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Abstract

Cooperating processes in different nodes of cluster systems exchange messages through the
switch-based network of irregular topology, and the corresponding communication perfor-
mance is the most critical factor in assessing the overall system performance. In particular,
barrier synchronization among multiple processes in a process group usually constitutes the
sequential or bottleneck part of a parallel program. In this paper, we propose a Barrier
Tree for Irregular Networks (BTIN) and a barrier synchronization scheme using BTIN. The
synchronization latency of the proposed BTIN scheme is asymptotically O(logn) while that
of the fastest scheme reported in the literature is bounded by O(n), where n is the number
of member nodes. Extensive simulation study shows that for the group size of 256 the BTIN
scheme improves the synchronization latency by a factor of 3.3 ~ 3.8. It is also shown to be

more scalable than conventional schemes with less network traffic.

Indez terms: Cluster systems, switch-based network, irreqular topology, barrier synchro-

nization, hardware-supported barriers, communication latency, wormhole routing, MPI.



1 Introduction

Switch-based cluster systems have been widely accepted as cost-effective alternatives for high
performance computers. Since computational nodes® or switches may be added to or detached
from the network dynamically, it is generally assumed that the switches form an irregular
topology [1, 2]. Such irregularity provides higher interconnection flexibility, greater system
scalability, and incremental system expandability which are not attainable in traditional reg-
ular interconnection networks. Those advantages can be overshadowed by the irregularity
itself, though. First, a system must identify the network topology before computation begins.
Distributed reconfiguration algorithms in this regard have been studied [1, 2], and commer-
cial switches such as Myrinet [3] employ such algorithms in practice. The second issue is
on routing. Here the irregular topology makes it difficult to avoid deadlock among multiple
packets traveling simultaneously [1, 2, 4, 5, 6]. Up/down routing algorithm prevents deadlock
by restricting the sequences of turns in the routing paths [1], the idea of which was originally
suggested for a regular mesh topology [7].

Routing complexity directly affects the communication performance which is the most
critical factor in assessing the overall system performance in the switch-based cluster systems.
Especially, collective operations need more attention than the operations with point-to-point
communication since they often determine the execution time of the sequential part of a
parallel program, which usually constitutes the bottleneck. As a result, collective operations
have been studied over a decade for message-passing multicomputers which employ point-to-
point direct networks of regular topology such as 2-D meshes and hypercubes [8, 9, 10]. Such
collective operations, however, become more complicated for switch-based cluster systems
[11, 12] due to the irregularity mentioned above.

This paper intends to draw attention on an important collective operation, barrier synchro-
nization, on the switch-based networks of irregular topology. A barrier is a synchronization
point in a parallel program at which all processes participating in the synchronization must
arrive before any of them can proceed beyond the synchronization point. In general, barrier
synchronization is split into two phases — reduction and distribution. During the reduction
phase, each participating process notifies the root process of its arrival at the barrier point.
Upon the notification from all member processes, the distribution phase begins and the root
process notifies them that they can proceed further.

A straightforward implementation of barrier operation is to have multiple point-to-point
messages from the root to the member nodes, but the performance can be significantly im-
proved by reducing the number of messages. For regular interconnection networks, many
research efforts have been devoted to develop efficient implementations of barrier synchro-
nization with either software [13, 14, 15, 16] or hardware support [17, 18, 19, 20, 21, 22].

For instance, Xu, et al. [15] proposed a software tree approach for barrier synchronization in

!Nodes, in this paper, actually mean PCs or workstations in a cluster system.



wormhole-routed hypercube multicomputers. Tree-based schemes perform better than path-
based schemes mainly due to the fact that the time complexity of tree-based approaches is
O(logn) whereas that of path-based ones is O(n), where n is the number of member nodes.
Software barriers, however, inherently suffer from large communication latency. Hardware-

supported barriers®

are usually an order of magnitude faster than software barriers [22]. We
have seen actual implementations of hardware support for barriers in some commercial mas-
sively parallel computers such as T3D and CM-5 [20, 22].

In this paper, we propose a Barrier Tree for Irregular Networks (BTIN) for the switch-
based cluster systems of irregular topology, which significantly reduces the barrier synchro-
nization latency and network traffic with no deadlock. It is a tree-based combining scheme
which constructs a barrier tree and embeds it into the corresponding switches by putting
special registers into the switches. It is also possible to build a barrier tree based on the
up/down routing algorithm, but it is not optimal because a process group to be synchronized
is just a subset of all the nodes in a system. We focus on establishing a new barrier tree or a
collective routing tree to reduce the tree height effectively. The synchronization latency of the
proposed BTIN scheme is O(logn) while that of the fastest scheme reported in the literature
is bounded by O(n), where n is the number of member nodes. Extensive simulation study
shows that for the group size of 256 the BTIN scheme improves the synchronization latency
by a factor of 3.3 ~ 3.8. It is also shown to be more scalable than conventional schemes with
less network traffic.

The rest of the paper is organized as follows. Switch-based cluster systems with irregu-
lar topology and parallel programming environment of barrier synchronization are described
in the following section. In Section 3, we present the proposed tree-based barrier synchro-
nization scheme, and the construction of a BTIN and the corresponding switch operations
are discussed. Section 4 is devoted to analyzing the inherent characteristics of the BTIN
scheme including tree height and deadlock issue. The performance of the proposed scheme
is evaluated and discussed in Section 5, and conclusions and future works are covered in

Section 6.

2 Barrier Synchronization on Irregular Networks

In this section, we introduce general switch-based cluster systems of irregular topology and
the programming environment of barrier synchronization. The proposed tree-based barrier
synchronization scheme is discussed in the next section. We first describe the system envi-

ronment such as system model and point-to-point routing.

2Recently, hardware-supported multicast, another important type of collective operations, has been exten-
sively studied in the context of switch-based irregular networks [25, 26, 27, 28, 29, 30, 31]. However, it is not
directly applicable to implement barriers since multicasting does not support the many-to-one reduction phase
of barrier operation.



2.1 Switch-Based Cluster Systems

System Model

A switch-based cluster system is assumed, which comprises k-port switches interconnected in
an irregular topology and computational nodes attached to the switches. The switch-based
network of irregular topology is represented with a graph G(V, E) in which each vertex in
V(G) corresponds to a switch and each edge in E(G) corresponds to a communication channel
between vertices. A computational node is represented as a pair of (v;, ¢;), where v; is a vertex
(switch) in V(G) and c¢; is a pair of input and output channel attached to the switch v;. Note
here that ¢ = 1,2,---,|V(G)| and j = 1,2,-- -,k for k-port switches. The distance between

two nodes is defined as the number of routing steps or hops in the transmission of a message.
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Figure 1: A switch-based cluster system with irregular topology.

An example of switch-based cluster systems with irregular topology is drawn in Figure 1.
Network topology is irregular in a switch-based cluster system, where each switch has a set
of ports and each port is connected to a computational node or other switch. Some ports
may be left open and they can be used for further system expansion. The system in Figure 1
consists of nine 8-port switches, 26 computational nodes, and 12 inter-switch links. In this
example, the problem is to synchronize the 14 member nodes in a process group (the dark
circles in Figure 1) at a barrier point, which are selected for running a parallel application.

Cut-through switching and wormhole routing [34, 35, 36, 37] have been employed in most

new generation networks to minimize the communication latency and buffer requirement. As



explained earlier, routing in interconnection networks is restricted to prevent deadlock. Most
recently, as it is feasible to implement a single-chip switch that can accommodate several
whole packets with current VLSI technology, virtual cut-through routing® is considered in a
cluster environment, while still achieving the advantages of virtual channels and adaptive
routing [38, 39]. Without loss of generality, in this paper, we consider cut-through switches
implementing wormhole routing [34, 35, 36, 37] with input and output buffers of one flit wide
each.

A k-port switch typically provides a k X k crossbar connectivity in order to make a message
from any input port to be transferred to any output port. As in most system configurations,
we assume a simple node-switch connection with one-port model, in which a switch (router)
is connected to the local node via a pair of input and output channel [40]. The switch is
responsible for entering, leaving, passing, and replicating messages. The crossbar connectivity
within the switch allows simultaneous transmission of messages between different input and
output channel.

Hardware support for barrier synchronization is the barrier registers within switches.
There will be a register assigned for each barrier, and similar concept has been assumed both
in most hardware-supported synchronization schemes for regular networks [19, 20, 21] and in
the switch-based multicast approach [32], where a processor can access an internal register
within a switch. We assume that the barrier registers can hold an entire synchronization
message. This can be justified by the fact that a synchronization message is very short
and fixed in length since it needs not carry multiple destination addresses, and the size of
synchronization data is quite small. Detailed usage and format of the barrier registers will be

presented in the following sections.

Point-to-Point Routing
Roughly, the routing methods for irregular networks are grouped as two categories [38]. The
up/down routing was proposed and commercially used in the DEC Autonet [1], in which a
spanning tree constructed by a distributed algorithm prohibits channel dependency cycle while
achieving deadlock freedom. Some modifications of the up/down routing has been proposed
[6, 38, 41, 42]. Eulerian trail routing is another scheme proposed for irregular networks [4],
which is also deadlock-free. Two unidirectional adaptive trails are constructed from two
opposite unidirectional Eulerian trails. The Eulerian trails are determined based on some
heuristics during initialization. However, not every network topology has such Eulerian trails
[38].

Here we assume the routing scheme based on the up/down routing which is a variant of the

turn model [7]. Upon startup of a cluster system, a node in each switch starts the configuration

3Virtual cut-through routing pipelines message transmission across multiple routers. In the absence of
contention, it is the same as the wormhole routing. However, when a packet is blocked, it is removed from the
network and stored in a single buffer [33, 36], requiring buffers with capacity for one or more packets to store
blocked packets.



algorithm to figure out the overall topology. A breadth-first spanning ( BFS) tree is computed
and all switches eventually agree on a unique spanning tree. Deadlock-free routing is based on
loop-free assignment of direction to the operational links and the following up/down rule: a
legal route must traverse zero or more links in the up direction followed by zero or more links
in the down direction. Routing algorithms for Myrinet switch from Myricom and Berkeley
are similar to the up/down routing? [2]. Detailed explanation of the BFS and the up/down

routing can be found in [1, 28].

2.2 Programming Interface of Barrier Synchronization

Collective operation primitives including barrier synchronization are included in most message-
passing libraries. Among them, we target our discussion to MPI (Message Passing Interface)
standard [23, 24]. However, the algorithms presented here can be applied to other message-
passing systems with very little modifications.

In MPI, a group of communicating processes is defined within a context called process
group. A unique group identifier is associated with each distinct process group. It is assumed
that every group member has full information on both all member nodes in the group and
the network topology of the cluster system. In reality, this can be easily implemented by a
simple broadcast at the group creation time. After receiving the information, every member
node can set up the barrier registers in the switch attaching it, in a distributed manner at the
group creation time®. Furthermore, since a switch contains several barrier registers, multiple
concurrent barriers from different groups can be supported. The maximum number of con-
current barriers is limited by the number of barrier registers available. If no available barrier
register exists, additional barriers can be mapped onto the local memory of one member node
attached to the corresponding switch, at the cost of increased synchronization latency of the
barrier. When a process group is terminated, the corresponding barrier registers are released.

Typically, the MPT Finalize() routine terminates a process group.

3 Tree-Based Barrier Synchronization

In this section, we describe the proposed BTIN and the corresponding synchronization oper-
ations first, followed by the detailed procedure to construct BTIN including the selection of

root switch.

*One disadvantage with the up/down routing is the increased congestion at the root of the BFS tree. Also,
it is not always able to provide a minimal path between every pair of nodes due to the restriction, which will
be more important as the network size increases [6]. Basic up/down routing algorithms have been extended to
allow adaptivity [4, 5, 6] and multicast has also been studied in switch-based arbitrary networks [25, 26, 27, 28].

®The process group can be created not only statically (initially) using MPI_Initialize() but also dy-
namically using MPI Spawn() or MPI Spawnmultiple(). The dynamic process management is a new feature
introduced in MPI-2. A major impetus comes from the intention of users migrating from PVM (Parallel
Virtual Machine) [43] which defines a wealth of dynamic process management primitives [24].



3.1 Barrier Tree for Irregular Networks (BTIN)

In this paper, we define a member switch as a switch with at least one member node and a
nonmember switch as one without any member node. Also note that a representative member
node is defined as the member node attached to a member switch via the lowest numbered
port. A BFS tree is constructed by a distributed algorithm around the root switch, the
selection of which will be described in detail later in this subsection. At the group creation
time, one of the member nodes attached to each member switch starts the algorithm to
figure out the BFS topology, and then the nodes running the algorithm eventually agree on
a unique BFS tree. Such a BFS tree prohibits channel dependency cycle while achieving
deadlock freedom. The deadlock freedom will be described in the following section.

Once a BFS tree is found, the algorithm checks whether there is any nonmember leaf
switch in the tree. If such a leaf switch exists, it is removed from the BFS tree. FEach
representative member node sets up a barrier register in the corresponding switch properly
to embed the resulting BTIN into the network.

(3, 4@(3, 5)
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Figure 2: A BTIN constructed from the cluster system in Figure 1

Figure 2 shows a BTIN at the distribution phase, which is constructed from the cluster
system in Figure 1 and contains the same 14 member nodes. The root switch is the switch
labeled 3, and the root node is the node (3,4). Note here that the node notation (3,4)
represents the node attached to port 4 of the switch 3. The children switches of the root
switch are the switches 0, 1, 6, and 7. The child switch 1 is spanned down again to two
children switches 4 and 5 as shown in Figure 2. The switches 4 and 5 have no children, and
thus there is no further spanning. In Figure 2, the distribution message follows the arrows in

accordance with the BTIN routing algorithm.



Note that the nonmember switches are not included in the tree unless they are intermediate
switches in the tree. For example, the switches 2 and 8 in Figure 1 are not included in the
constructed BTIN while the switch 1 is included as an intermediate switch in the tree. We
next describe in detail how to systematically embed a BTIN into the network including the

selection of root switch and root node.

Root Switch and Root Node

The root switch of a BTIN must be a member switch and is chosen so that the resulting BTIN
has a minimum tree height among all possibilities. Our simple approach is as follows: Given
u member switches in the system with ¢ switches, u BFS trees rooted at each member switch
are first generated and one with the minimum tree height is selected, where ¢ = |V(G)| of
Section 2.1. If two or more BFS trees have the same minimum height, one with the minimum
number of edges is chosen. However, if two or more BFS trees have the same number of edges
as shown in Figure 3, one with the minimum number of leaves is selected. In Figure 3, for
example, the second BFS tree of Figure 3(b) with two leaves is chosen among three BFS trees,
which corresponds to BTIN shown in Figure 2. Finding the root switch is performed by the

representative member node of each member switch in a distributed manner.

# of edges =6 # of leaves =4 # of edges =6 # of leaves =2 # of edges =6 # of leaves =3

@) (b) (©

Figure 3: Three BFS trees with the same minimum height of 2.

In the example of Figure 2, the root switch is the switch labeled 3, and the node (3,4) is
selected as the root node since it is connected via the lowest numbered port (port identifier
of 4) between the two member nodes. Note here that, unlike the up/down routing tree, edges
between siblings are not permitted in BTIN. This makes the BTIN routing be simple. Upon
the MPI_Initialize() call, every member process determines the root switch and root node
simultaneously and independently. This is possible because every member in a process group
has full information on both all member nodes in the group and the network topology of the

cluster system.



Switch Setup
Next step is to setup the barrier registers within the switches properly, embedding BTIN
itself into the barrier registers. Given k-port switches in an arbitrary network, each barrier
register contains a group identifier (GID), a parent port number (P), parent and children bits,
arrival bits for children, and synchronization data as shown in Figure 4. Essentially, barrier
registers are embedded only in the switches and computational nodes need not have them.
Unlike other fields, arrival bits and message fields are used when the synchronization
message is processed rather than at the initial setup time. For example, Ag identifies that
a reduction message has arrived from the child switch connected to Cy during the reduction
phase. As explained in Section 2.2, if there are more barriers than available registers in the
switch, one can back up some registers into the local memory of the representative member

node to make room for the new barriers, increasing the synchronization latency of the barrier.

C
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Figure 4: Structure of a barrier register.

Below we describe the algorithm to setup the barrier register during the construction
of a BTIN. At the tree creation time, every member node runs the distributed algorithm,
Setup Register(). A special operation is required to setup a barrier register in intermediate
nonmember switches involved in BTIN. That is, if a member switch has any nonmember de-
scendant switch which can be reached without passing through intermediate member switches,
the representative member node of the member switch requests a node of the nonmember de-
scendant switch to setup a barrier register in the descendant switch by transmitting a point-
to-point message. Then, the destinated node will write the GID, the parent port number (P),

and the parent and children bits into a barrier register in the corresponding switch.

Setup_Register(S, M, s., m,, s, mi, GID)

1. Let S = {s0, $1, -+, Sq—1} be all the switches, M = {mg, mq, ---, mp_1} be the
addresses of member nodes, s, be the root switch, m, be the root node, s; be the local

switch, m; be the local node, and GID be the group identifier.
2. If the local node m; is not the representative member node of the local switch s;, return.

3. Around the root switch s,, establish the corresponding BFS tree, scanning switches in

order of switch identifier (address).



4. Remove nonmember leaf switches from the found BFS tree until there is no such a

nonmember leaf switch, making the tree become a BTIN.

5. Write the GID, the parent port number (P), and the parent and children bits into a

barrier register in the local switch s;.

6. If there exists any nonmember descendant switch which can be reached without passing
through intermediate member switches, request a node of the nonmember descendant
switch to setup a barrier register in the descendant switch by transmitting a point-to-
point message. Then, the destinated node will write the GID, the parent port number
(P), and the parent and children bits into a barrier register in the corresponding switch.

Repeat this step 6 until there is no such a nonmember descendant switch.

In the algorithm Setup_Register(), the switch set S is the same as V(G) and the address
of a member node is represented as a pair of switch and port (channel) as defined in Section 2.1.
Note that, in the proposed barrier synchronization tree, nonmember switches but intermediate
ones of BTIN are not included in BTIN and thus they need not allocate any resource for the
barrier synchronization. Only the switches forming a logical BTIN are involved in the switch

setup operation.

3.2 Barrier Synchronization Using BTIN

Synchronization Message

As described in Subsection 2.1, it is assumed that a barrier register can hold an entire syn-
chronization message because the synchronization message is quite short in length. Figure 5
shows the format of synchronization message which contains message type, group identifier,
and small synchronization data. For the example shown in Figure 1, a synchronization mes-
sage may comprise at most two bytes, ¢.e., 2-bit message type, 8-bit group identifier for at
most 256 different groups, and at most 6-bit synchronization data including control informa-

tion.

Message
type

Synchronization

Group id. data

Figure 5: Format of the barrier synchronization message.

Collective Routing and Switch Operations
The BTIN routing or collective routing performs message merging and replication at the

reduction and distribution phase, respectively. Collective merging and replication are carried

10



out at the switches. That is, reduction messages are collectively merged at each switch and
forwarded to its parent during the reduction phase while a distribution message is replicated
at each switch and forwarded to its children during the distribution phase. The primary
difference between BTIN and the up/down routing tree is that BTIN has no edges between
siblings, and thus there is no adaptive path in BTIN and the up/down rule of the up/down
routing is simply applied to the BTIN routing as a basic rule of inter-switch routing. The

deadlock issue in the collective routing will be presented in the following section in detail.

Table 1: Switch operations for barrier synchronization.

‘ Switch position ‘ Reduction phase ‘

Leaf switch - Receive reduction messages from the local member nodes specified
in the barrier register.

- Forward the lastly arriving reduction message to the parent switch
specified in the barrier register.

Intermediate switch | - Receive reduction messages from the local member nodes and chil-
dren switches specified in the barrier register.

- Forward the lastly arriving reduction message to the parent switch
specified in the barrier register.

Root switch - Receive reduction messages from the local nonroot member nodes
and children switches specified in the barrier register.
- Notify the root node of the reduction message arrival.

‘ Switch position ‘ Distribution phase ‘

Root switch - Receive a distribution message from the root node.

- Forward it to the children switches specified in the barrier register,
and at the same time, notify the local nonroot member nodes of
the distribution message arrival.

Intermediate switch | - Receive a distribution message from the parent switch specified in
the barrier register.

- Forward it to the children switches specified in the barrier regis-
ter, and at the same time, notify the local member nodes of the
distribution message arrival.

Leaf switch - Receive a distribution message from the parent switch specified in
the barrier register.
- Notify the local member nodes of the distribution message arrival.

In the proposed collective routing, three types of switches, the root switch, the intermedi-
ate switch, and the leaf switch, perform different operations in accordance with their position
in BTIN. Switch operations at the three types of switches are described in Table 1 which
explains the switch operations for the subsequent reduction and distribution phase during a
barrier synchronization.

During the reduction phase, the reduction messages traverse in the up direction upward

11



the root switch, being combined collectively at each branch switch. At each switch of BTIN,
reduction messages are received along at most (k—1) incoming links from the children switches
and the local member nodes, and one of the reduction messages (e.g. the lastly arriving
message) is forwarded to the parent switch. Since the leaf switches do not have children,
they perform no the message reduction operation. The root node is the final destination of
reduction messages.

During the distribution phase, the distribution messages traverse in the down direction
downward all the leaf switches, being replicated at each branch switch. The root node is the
original source of distribution messages. At each switch of BTIN, a distribution message is
replicated and forwarded along at most (k — 1) outgoing links toward the children switches.
At the same time, the switch notifies the local member nodes of the fact that the distribution
message is received if they are destinated in the corresponding barrier register. Then, the
destinated local member nodes can proceed beyond the barrier point. However, since the leaf

switches do not have children, they perform no the message replication operation.

4 Characteristics of BTIN

Characteristics of BTIN are analyzed in this section. We will discuss the tree height and
synchronization latency of BTIN first, and then move on to the deadlock problem, and lastly

compare them with those of conventional approaches.

4.1 Tree Height of a BTIN

If we have an irregular network with k-port switches, each port of a switch is connected to a
computational node or other switch. Some ports may be left open and they can be used for
further system expansion. We define connectivity, or connection ratio, f of k-port switches
as the ratio of the average number of connected ports over k [25]. Hence, f - k is the average
number of ports in a switch, which are connected to either other switches or computational
nodes. Practically, the range of f can be represented by % < f €1 since at least two ports,
one for other switch and the other for either other switch or a node, must be connected.
Synchronization latency is linearly proportional to the height of BTIN. In this subsection,
thus, we analyze the average tree height of a BTIN which is established on a randomly
built irregular network. Without loss of generality, we assume that all the possibilities of
network configuration with k-port switches of connectivity f are equally likely. The following

Theorem 1 formally analyzes the average height of a BTIN under the assumption.
Theorem 1: For an irreqular network with k-port switches of connectivity f, the average

height, h, of a BTIN s asymptotically given by h = log(fk_p/q_l)n, where n s the

number of member nodes, p is the number of nodes, and q is the number of switches.

12



Proof: For valid network configuration, the average number of connected ports in a switch,
fk,is given by 2 < fk < k. In a switch, the average number of ports connected to other

switches can be represented by

fkq—p P
e L
q q

where fkq is the total number of connected ports in a system. If all inter-switch links
are utilized in a BTIN, the average number of children in a switch, g., can be obtained

from the above equation by subtracting one link connected to its parent, which is given

by
ge=fk—2_1,
q

However, after the construction of BTIN, some links in the network may not actually

utilized. Thus, q. is given by an inequality

@< fk-2 1.
q

On the other hand, as assumed earlier, all the possibilities of network configuration
with k-port switches of connectivity f are equally likely. Let the number of switches in
a subtree spanned along with port ¢ be ¢;. Then, due to probability theory, the number
of distinct cases (combinations) which satisfy ¢1 + g2 + -+ ge—1 = ¢ — 1, where ¢; > 0
foralli=1,2,---,k—1and ¢ — 1 > 0, is given by

-+ (k-1)-1Y\ [qg+k-3
(k—1)—-1 k-2 )
Since a BTIN has at most (k — 1) subtrees spanned down from the root switch, the tree
height of a BTIN with ¢ switches, (g), can be represented by

g+k—-3
. E—2
hg) =1+ F—F+ > max(h(q1), h(g2), - - h(qk-1)),

qg+k—3 i=1
k-2

where g; is the number of switches with ¢ ports which is represented as 0 < ¢; < ¢—1
and Zf:_ll ¢; = q — 1 for each network configuration. Note here that, if a port ¢ is either
connected to a node or left open, ¢; is necessarily zero (0). If ¢ is probabilistically large,
h(q) can be approximated by

g—1
Mg) =1+ 1og(sk—p/g-1) ~fp

13



Here fk is a small constant since 0 < f < 1 and typically 4 < k < 16. Thus, h(q) can
be rewritten asymptotically by

h’(q) = 1Og(fk—p/q—l) q.

Therefore, for an irregular network with k-port switches of connectivity f, asymptoti-

cally h =log(s_p/q-1y7- B

According to Theorem 1, for an irregular network with k-port switches of connectivity f,
the average height of a BTIN is O(log(fk_p/q_l) n), where n is the number of member nodes,
p is the number of nodes, and ¢ is the number of switches. It is simply rewritten by O(logn)
because fk — 2 — 1 becomes a constant. Hence, the associated routing latency has a time

q
complexity of O(logn).

4.2 Deadlock Freedom

As explained earlier, the primary difference between BTIN and the up/down routing tree is
that BTIN has no edges between siblings. Consequently, a BTIN is simply a (k — 1)-ary
tree embedded into k-port switches in an irregular network, and the corresponding collective
routing of a BTIN, which is essentially based on wormhole routing, is performed along with
the tree edges.

Wormbhole routing is assumed to be used in the proposed scheme since it reduces the
communication latency by pipelining the message transfer over a number of channels along
its path. In irregular networks as well as regular ones, a major issue with the wormhole
routing is deadlock [44]. When the path of a message is blocked, the message head as well as
the rest of the message are stopped where they are, holding the buffers and channels along
the path®. Deadlock could occur if these stoppages create a cyclic dependency. However,
if the message size is small enough, deadlock could be easily avoided by holding the entire
message in the switch. In our barrier synchronization scheme, the synchronization messages
need not carry all the destination addresses, and thus the lengths are identical and very small
as in switch-based barrier synchronization on regular networks [21]. Recently, a deadlock-free
input-buffer-based replication mechanism was proposed [28] for implementing switch. This
technique was shown to be effective in breaking the interdependency between tree branches.
It also reduces the probability of network blocking significantly. For the barrier operations of
the proposed scheme, since the size of the synchronization message is small and can be fixed,
the size of the input buffer is also small, 7.e., the input buffer can be limited to a few flits,

the number of flits in a synchronization message.

6With the store-and-forward or the virtual cut-through strategy, the rest of the message is moved to the
switch where the head is stopped. Thus, deadlock can be easily avoided at the cost of large buffer in each
switch for holding the entire message [45].

14



The basic technique for proving that a network is deadlock-free is to articulate the depen-
dences that can arise between channels as a result of message movement, and to demonstrate
that there exists no cycle in the resulting channel dependence graph [33]. This implies that
no traffic patterns can lead to deadlock, where the traffic patterns include those incurred by
three cases; a barrier synchronization, multiple concurrent synchronizations, and a mixture of
synchronization messages and normal messages. For the BTIN-based barrier synchronization,
the proof of deadlock freedom is similar to that in the CS scheme because, in both schemes,
an entire synchronization message can be stored in a storage (barrier register) in the switch.

Now, we informally prove that BTIN is deadlock-free by explaining that the messages
incurred by the three cases above do not create deadlock situation. The first case is whether
multiple messages induced by a barrier synchronization create a cyclic dependency or not.
There exist multiple barrier registers in a switch, which are allocated disjointly to different
barriers. They allow a barrier register to be occupied only by one barrier. During a barrier
synchronization, the reduction phase is carried out first, and then the distribution phase is
performed subsequently. That is, the reduction message and the distribution message of the
same barrier synchronization never compete for the same barrier register. In addition, since
reduction messages travel upward BTIN and distribution messages travel downward BTIN
for a barrier synchronization, there exists no cyclic dependency among the barrier registers
belonging to the same barrier.

Secondly, when a reduction message enters a switch via the input buffer of an incoming
link, its flits can be moved into its associated barrier register. A distribution message behaves
similarly. Since each barrier register can hold an entire synchronization message, the message
does not occupy the input buffer and it blocks neither synchronization messages nor normal
messages. Also, since the synchronization messages of different barriers use different barrier
registers, they never interfere with each other.

Finally, even though a blocked normal message holds a chain of channels and thus may also
block a synchronization message, the synchronization message is stored in a barrier register
in the switch, resulting in no channel dependency. When the blocking is removed later, the
synchronization message can travel toward the next node with no possibility of a deadlock. It
can thus be concluded that the BTIN routing algorithm and the associated switch operations

for barrier synchronization is deadlock-free.

4.3 Comparison of Characteristics

In this subsection, we compare the characteristics of BTIN with those of two conventional
approaches, the method using point-to-point messages and the method using switch-based
multicast at the distribution phase. For simplicity, in this paper, we call the two approaches
the unicast scheme and the multicast scheme, respectively. The comparisons are summarized

in Table 2. Here various important factors of barrier synchronization are considered for com-
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parative evaluation. As can be seen from the table, the proposed BTIN possesses preferable

characteristics for all the factors studied, which results in a significantly better performance

as identified in the following section.

Table 2: Characteristics of barrier synchronization schemes on irregular networks.

Unicast scheme

Multicast scheme

BTIN scheme

Initialization at group creation time

Routing path/tree | Centralized at the | Centralized at the | Distributed at all
construction root root members
Router setup None At member nodes At member nodes

(for distribution)

During a barrier operation

Hardware support

None

Distribution phase

Reduction and distri-
bution phase

Synchronization Short (single destina- | Long (multiple desti- | Short (no destination

message size tion address) nation addresses) address)

Number of start- | 2n (n for reduction |n + 1 (n for re- | 2 (one for reduction

ups and m for distribu- | duction and one for | and one for distri-
tion) distribution) bution)

Complexity of rout- | O(n) O(n) O(logn)

ing latency

Primary weakness

Primary weakness

Repetitive 2n unicast
transfers (very slow)

Repetitive n unicast
transfers for reduc-

Hardware complexity
at the router

tion and hardware for

multicast

The unicast scheme requires repetitive n point-to-point message transfers for each of
reduction and distribution phase, and thus it has the complexity of O(2n) for routing latency,
which is simply rewritten by O(n). Since the multicast scheme is the most recent and efficient
barrier synchronization scheme, the BTIN scheme is compared with that in more detail.
We assume that, in the multicast scheme, switch-based multicasting tree is used for the
distribution phase in hardware level. In the multicast scheme, it is simple to see that the
complexity of routing latency of the distribution phase is O(logn). However, for the reduction
phase, repetitive n unicast message transfers are required, resulting in the complexity of O(n).
Hence, the complexity of the multicast scheme is O(n + logn), which is simply rewritten by
O(n).

The BTIN scheme alleviates the functional complexity at the switch both by embedding

multiple destination addresses in the switches and by fully supporting all the operations during
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a barrier synchronization in hardware level. The most imminent advantage of employing
BTIN is the reduced synchronization latency due to the tree-based hardware support which

is embedded in the switches.

5 Performance Evaluation

In this section, the performance of the proposed BTIN scheme is evaluated using computer
simulation. For different system configurations and parameters, it is also compared with that

of the method using switch-based multicast. The experiment environment is presented first.

5.1 Experiment Environment

We evaluate the performance of the proposed tree-based barrier synchronization scheme on
two different system configurations; (i) 256 nodes and 75 switches and (ii) 1024 nodes and
300 switches. We assume that the network is interconnected with 8-port switches having 75%
connectivity. Here the 75% connectivity (f = 0.75) means that 6 out of 8 ports in a switch
are connected to either other switches or computational nodes on the average. The member
nodes are picked randomly and all the members are assumed to arrive at the barrier at the
same time. Channel contention is not considered.

The synchronization latency is the most important performance metric of barrier synchro-
nization, which is the interval from the time when the barrier synchronization is invoked until
the time when all the member nodes finish the distribution phase. As another performance
measure in our simulation, the network traffic incurred by the barrier synchronization is also
investigated. This is measured by the number of links (hops) traversed by the synchronization
messages during a barrier operation.

The default performance parameters have been assumed on the basis of overhead-minimized
communication on advanced switches which can be implemented using contemporary silicon
technology. Based on the basic performance values of such environment, we assume the fol-
lowing default performance parameters: communication startup time (¢;) of 2 ~ 10 psec, link
propagation delay (t,) of 20 ~ 40 nsec, and switch (router) delay (¢,) of 300 ~ 500 nsec. The
startup time includes the software overheads for allocating buffers, copying messages, and
initializing the router and DMA [46]. The router delay includes several steps of complicated
operations and varies for various routing algorithms as Chien [45] analyzed. We also assume
that the network interface delay is almost the same as the switch delay for our evaluation.
Since synchronization messages do not need any data flits, the communication latency of a
message transfer can be approximated to t,+d-t,+ (d+1)-t,, where d is the distance between
the source and destination node in a communication. In a BTIN, d is simply obtained by

adding two links to h, i.e., d = h+ 2, which is due to the two nodes, the root and a leaf node.
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5.2 Simulation Results and Discussion

In this subsection, we present the simulation results for two different system configurations
explained earlier. Two important performance metrics, the synchronization latency and the
network traffic, are presented first. Next, the effect of several system parameters on the

synchronization latency is analyzed.

Synchronization Latency and Network Traffic

Figure 6 shows the synchronization latency, where ¢,, ¢;, and ¢, are assumed to be 2.0 usec,
20.0 nsec, and 300.0 nsec, respectively. Here for each parameter set, 100 simulation runs are
executed, and the results are averaged. In most of the cases, very small variance is observed.
Both the number of nodes and the number of switches are shown in the parenthesis of labels

in Figure 6, where the connectivity f is 75%.

—=—BTIN (26675} —=— BTIN (1024-3003
——Mcast (256-75)  —=— Mcast (1024-300)

Latency (usec)

oppooooon

0 20 40 B0 80 100 120 140 160 180 200 220 240 260
Group size

Figure 6: Synchronization latency.

The synchronization latency of the BTIN scheme is significantly lower than that of the
multicast scheme. Observe from the figure that the synchronization latency of the BTIN
scheme is almost independent on the group size except for very small groups. This is mainly
due to the fact that the tree height of BTIN is bounded by logs;_p/q_1)¢ on an irregular
network with k-port switches of connectivity f, where p is the number of nodes and ¢ is
the number of switches. In a system of 1024 nodes and 300 switches, the group size can be
more than 256. Even though it is not shown here, we increased the group size up to 1024.
Then the synchronization latency of the system of 1024 nodes and 300 switches converges
to 11.5 psec and 120.5 pusec for BTIN and multicast scheme, respectively. The performance

improvement is more substantial as the size of network increases. For instance, for the group
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size of 256, the BTIN scheme is faster than the multicast scheme by factors of 3.8 and 3.3
for the system of 256 nodes and 75 switches and the system of 1024 nodes and 300 switches,
respectively. It is obvious that the BTIN scheme is more scalable than the multicast scheme
as the synchronization latency of the BTIN scheme is increased by 1.8 when both system size
and group size are quadruplicated while that of the multicast scheme is increased by more
than three times (a factor of 3.3).

The network traffic shown in Figure 7 is measured as the number of round-trip hops (links)
which are traversed during both reduction and distribution phase. As shown in the figure,
the network traffic of the BTIN scheme is significantly lighter than that of the multicast
scheme. The performance of network traffic is more improved as the network size increases.
For instance, for the group size of 256, the network traffic of the BTIN scheme is significantly
lighter than the multicast scheme by factors of 46.8 and 88.6 for the system of 256 nodes
and 75 switches and the system of 1024 nodes and 300 switches, respectively. As the group
size is increased, the network traffic is also increased for both of the schemes because more
nodes and switches of the network are involved in a barrier synchronization. In addition, the
proposed BTIN scheme is clearly more scalable than the multicast scheme even in terms of

network traffic.

—=—BTIN {256-75) —=—BTIN {(1024-3003
——Mcast (2B6-TB)  —— Mcast (1024-300)

100000

10000

1000

Traffic

100

0 20 40 &0 80 100 120 140 160 180 200 220 240 260
Group size

Figure 7: Network traffic.

Effect of Switch Connectivity

We also study the impact of variations in the switch connectivity f on the performance of the
barrier synchronization schemes. On a system configuration of 256 nodes and 75 switches,
in which 8-port switches are interconnected, we consider three different cases of f; 50%,

70%, and 90%. This parameter is shown in the parenthesis of labels in Figure 8, where
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the same performance parameters as in the earlier are applied. Even in this experiment,
the BTIN scheme outperforms the multicast scheme for all the three cases of widely varying
connectivity values. As the connectivity increases, more performance gain is achieved. For
instance, for the group size of 256 on a system of 256 nodes and 75 switches, the BTIN scheme
is faster than the multicast scheme by factors of 8.7 and 4.1 and 3.2 for the three cases of
f, respectively. Again, the proposed BTIN scheme is still more scalable than the multicast
scheme for various connectivity values. Note here that, compared to the multicast scheme,
the BTIN scheme is less sensitive to connectivity f. The proposed scheme thus can be said to
be significantly better than the multicast scheme for widely range of system size and network

conditions.
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Figure 8: Effect of the switch connectivity.

6 Conclusions

In this paper, we have proposed a tree-based fast barrier synchronization scheme for switch-
based irregular networks, which is, to the authors’ knowledge, the first approach to hardware
support for barrier synchronization on irregular networks. The tree constructed by the BTIN
setup algorithm Setup Register() (see Section 3) is at most (k— 1)-ary, and the complexity
of routing latency is O(logn) while that of the fastest scheme, which is the method using
switch-based multicast at the distribution phase, is bounded by O(n), where n is the number
of member nodes. We have simulated and evaluated the performance of the proposed scheme,
in which synchronization latency, effect of switch connectivity, and the network traffic in-
curred during the barrier synchronization have been compared with the multicast scheme.

Extensive simulation study shows that for the group size of 256 the BTIN scheme improves
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the synchronization latency by a factor of 3.3 ~ 3.8. From the quantitative evaluation, it is
also obvious that the proposed BTIN scheme is more scalable than conventional schemes with
less network traffic.

We currently investigate the application of the BTIN scheme to other collective commu-
nications such as multicast or total exchange. It is also an interesting subject to consider the

BTIN scheme for dynamic environment caused by load balancing and node/link failures.
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