
Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

A Strategy for Scheduling Partially Ordered Program Graphs
onto Multicomputers

Ben Lee and Chae Shin

Oregon State University
Department of Electrical and Computer

Engineering

Abstract
The issue of scalability is key to the success of

massively parallel processing. Due to their distributed na-
ture, message-passing multicomputers are appropriate for
achieving scalar performance. However, the nzessage-
passing programming model lacks programmability due to
difficulties encountered by the programmers to partition
and schedule the computation over the processors and to
establish efficient inter-processor communication in the
user code. Therefore, this paper presents a compile-time
scheduling heuristic, called BLAS, that maps programs
onto the processors of a message-passing multicomputer.
In contrast to other methods proposed in the literature,
BLAS takes a nwre global approach in attempt to balance
the tradeoff between exploitation of parallelism and reduc-
ing communication overhead. To evaluate the effective-
ness of BLAS, detailed simulation studies of scheduling
SISAL programs are presented.

1 Introduction

Two types of parallel programming models have be-
come prevalent for highly parallel architectures. In the
shared-memory model, synchronization among processes
is achieved using shared variables stored in memory with a
global address space. Due to their natural extension to
single-CPU systems, shared-memory multiprocessors are
considered among the easiest parallel computers to pro-
gram [8]. However, when it comes to building massively
parallel processors, a major drawback of shared-memory
multiprocessors is the lack of scalability. In contrast, mul-
ticomputers based on the message-passing nwdel have dis-
tributed memories, and synchronization among processes
is performed using inter-processor communication (WC).
These systems consist of a collection of multiple comput-
ers or processors interconnected by message-passing net-
works (e.g., mesh, hypercube, fat tree, etc.) that provide
point-to-point static connections among the processors.
Due to their distributed nature, multicomputers based on
the message-passing model are better in achieving scalable
performance.

A major drawback in programming multicomputers is
the difficulty of properly coding message-passing primi-

1060-3425/95$4.0001995 IEEE

A. R. Hurson

The Pennsylvania State University
Computer Science and Engineering

Department

tives in the user program. This difficulty is due to the pro-
cesses or tasks residing on different processors. They
must use communication primitives, such as send and
r e c e i ve, and therefore the programmer is forced to be
constantly aware of the data movements between pro-
cesses. Another difficult problem is the job of partitioning
and scheduling of tasks to maximize the inherent concur-
rency in a program while minimizing IPC costs. These are
two conflicting objectives which are strongly influenced
by program and architectural characteristics.

In light of the aforementioned discussions, a method
called the Balanced Layered Allocation Scheme (BLAS) is
proposed that automates the process of partitioning and
scheduling program graphs onto the processors of multi-
computers. BLAS is a compile-time method that has been
implemented to process general program graphs repre-
sented as directed acyclic graphs. BLAS has also been
modified to accept SISAL program graphs represented in
the intermediate form IF2 [13]. Through simulation, the
effectiveness of BLAS is compared against two scheduling
algorithms-internalization [IO] and dynamic level
scheduling [12].

2 Partitioning and scheduling

The two major issues involved in mapping programs
across the processors of a multicomputer are partitioning
and scheduling [8, 121. Partitioning refers to the decom-
position of a program into tasks or processes. On the other
hand, scheduling refers to the assignment and the ordering
of these tasks to processors. These two problems are
referred to as the mapping problem. An effective mapping
scheme must consider the tradeoff between the amount of
parallelism exposed and the amount of communication
overhead incurred. The mapping problem is further
complicated due to the existence of variety of architectural
differences as well as interconnection topologies.

Partitioning programs to tasks is important for a num-
ber of reasons. A task defines the basic unit of work for
scheduling and thus the granularity of a computation.
Therefore, the main goal in partitioning programs to tasks
is to maximize parallelism while minimize the overhead
required to support the tasks [121.

133

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

Once a program has been decomposed into tasks,
these tasks are assigned and scheduled onto the available
processors. The scheduling process is driven by a number
of target parameters, such as program and architectural
characteristics. For example, program characteristics
define the partial ordering among the tasks in a program
and is therefore a constraint on how the tasks should be
assigned to a processor. Architectural characteristics, such
as latency of the network, also place a constraint on the as-
signment process. Therefore, the major objective in
scheduling tasks onto processors is maximizing the inher-
ent concurrency in a program while minimizing IPC.

cause the communication overhead associated with the
predecessor-successor nodes assigned to different
processors is not considered. For this reason, there have
been numerous heuristic solutions that consider
communication overhead, which can be compared on the
basis of their proximity to optimal solutions and
complexities [1 I].

2.1 Preliminaries

The input to our scheduler is a partially ordered pro-
gram graph (POPG), which is a directed acyclic graph
representation of a program G = G(N, A), where N repre-
sents the set of tasks or nodes and A represents the partial
ordering < between nodes. Therefore, a directed path from
node n; to node nj implies that n; precedes nj (i.e., I+ <
nj). Moreover, an execution time ti associated with jri E
N. A communication time Cij is associated with all the
arcs aiiE A . and each aii is assumed to carry a label D0
that specifies the amount of data transferred from Iii to
node “j. We assume a POPG is partially ordered in the
sense that some partitioning is done prior to the scheduling
process. In other words, the granularity of the nodes in
POPG is coarser than instruction-level parallelism (as in
d&flow).

A related work proposed by Sarkar attempts to mini-
mize the schedule length on an unbounded number of pro-
cessors [lo]. Sarkar’s algorithm, called internalization,
initially places each node in a separate block and then con-
siders the arcs of the program graph in descending order of
communication costs. In an iterative fashion, each Gil
associated with XC aij is set to zero by merging the nodes
ni and nj into a single block as long as the schedule
length does not increase (this method is also known as
edge-zeroing [7]). This process completes when all the
arcs have been scanned. The scheduling phase then
merges the blocks until the number of blocks is equal to
the number of processors. The complexity involved
determining whether two blocks should be merged is
O(N + A). Since there are A such iterations, the
complexity of the internalization algorithm is at least
O(A(N + A)).

The scheduling problem consists of assigning the
nodes N on the set of processor P = (pl, p,,) that sat-
isfy the partial ordering and optimizes the overall perfor-
mance. That is, the objective function is to maximize the
speedup S, which is defined as the single processor execu-
tion time Ts divided by the parallel execution time on
multiple processors T,. The upper bound on speedup S is
defined by the average parallelism S, of a program,
which can be characterized as the ratio of Ts to the length
of the critical path in the program Tcp .

Sih and Lee have proposed a method called the
Dynamic Level Scheduling (DLS) algorithm that also con-
siders communication costs [121. The algorithm first con-
siders the static levels of the nodes, where the static level
of a node is a weight that equals the maximum execution
time from that node to the exit node. Basically, the sched-
uler considers the difference between the static level of a
node and the maximum of the earliest time the node can
start execution on a processor j (including communication
costs) and the time the last node assigned to the processor i
finishes execution. This difference is called the dynamic
level of a node for a particular processor. The idea is to
evaluate the dynamic levels of all combinations of ready
nodes and available processors in an attempt to find the
best node-processor combination for scheduling. Sih and
Lee also propose to streamline the algorithm by selecting
only a single ready node and limiting the number of pro-
cessors for which dynamic levels are evaluated.

2.2 Related work

There have been a number of proposed methods for
optimally scheduling tasks for limited cases [11. However,
if the execution times vary or if the number of processors
is greater than two, the problem of optimally scheduling a
program to processors is NP-complete [lo]. The schedul-
ing problem is further complicated by the fact that IPC ex-
ists between nodes assigned to different processors.
Therefore, heuristics are used solve the scheduling prob-
lem suboptimally in polynomial time.

These methods indicate the two contrasting philoso-
phies on how scheduling should be performed.
Internalization algorithm attempts to find the best partition
possible before blocks are merged onto the processors. On
the other hand, the DLS algorithm is more of a variation of
list scheduling where a ready node/processor combination
with the higher precedence (i.e., dynamic level) is sched-
uled first. Therefore, in general, the internalization algo-
rithm results’in a better schedule while DLS algorithm is
faster [12].

A number of heuristic algorithms based on critical
path list schedules have been developed [l, 3, 71.
However, these methods are not applicable in general be- *

The key to partitioning a POPG into blocks for the in-
ternalization algorithm is knowing the IPC costs associ-
ated with the arcs. The IPC cost between a predecessor
and a successor processor in a multicomputer with a static
network is a function of the startup cost, the size of the

134

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

message, the bandwidth, the hop time, and the number of
hops between the processor. For commercial parallel
machines the startup cost dominates the IPC latency. For
example, The startup overhead for CM-5 can be as high as
86~~s while the time to actually transport a single packet of
a message is only 0.126~~~ [91. Moreover, the inter-hop
distances associated with the arcs are usually not known
until nodes of a POPG is actually assigned to the
processors. Thus, the internalization algorithm establishes
a priority for merging nodes based on a parameter usually
not known until the assignment takes place. The DLS al-
gorithm, on the other hand, does not suffer from this prob-
lem. The earliest time a node can start execution on a pro-
cessor is determined only after all its predecessor nodes
have been assigned to processors: therefore, a good esti-
mation of the IPC cost can be obtained. However, the
drawback of the DLS algorithm is the scheduling policy
tends to be greedy, i.e., the assignment process considers
only the current ready nodes.

In this paper an alternative method called Balanced
Layered Allocation Scheme (BLAS) is proposed, which
eliminates deficiencies with the aforementioned schedul-
ing policies. BLAS achieves this by taking a more global
approach to scheduling nodes. The development of BLAS
emanated from our initial work on scheduling dataflow
programs on Multistage Interconnection Networks (MIN)
based dataflow computers, called Vertically Layered (VL)
allocation scheme [8].

3 The proposed method

3.1 Balanced Layered Allocation Scheme (BLAS)

BLAS consists of three phases: separation, assign-
ment, and ordering. The objective of the separation phase
is to identify as many sets of serially connected nodes as
possible. Each set of serially connected node is called a
virtual thread. Only the expected execution times ti are
considered in determining the virtual threads. 1 The sepa-
ration phase starts by identifying the critical path of a
POPG. These nodes are defined as belonging to the vir-
tual thread Ncp. Since the critical path defines the longest
path from the root node to the exit node, assignment of the
critical path to a single processor minimizes IPC associ-
ated with the critical nodes. For simplicity, if no unique
critical path exists, the algorithm arbitrary chooses one.

Once the critical path is identified, the set of nodes
N,, is marked and queued into a First-In-First-Out
(FIFO) queue Q while maintaining to their precedence
constraints. All other virtual threads are determined in an
iterative manner as follows: Let Nz:ked represent the set
of nodes that have already been arranged into virtual

1 BLAS can be easily modified to consider POP& with known IPC
cost in the separation phase (see Section 6).

threads at step k-l (initially we have N,&,,.,, = Ncp). A
node ni is removed from Q and the set of nodes compris-
ing the longest directed path N,& emanating from ni is
formed such that
N&jked n NdP = {0} and N;;,, u N& = N;,,,,, .
The method used in finding the longest directed path ema-
nating from ni involves the same procedure as finding the
critical path without considering the marked nodes. The
separation phase is similar to the linear clustering algo-
rithm proposed by Kim and Browne [6].

The assignment phase starts by arbitrary assigning
N, to a processor. Then, each virtual thread NLp, for
k= 1, 2, 3, is dequeued from Q and assigned to proces-
sors in an iterative fashion. In this manner, the effects of
execution times and communication costs can be weighed
against the different processor assignments for NLP.
After weighing the effects of NdP on each processor, the
virtual thread NdP is assigned to the processor that pro-
vides the best tradeoff between exposing parallelism and
minimizing IPC overhead. Currently, there are two pro-
cessor selection criteria used by BLAS. The first method
considers all the processors for assignment. The second
method, which is faster, considers only adjacent proces-
sors.

For the iterative assignment of Ndp to each proces-
sor P, the assignment phase considers the following
properties:
(1) Let Tr represent the completion time of processor i

when Nhp is assigned to processor P. Then the
completion time, TP, is given by

Tp=max(T~~P=O, I, p-l],

where p is the number of available processors.
(2) Each set of nodes Nbp is then assigned to the pro-

cessor P that yields the lowest completion time, Tmin,
where

Tmin =min(TP) P=O, I, p-l}.

If Tmrn yields more than one minimum, a processor is arbi-
trarily chosen. A completion time can be evaluated in a
similar manner as determining the critical path in the sepa-
ration phase by processing the POPG in a topological or-
der that also includes IPC costs. The assignment phase is
completed when Q is empty.

The final phase of our scheduler involves ordering of
the nodes within the processors. This is necessitated by
the fact that a number of virtual threads can be assigned to
a processor: therefore, static ordering of the nodes is re-
quired. For dataflow computers, due to the self scheduling
property of the dataflow model of computation, the order-
ing phase is not needed. However, multicomputers based
on the control-flow model of computation lack this prop-
erty and require the static ordering of the nodes.

135

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

The ordering phase starts by considering the earliest
time ei a node nj can start execution on processor Pi.
This can be done by basically following the same proce-
dure as in the separation phase with the inclusion of the
PC costs, i.e.,

ej = maX (ei+ri +Cy> if Pi# Pj,
is(PN,)

where PNj represents the set of all the predecessor nodes

of nj, and (PNj) denotes the index set of PNj . The
nodes assigned to a processor is scheduled based on the
topological order of e’s.

3.2 An example

To illustrate the BLAS algorithm, consider the prob-
lem of scheduling the nodes of POPG shown in Figure 1 to
a two-dimensional hypercube using all processor selection
method. For illustrative purposes, we arbitrarily assume
that communication cost between adjacent processors II;
and nj is twice the average execution time of a node, i.e.,
CV = C,, = 10 units of time, and the average execution
time of the nodes in the graph of Figure 1 is 5 units of
time. Thus, based on the store-and-forward routing
scheme, we have C,,, = 10, C,, = 10, C,, = 10, C, = 10,
Cm = 20, and C,, = 20.

Applying the separation algorithm to the POPG in
Figure 1 yields the following set of virtual threads:
@larked = N,,=(Nl, N2, N5, N9, Nil, N13]. NhP
=(N3, N7, NlO, N12}, NLP ={N4, N8), and NhP
=(N6}.

The assignment phase starts by dequeuing the virtual
thread N,=(Nl, N2, N5, N9, Nil, N13) from Q and ar-
bitrarily assigning it to processor 2 (Figure 2). The set of
nodes N’ LDP={N3, N7, NlO, N12) is then dequeued and it-
eratively assigned to every possible processor to determine
which assignment yields the lowest completion time. For
example, assigning the virtual thread NhP to processor 0
yields:
T,o =32, T; =0, T; =38, T; =O,and To =38.
Assigning the virtual thread NLP to processor 1 yields:

T; =O, T; =42, T; =38, T; =O, and T’ =42.
Assigning the virtual thread NbP to processor 2 yields:
To2 =O, Tf =0, T$ =57, Ti =O,and T2 =57.
Assigning the set of nodes NLP to processor 3 yields:
T,3=O,T;=O,T;=38,T;=32,and T3=38.

%
N13

6

Figure 1: An example of a POPG.

1 layer 0 1 layer 1 1 layer 2 1 layer 3 I

I I I I I
i i

I
Figure 2: Arbitrary assignment of the critical path.

136

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

1 layer 0 1 layer 1 1 layer 2 layer 3

1

1 I

I I I I

I i

I
Figure 3: The state of the processors after the

assignment of N:,,={N3, N7, NlO, N12).

I layer 0 I layer 1 I layer 2 I layer 3

I I I I I

II

I I I I I
Figure 4: The final assignment of the program graph in

Figure 1.

According to these results, NADP is assigned to the proces-
sor that yields the lowest completion time, i.e.,
7’m;n=min(To=38,T’=42,T2=57.T3=38).
Therefore, NhDP can be assigned to either processor 0 or 3.
Processor 3 is chosen arbitrarily as illustrated in Figure 3.
After all the nodes in Figure 1 have been assigned, a lay-
ered graph shown in Figure 4 is generated.

There are a number of important observations that can
be made about the characteristics of our scheduling algo-
rithm. First, the particular assignment in Figure 4 results
in the optimum schedule. Second, the heuristics for de-
termining virtual threads employ a priority by giving the
highest priority to the critical path and then to the longest
directed paths emanating from the nodes that have been al-
ready converted to virtual threads. Finally, the scheduling
process provides an ideal tradeoff between parallelism and
IPC overhead. For example, consider the assignment of
the virtual thread NhP ={N4, N8). Any other assign-
ment of NhP other than processor 0 results in an in-
creased completion time. After the static ordering of the
nodes for each processor, the final schedule is shown in
Figure 5. Note that the same schedule would have been
generated by using the adjacent processor selection
method .

The absolute worst-case time complexity of our
scheduling algorithm is O(N(N + A)), where N is the
number of nodes and A is the number of arcs. This is
based on the assumption that the time complexity of de-
termining LDPs decreases incrementally with each itera-
tion. In reality, the time complexity decreases at a much
faster rate with each iteration and therefore results in a
time complexity of O((p+ V)(N +A)), for V <<N,
where p is the number of processors and V is the number
of virtual threads.

4 Transformation of SISAL programs to
POPGs

Major motivation of Streams and Iterations in a Single
Assignment Language (SISAL) is to provide a parallel
language that promotes the development of correct parallel
programs by isolating the programmer from the
overwhelming complexities of parallel computing [2].
This is achieved in SISAL by exposing implicit
parallelism through data independence and guaranteeing
determinate results with their side-effect free semantics.

SISAL front-end compiles programs into intermediate
forms, called IF1 and IF2. These intermediate forms are
based on acyclic graphs that define dependences among
the instructions in a program. Therefore, they are an ap-
propriate mean to develop a conceptual framework for un-
derstanding program behavior and thus scheduling pro-
grams. IF1 (and its optimized counterpart IF2) consists
four components [131: Nodes represent operations; edges

137

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

0 3 8 13 15 18 20 22 24 32 36 38

Figure 5: The final schedule for the POPG in Figure 1.

correspond to values that are passed from one node to an-
other, types can be attached to each edge or function; and
graph boundaries define subgraphs, each consisting of a
group of nodes and edges. The graph boundaries and
nodes have numbered ports to distinguish multiple inputs
and outputs. Values that cross graph boundaries are refer
to as imports and exports. IF1 nodes are hierarchical and
can be of two types: simple or compound. The outputs of
a simple node is a direct function of its inputs (there are
over fifty simple nodes). A compound node contains
subgraphs and its output depends on the interaction among
these subgraphs. There are five compound nodes in IFl:
Select,TagCase, Forall,While, and Until.

Before SISAL programs can be scheduled using
BLAS, they must be converted to equivalent POPGs.
There are two main parts to the conversion process: (1)
Transformation of implicit dependences of IF2 to explicit
dependences and (2) transformation of loops. The first
transformation is required because inputs and outputs of
graph boundaries are not connected as in the dataflow
sense. Therefore, implicit dependences are converted to
data dependences by identifying matching export and im-
port port numbers as well as considering the semantics of
the compound node. This is done by using an associariou
list that defines a mapping between the subgraphs and
their intended use by the compound node. In order for the
transformation to take place, three types of dependencies
must be considered within a compound node [131:
. Data dependence between the compound node and its

subgraphs - This occurs when a compound node
passes some of its input values to its subgraphs. or
when a subgraph returns values that become the re-
sults of the compound node.

. Data dependence among subgraphs - This occurs in
loops, where the loop values calculated in the loop
body are passed to the result part and back into the
loop body.

l Control dependence - This occurs when a predicate
determines which expression to evaluate, or when an
iterative loop is to terminate.

The transformation process uses the information provided
by the association lists to construct an equivalent POPG.
The conversion process only maintains the acyclic depen-
dences.

The transformation of loops is performed in order to
unravel parallelism in loop constructs. In SISAL, the main
source of parallelism comes from Forall loops.
Therefore, body subgraphs of Forall compound nodes
are duplicated according to the number of parallel itera-

tions. It is important to note that instruction-level paral-
lelism within a subgraph is not exposed. Our studies indi-
cate exploiting parallelism within a subgraph result in no
real benefit due to their fine-grain nature. Thus, the nodes
within a subgraph are serialized to form a single macro
node. Nested Forall loops are also handled in a similar
manner.

Another type of transformation is performed on While
and Until loops. The While and Until compound
nodes repeatedly apply the loop body to a set of values,
stopping and returning results when the test becomes false.
The difference between the two constructs is that While
performs the test for termination before the body is exe-
cuted while Unt i 1 performs the termination test after the
body has executed. The transformation process basically
serializes the execution of the loop bodies according to the
number of iterations. This parameter can be defined ex-
plicitly by the programmer, derived by the compiler, or
refined by monitoring previous executions of SISAL pro-
gram. Currently, we rely on data obtained from the execu-
tion of SISAL programs.

The final transformation occurs with conditionals, i.e.,
Select compound nodes. The Select is used to handle
two-way selection (i.e., “if-then-else”) and contains the
Selector subgraph representing a predicate and two
Alternative subgraphs corresponding to true or false
branches. Since the result of the predicate is known only
at run-time, we assign a probability to each of the
Alternative subgraphs such that ptrl‘e + Pfalse = 1. By de-
fault, all subgraphs other than the Select node has a prob-
ability of 1. The conversion process to POPGs is done by
multiplying the true and false subgraph execution times
with its respective probabilities to form a single node.

5 Simulation studies

In this section, the performance of BLAS is compared
with the internalization and the DLS algorithms. Instead
of streamlined version, DLS algorithm was implemented
to evaluate dynamic levels over all combinations of ready
nodes and available processors to provide a fair compari-
son.

There were a number of input program graphs used
for this comparison. The first set consisted of several hy-
pothetical graphs generated by hand containing between
13 to 193 nodes. The second set of graphs was obtained
by transforming IF2 graphs generated from SISAL pro-
grams.

138

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 199.5

Our target architectures for the simulation studies
were hypercube and mesh with the following assumptions:
(1)

(2)

For the hypothetical graphs, the execution times for
the nodes were uniformly distributed over
[tminl f,,]. For IF2 graphs generated from SISAL,
the execution time ti for each node is assigned from
IF2 Execution Cost Profile. This is a machine depen-
dent parameter obtained from SISAL, where each
simple node (i.e., instruction) is associated with num-
ber of clock cycles and is representative of modern
processor execution costs.
The IPC costs are based on nCUBE 3 using cut-
through routing [4]:

Dij
C,=i,+ht,+BW, ifi#j

where t, is the startup latency, t, is the per-hop time,
h represents the number of hops the message travels.
Dii is the length of the message, and BW is the chan-
nel bandwidth. The startup latency fs consists of the
time to prepare the message, the time to execute the
routing algorithm, and the time to establish an inter-
face between the local processor and the router.
Based on the nCUBE 3, t, is assumed to be around 5
ps or 250 processor cycles. The terms ht, + Dv / BW
is called the transport time, and it represents the time
spent from when the head of the message leaves pro-
cessor i to when the tail of the message arrives at pro-
cessor j. nCUBE 3 is claimed to have a network
bandwidth of nearly SOMbytes/s; therefore, for small
messages we assume the transport time is dominated
by the term ht,. With intermediate per-hop latency
of 200 ns (or 10 cycles), Cii is given as

Cy = 250 + h. 10 cycles if i fj . and
c, = 0 ifi=j.

Based on these assumptions. the ratio of startup time
to per-hop time I,/(,, was kept constant at 25. In order to
take into effect the granularity of computation, the IPC
costs were varied based on a ratio of communication to
execution time, C/T. This was done by keeping the aver-
age execution time T fixed while the communication cost
C was varied. This allowed us to study the performance
of the scheduling algorithm under varying granularity of
computation.

To illustrate the results of the simulation studies, L2
and 10x10 matmult were chosen as representative
PGPGs. L2 is a 193-node hand generated hypothetical
graph that performs assignment and sequencing [8]. The
execution times for the nodes were uniformly distributed
over [10,401 with an average execution time of 25. 10x10
ma tmul t is a 134-node matrix multiplication program
generated from IF2. The range of node execution time is
[0,250] with an average node execution time of 99. In or-
der to increase the granularity. the inner-loop containing
multiplication and reduction for each i and j iterations was
lumped into a single node. We have experimented with

parallelizing of the inner-loop: however, due to its fine-
grained nature (compared to the IPC costs) the expansion
provided no real benefit. Figures 6 and 7 depict the total
execution times versus number of processors for L2 for
varying C/T ratios on a hypercube and a fix@
mesh, respectively. Figures 8 and 9 show the performance
for 10x 10 mat mu 1 t for varying C/T ratios on a hyper-
cube and a fix fi mesh, respectively.

As expected, the execution time for the BLAS de-
creases as the number of processors increases for both
POPGs. Moreover, as the IPC overhead increased, so did
the execution times illustrating the important effect com-
munication overhead has on the overall performance. L2
and 10x 10 matmu 1 t have maximum parallelism of 17
and 25, respectively, therefore no real benefit is gained by
adding additional processors beyond maximum paral-
lelism. In addition, as C/T ratio increases, less number of
processors is required before the performance begins to
saturate.

In general, BLAS (both all processor and adjacent
processor selection methods) outperformed both intemal-
ization and DLS algorithms. For the internalization algo-
rithm, the two step process of minimization of the execu-
tion time on an unbounded number of processors followed
by an assignment to a fixed number of processors does not
necessarily provide a good mapping. This is because the
order in which the nodes are clustered is usually very cru-
cial to partitioning step of the internalization algorithm.
However, when the IPC overhead is almost constant or
unknown. due to small number of messages, the clustering
the nodes based on this parameter becomes less effective.
Another problem with the internalization is that after the
nodes are partitioned into blocks, the blocks are assigned
onto the processors using a modified priority list schedul-
ing, which tends to be greedy.

The DLS algorithm also has similar problems due to
its greedy nature. In fact, the DLS algorithm exhibits an
interesting behavior when the number of available proces-
sors is small. Whenever, dynamic levels are evaluated for
two nodes generated from a fork, i.e., nodes which have
the same parent node. the node with the higher static level
will be scheduled onto the same processor as the parent
node. Depending on the dynamic level, the second child
node will either be scheduled onto the same processor as
the parent node or to another processor. Often the node
will be scheduled onto another processor despite the fact
that the overall performance would have been better if the
node was scheduled onto the same processor as the parent
node. Thus, when the number of processors is small,
thrashing of IPC occurs and the performance degrades.
This problem does not occur when the number of proces-
sor is sufficiently large because there are more processors
to choose from. This problem is more severe for the
matmult because of its symmetrical nature containing
mainly of joins and forks.

Figure 10 shows a comparison between the two pro-
cessor selection methods for matmu 1 t . This is a plot that

139

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 199.5

4500

4250

s 3500
= 3250
z
z

3000

III 2750

C/T=211

I 2 4 8 16

6500~ Processors

1 2 4 8 16
Processors

--- BLAXAU)

- BLKXAd])

-.-DE

2500-.

2000, I

I 2 4
Processors’

16

Figure 6: Execution time vs. number of processors for L2 on a hypercube.

4500

4250 C/T=2/1

4000

.g 3750
t

3500

jj 3250

5
ii

3000

2 2750

2500

2250

2000

---BLASWl)

- BL4SCAdl)

---DLS

I 4
Procissors

C/T=5/1

2000~”

I 4
Proiessori6

25

16 2

C/T=lOIl

25ool.

1 4
Procissors

16 25

Figure 7: Execution time vs. number of processors for L2 on a fix fi mesh.

140

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

25000

I -BUS (ad])

-*-DLS
5 I5000
3

3
x 10000
w

5000

I 2 4
ProcissorF

32

18000 C/T=lO/l
16000

$ 14000

i= 12000

.g 10000
r :: 8000

; 6000

4000

2000

0

I2 4 Prokssors I6 32 64
1 2 4 ProcLti6rs 32 64

Figure 8: Execution time vs. number of processors for 10x10 matmult on a hypercube.

16000

0 12000
E
i= 10000

:, 8000 .-

5 : 6000

Lu -'A..,.-.
4000

--'-BLAS(AlI)

- BU\S(ad,)

---DLS

I 4 9 16 25 36 49 64
Processors

14000

12000 C/T=1011

10000

t
c 8000

:
.-.--.-.-.

'= 6000

z
; 4000

Y

I4 9 Prtce%or3s6 49 64 I 4 9 I6 25 36 49 64
Processors

Figure 9: Execution time vs. number of processors for 10x10 matmul t on a@ x fi mesh.

141

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - I995

4 8 16 32
Processors

64

Figure 10: A comparison between the two processor
selection methods for matmult

shows the difference between the two speedups (i.e.,
.SAI, - S,4) for various matrix sizes. The average execu-
tion time varied from 99 (for 10x10) to 250 (for 25x25),
and again the startup time and the inter-hop time were 250
and 10, respectively. Due to the greedy nature of the adja-
cent processor selection method, its performance is always
worse than the all processor selection method. The differ-
ence is even more profound as the number of processors
available for the selection increases. For extreme cases,
the differences in speedup can be as much as 25 for 25-by-
25 matrix on 128 processors. The main reason for such a
large difference is the ability of the any processor selection
method to spread out the load over a large number of pro-
cessors. However, the improvement in performance has a
cost in terms of added complexity.

6 Summary and Future Research

In this paper, a compile time method, called BLAS,
for scheduling POPGs onto multicomputers was presented.
A method for transforming IF2 graph from SISAL to
POPGs was also described. In contrast to list scheduling
algorithms, BLAS takes a more global approach by first
partitioning a program graph into virtual threads, and then
assigning the virtual threads to processors. In general, the
BLAS is very successful in providing a balance between
exploiting parallelism and reducing communication over-
head due to (1) the concept of virtual threads that serializes
the nodes when no parallelism exists, and (2) the as-
signment of a virtual thread is always optimum relative to
virtual threads that have already been assigned to proces-
sors.

Although our simulation studies indicate promising
improvement over internalization and DLS algorithms.
some optimization can be made to BLAS. For larger mes-
sages, including the cost of messages on the arcs would be

an additional benefit in determining the virtual threads in
the separation phase. This would lead to a reduction in
IPC overhead not only due to startup costs, but also due to
relatively large message sizes. Another improvement
would be to consider combining different messages des-
tined for the same processor. As discussed in Section 2.2,
the startup costs dominates the PC overhead: therefore,
concatenating messages destined for the same processor
will eliminate the additional startup costs incurred by
sending different packets of shorter messages.

References

111

121

[31

[41

[51

161

[71

PI

[91

1101

[Ill

1121

[I31

Adam, T. L., Chandy, K. M.. and Dickson, J. R., “A
Comparison of List Schedules for Parallel Processing
Systems,” Convltun. ACM. Vol. 17, No. 12, Dec. 1974, pp.
685-690.
Cann. D. C., “The Optimizing SISAL Compiler Version
12.0” Technical Report UCRL-MA-110080, Lawrence
Livermore National Laboratory, Livermore, CA, April 2,
1992.
Coffman, E. G.. Editor, Computer and Job Shop
Scheduling Theory, John Wiley and Sons, New York, NY,
1976.
Duzett, B. and Buck, R., “An Overview of the nCUBE 3
Supercomputer,” Fourth Symposium on the Frontiers of
Massively Parallel Comput&ion, 1992, pp. 474483.
Gerasoulis, A. and Yang, T.. “A Comparison of Clustering
Heuristics for Scheduling Directed Acyclic Graphs on
Multiprocessors.” Journal of Parallel and Distributed
Computing, Vol. 16, 1992, pp. 276-291.
Kim, S. J. and Browne, J. C.. “A General Approach to
Mapping of Parallel Computations Upon Multiprocessor
Architectures,” Proceeding of Itiernational Conference on
Parallel Processing, Vol. 3, Aug. 1988, pp. 1-7.
Kohler, W. H.. “A Preliminary Evaluation of Critical Path
Method for Scheduling Tasks on Multiprocessor Systems,”
IEEE Transactions on Computers. Dec. 1975, pp. 1235
1238.
Lee, B.. Hurson, A. R., and Feng, T. Y. “A Vertically
Layered Allocation Scheme for Dataflow Computers,”
Journal of Parallel and Distributed Computing, Vol. 11.
1991. pp. 175-187.
Papadopoulos, G. M. et al., “*T: Integrated Building Block
for Parallel Computing,” Proceedings of Supercomputing
Conference, Nov. 1993, pp. 624-635.
Sarkar, V., Partitioning and Scheduling Parallel Programs
for Execution on Multiprocessors, The MIT Press,
Cambridge, MA, 1989.
Shirazi, B.. Wang, M., and Pathak, G., “Analysis and
Evaluation of Heuristic Methods for Static Task
Scheduling,” Jounal of Parallel and Distributed
Computing, 10. 1990, pp. 222-232.
Sih, G. C. and Lee, E. A., “A Compile-Time Scheduling
Heuristic for Interconnection-Constrained Hetrogeneous
Processor Architectures,” IEEE Transactions on Parallel
and Distributed Systems, Vol. 4. No. 2, February 1993. pp.
175- 187.
Skedzielewski. S. K. and Glaurert. J., “IF1 - An
Intermediate Form for Applicative Langauages,” Lawrence
Livermore National Laboratory Manual M-170. 1985.

142

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

