is a plot that 
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Figure 6: Execution time vs. number of processors for L2 on a hypercube. 
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Figure 10: A comparison between the two processor 
selection methods for matmult 

shows the difference between the two speedups (i.e., 
.SAI, - S,4) for various matrix sizes. The average execu- 
tion time varied from 99 (for 10x10) to 250 (for 25x25), 
and again the startup time and the inter-hop time were 250 
and 10, respectively. Due to the greedy nature of the adja- 
cent processor selection method, its performance is always 
worse than the all processor selection method. The differ- 
ence is even more profound as the number of processors 
available for the selection increases. For extreme cases, 
the differences in speedup can be as much as 25 for 25-by- 
25 matrix on 128 processors. The main reason for such a 
large difference is the ability of the any processor selection 
method to spread out the load over a large number of pro- 
cessors. However, the improvement in performance has a 
cost in terms of added complexity. 

6 Summary and Future Research 

In this paper, a compile time method, called BLAS, 
for scheduling POPGs onto multicomputers was presented. 
A method for transforming IF2 graph from SISAL to 
POPGs was also described. In contrast to list scheduling 
algorithms, BLAS takes a more global approach by first 
partitioning a program graph into virtual threads, and then 
assigning the virtual threads to processors. In general, the 
BLAS is very successful in providing a balance between 
exploiting parallelism and reducing communication over- 
head due to (1) the concept of virtual threads that serializes 
the nodes when no parallelism exists, and (2) the as- 
signment of a virtual thread is always optimum relative to 
virtual threads that have already been assigned to proces- 
sors. 

Although our simulation studies indicate promising 
improvement over internalization and DLS algorithms. 
some optimization can be made to BLAS. For larger mes- 
sages, including the cost of messages on the arcs would be 

an additional benefit in determining the virtual threads in 
the separation phase. This would lead to a reduction in 
IPC overhead not only due to startup costs, but also due to 
relatively large message sizes. Another improvement 
would be to consider combining different messages des- 
tined for the same processor. As discussed in Section 2.2, 
the startup costs dominates the PC overhead: therefore, 
concatenating messages destined for the same processor 
will eliminate the additional startup costs incurred by 
sending different packets of shorter messages. 
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