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Abstract - A method for testing multi-protocol 
implementation under test (IUT) with a single test suite has been 
proposed in the literature. It tests a multi-protocol IUT in an 
integrated way compared to the conventional method, where 
single-layer test method and single-layer embedded test method 
are applied separately to the upper layer protocol and lower layer 
protocol, respectively. However, it did not consider how to 
generate the test cases automatically but proposed only an 
approach for the test method. This paper proposes an algorithm 
called Multi-protocol Test Method (MPTM) for automatic test 
case generation based on that approach. With the MPTM, a 
multi-protocol IUT consisting of two protocol layers is modeled as 
two Finite State Machines (FSMs), and the relationships between 
the transitions of them are defined as a set of transition 
relationships, pre-execution and carried-by. The proposed 
algorithm is implemented and applied to a simplified TCPnP and 
B-ISDN Signaling/SSCOP. The MPTM is able to test the multi- 
protocol IUT even though the interfaces between the protocol 
layers are not exposed. It also allows the same test coverage as 
conventional test methods with much smaller number of test 
cases and operations. 

1. INTRODUCTION 

Conformance Testing Methodology and Framework 
(CTMF) was published as an international standard by 
ISO/IEC JTCl [2]. It focuses on testing single-layer protocols 
and proposes successive use of single-layer embedded test 
method for testing a multi-protocol implementation under test 
(IUT). Here, the single-layer test method is applied to the 
highest layer of multi-protocol, while the single-layer 
embedded test method is applied to other layers of multi- 
protocol IUT except the highest layer. 

In light of this, this paper presents a methodology called 
Multi-protocol Test Method (MPTM), which is able to test a 
multi-protocol IUT with a single test suite. It combines the 
single-layer test method used for the highest layer protocol 
with the single-layer embedded test method used for the lower- 
layer protocol. With the MPTM, the highest layer and the 
embedded layers are tested at the same time with a single test 
suite by directly controlling and observing the lower point of 
control and observation (PCO) and doing that indirectly for the 
hidden PCO located between the two protocol layers. 

Currently, in the methods such as Multiprotocol Label 
Switching (MPLS) [5], more than one layer of communication 
protocol are standardized and implemented as a single merged 
layer. Considering this trend, the MPTM has the following 
advantages over conventional methods such as CTMF. Firstly, 
a multi-protocol IUT is able to be tested even though its 
interface between the layers is not exposed. Secondly, the 
overhead for test description and execution is reduced by 
testing several protocols at the same time with a single test 
suite. Thirdly, the exact source of failure of a multi-protocol 
IUT can be identified. 

0-7803-6494-5/00/$10.00 0 2000 IEEE 

Hee Yong Youn Ben Lee 
Dept. of ECE 

Suwon, Korea 

Dept. of ECE 
SungKyunKwan University Oregon State University 

Corvallis, OR 9733 1 
y oun@ece.skku.ac.kr benl@ece.orst.edu 

A similar idea to the proposed MPTM was reported in [I]. 
However, the test cases were manually generated. Therefore, 
the idea lacks generality, and it was applied only to a 
simplified TCP/IP. In this paper we propose and implement an 
automated test case generation algorithm for testing a multi- 
protocol and apply it not only to a simplified TCP/IP but also 
to B-ISDN Signaling/SSCOP. With the MPTM, an IUT is 
implemented as two FSMs representing the protocols and the 
relationship between the transitions of these FSMs. As the 
result of applying the proposed algorithm to TCP/IP, the same 
test cases as the ones appeared in [ l ]  are generated. Moreover, 
an error in the test cases generated manually [ l ]  is found, 
which demonstrates the correctness and effectiveness of the 
proposed algorithm. To show the generality of the proposed 
MPTM, it is applied to B-ISDN Signaling/SSCOP, and it 
displays the same test coverage as the conventional test 
method with much smaller number of test cases and operations. 

The rest of the paper is organized as follows. Section 2 gives 
an overview of existing research on test coverage and test case 
generation with respect to multi-protocols. Section 3 proposes 
the MPTM which automatically generating the test cases for 
multi-protocol IUT. Section 4 presents the application of the 
MPTM to TCP/IP and B-ISDN Signaling/SSCOP, and the 
results. Finally, Section 5 provides a brief conclusion and 
some discussion on future work. 

2. RELATED WORK 

B-ISDN Signaling/SSCOP [4] and Multiprotocol Label 
Switching (MPLS) [5] are examples of multi-protocols. In B- 
ISDN Signaling/SSCOP, the upper interface of SSCOP is not 
open, and thus it is accessed indirectly only through the 
Signaling layer. Therefore, embedded test method should be 
used for testing the SSCOP layer. Similarly, MPLS needs the 
same test method because the interface between layer 2 and 3 
in commercial routers implementing MPLS is not exposed. 

Although there have been some related works on test 
coverage and test sequence generation, most of the works have 
been focused on testing a single-layer protocol embedded in a 
multi-protocol IUT [6,7,8]. For example, Petrenko and 
Yevtushenko [6] modeled the testing environment as a 
communicating FSM and proposed an embedded test method 
generating test sequences for IUT. Zhu et al. [7] proposed an 
approach and developed a tool evaluating the test coverage of 
the embedded test method based on a fault model. 
Yevtushenko and Cavali [8] proposed an approach minimizing 
the test suite for the embedded test method. All these 
approaches assumed an error-free context and focused on 
testing a single-layer protocol embedded in a multi-protocol 
IUT. The assumption, though, seems to be hard to apply in 
real test environment. 
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According to CTMF, which is the base of the related work 
above, test of multi-protocol IUT is performed by successive 
use of single-layer embedded test method for each protocol of 
multi-protocol IUT. In this approach it is assumed that all the 
protocols except the target protocol are error-free, which is 
rare in reality. Therefore, it is better to test all the protocols 
constructing the multi-protocol IUT at the same time and point 
out the exact source of failure. This is the main objective of 
the method discussed in [l], which tries to check the 
conformity of the multi-protocol IUT with a single test 
execution. 

Fig. 1 shows the organization of multi-protocol IUT. The 
upper interface of (N)-th layer and the lower interface of (N- 
1)-th layer are open, but the interface between (N)-th and (N- 
1)-th layer is neither directly controllable nor observable by 
the tester. In the MPTM, the test case has the same effect as 
simultaneously applying the single-layer test method to the 
upper layer protocol and single-layer embedded test method to 
the lower layer protocol. Therefore, the test event for this 
multi-protocol IUT is described with (N)-Abstract Service 
Primitive (ASP), (N)-Protocol Data Unit (PDU), and (N-1)- 
PDU. In this case, (N)-PDU is included in the user data field 
of (N-1)-PDU. We next present the proposed MPTM. 

3. THE PROPOSED ALGORITHM FOR MPTM 

Fig. 2 shows the overall structure of the proposed multi- 
protocol test method (MPTM). Here, given a multi-protocol 
of two FSMs representing the upper and lower layer protocol 
respectively and the relationship between the transitions of the 
two FSMs, the algorithm generates a test suite for the multi- 
protocol as an output. To accomplish this, the FSMs 
describing the IUT need to be defined in a form that can be 
used by the algorithm, and also a method is defined to indicate 
the relationship between the transitions of the upper and lower 
layer protocol. 

In order to briefly illustrate the proposed MPTM, an 
example of a multi-protocol described by two FSMs is 
depicted in Fig. 3. Fig. 3(a) and 3(b) represent the upper layer 
protocol and lower layer protocol, respectively. Observe from 
the figure that each transition is marked as TI : X/Y, where T, 
is transition identification, X is input , and Y is output. For 
example, for TI of Fig. 3(a), the input is PDU message and 
output is ASP message represented as P, ,,,/Au o,l .  

Definition I :  An operator, 4, is defined to represent the 
precedence condition between two events. For example, A 4 B  
indicates that event A precedes event B. 

- -  

Teot System System UndaTmt 

(N-l)-layer 

Servicc Provider 

Fig. 1. Organization of multi-protocol IUT. 

(a) Upper layer, M I  (b) Lower layer, M2 

Fig. 3. An example of a multi-protocol. 

In addition, the relationships between the two FSMs are 
assumed as follows. Here, (a) and (b) means Fig. 3(a) and Fig. 
3(b), respectively. 

Relationship 1 : 
- T I  in (b) c3 T2 in (b) 4 TI in (a) 
- TI in (a) Q T, in (b) - T2 in (a) c3 T, in (b) 
- T, in (a) c3 T4 in (b) 
- T, in (a) c3 T, in (b) 
- T5 in (a) 4 T, in (b) 4 T, in (b) e T, in (b) 

Definition 2 formally represents the FSM of a protocol to be 

Definition 2: FSM M, is composed of five elements (S, ,  I,, 

SI : a finite nonempty set of states, 
I, : a finite nonempty set of inputs, 
0, : a finite nonempty set of outputs, 
T, : a finite nonempty set of deterministic transitions defined 

S," : the initial state of M,. 

According to Definition 2, the FSM, M I ,  of Fig. 3(a) can be 

tested. 

0,, TI, S,"), where each element is defined as follows: 

as SI x I, 3 SI x 0,, and 

represented as follows. 

states = { s I , 0 9  1 9  s l , 3 } 2  

inputs '1 = {'U 1.13 Au-,,29 pU-1.33 Au_l,49 pu_1.5), 
Outputs {A, 0.1, '"-0 2, 0.39 'U 0.49 pu_0,5} 9 

transitions TI  = { : XP,,~~ 3 SI I x Au_o,l, 
'1.2 : '1 I I 2 sl'3 'U 0.29 

'1.3 : '1:l 'U-;.; AuIo,3? 

'1,4 : '1.2 Au-l,4 'l',3 pu_0,4, 
'I,, : '1.3 pu_l,5 '1.0 pu_o.S), and 

initial state SIo = 
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Definition 3 describes the relationship between the 
transitions of two FSMs. 

Definition 3: Given two FSMs describing upper layer, Mi, 
and lower layer, M,, the relationship R between the transitions 
of M, and M, is a set of R,l, where R , k  represents the mapping 
from transition of M, to the transitions of M, that have 
relationship with means the k-th transition of Mi.  

The relationship R between the transitions of MI and M, of 
Fig. 3 can be represented by Definition 3 as follows. 

= { R1,5) 

in Definition 3 can be further defined in Definition 4. 
Definition 4: Mapping R , k  is an ordered set of pre- 

execution(?;,,) and carried-by(Tj,,). Preexecution(T ,) 
represents a transition in the lower FSM, which has to be 
executed first before the execution of T,,k Carried-by(T,,,) 
represents a transition in the lower FSM, which is executed 
while T,,k of the upper FSM is executed. 

Definition 5 :  The notation "0" means that the elements 
enclosed by it are executed in order from left to right. 

According to Definition 4, & , k  for Relationship 1 shown in 
the previous page can be represented as follows: 

RI, l=~pre-execution(T,,l),pre-execution(T,,2),carried-by(T,,,)~, 
R,,* = <carried-by(T,,,) >, 
R, = <carried-by(T, 4) >, 
R,:, = <carried-by(T,:,) >, and 

= <carried-by(T,,,),carried-by(T,,),carried-by(T,,,) >. 
Based on the aforementioned definitions, the algorithm for 

the MPTM is shown as Algorithm 1 in Appendix 1. Let us 
look at it in detail. Mainxeneration is the main function 
which receives the upper FSM, MI, the lower FSM, M,, and 
the relationship R as inputs, and generates test cases as output. 
All operations and functions are called by Mainseneration. 
The role of f indgreamble  is to find the shortest path from the 
initial state to the starting state of a transition intended to be 
tested. After the preamble of each transition is derived by 
findgreamble,  test-case-generation is called by each 
transition of MI.  test-case-generation calls 
generategreamble,  and then invokes generate-testbody. 
Using the shortest path found by findgreamble,  
generategreamble provides the sequence of transitions up to 
the starting state where a transition is tested. 
generate-testbody visits a transition to be tested, and then 
generates a corresponding test case. 

Using the FSMs and the relationship between the transitions 
of them, generate-testbody does the followings. First, it 
processes the operations corresponding to the pre-execution 
relationship. If there exist some transitions in the lower FSM 
that must be executed before executing the transition of the 
upper FSM, they are executed first. Accordingly, the 
transitions in the lower FSM for pre-execution relationship 
execute the behavior lines such as "PC03! Input" and "PC03? 
Output". These behavior lines are to send an input and receive 
an output from the protocol to be tested. Second, the carried- 
by relationship is executed. Here, when the transition of the 
upper FSM is executed, the transitions of the lower FSM in the 
relationship are also executed concurrently. These operations 

related to the input and output of the transitions to be tested are 
iteratively executed in order until the input and output are 
exhausted. If the input of the upper FSM transition is ASP, 
then "PCOl! Input" is generated. If the input is PDU, then 
"PC03! Input" is generated. In the case of PDU, the input in a 
behavior line is included as an input parameter to the transition 
in the lower FSM. If the output of the upper FSM transition is 
ASP, then "PCOl? Output" is generated. If output is PDU, 
then "PC03? Output" is generated. In the case of PDU, an 
output in a behavior line includes the output parameter for a 
transition ofthe lower FSM. 

After every transition of the upper FSM processes 
generate-testbody, the number of the test cases, behavior 
lines, and events, and test coverage are printed. 

4. APPLICATION OF THE MPTM 

In this section the proposed MPTM is applied to TCP/IP and 
B-ISDN Signaling/SSCOP, and then the results are analyzed in 
terms of test cases and test case coverage. 

4.1 Application to TCP/IP 

This subsection describes the implementation of the MPTM 
proposed in Section 3, and its application to TCP/IP [3] multi- 
protocol. With the result, the correctness of the MPTM is 
verified. 

Fig. 4 and 5 show the FSMs of simplified TCP and IP 
protocol, respectively. Transitions in Fig. 4, such as T, and T,, 
can be divided into two cases: IP with fragmentation and IP 
without fragmentation. This results in T, ,, T,,, T,_,, and T, ,. 
The relationship between the transitions o f  the two FSMs can 
be derived by analyzing the FSMs. For example, let us 
examine T2 where the input and output are SYN-ACK and 
ACK, respectively. In order for the IUT to receive SYN-ACK, 
the tester first sends a datagram containing SYN-ACK and 
receives an IP datagram from the IUT containing the result of 
the execution of T,, in Fig. 5. The IUT then receives ACK. 
To do this, the IUT sends an IP datagram as a result of the 
execution of Ts.l in Fig. 5. If a datagram containing ACK is 
confirmed, then the execution of T, is confirmed. In this way, 
the relationship between the upper FSM of TCP and lower 
FSM of IP is defined from their protocol specifications. The 
relationships are as follows: 

TCP(initiator) 
1 1  I rl.rFq.rmallII>AIA 

T ,  d. icq.largdl>AIA 

T , = T . , o r  T., 

Tt D M A l A C K  
7 c re IFIN 

Fig. 4. The FSM of a simplified TCP protocol. 
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I P(sender) 

Fig. 5. The FSM of IP protocol. 

R = { RI, R2, R3 I 3  R, 2 9  4, R5, %, R7, $ - I ,  $_2 1 where 
RI = < carried-by CTS,,) >, 
R2 = < carried-by(T,,,), carried-by(T,,) > 
R,_, = < carried-by(T,,) >, 
R3_, = < carried-by(T,,), carried-by(T,,), carried-by(T,,) >, 
4 = < carried-by(T,, )> , 
& = < carried-by(T, ,) >, 
& = < carried-by(T,:,) > , 
R7 = < carried-by(T,,), carried-by(T,,) >, 
$_, = < carried-by(T,,), carried-by(T,,) >, and 
$_2 = < carried-by(T,,), carried-by(T,,), carried-by(T,,), 

Applying the implementation of the MPTM to a simplified 
TCP/IP results in 10 test cases (see Appendix 2). Using the 
test cases, 8 transitions from the upper FSM (TCP) and 8 
transitions from the lower FSM (IP) can be tested. The test 
cases are same as the ones generated manually in [l] except 
for T,. The test case in [ l ]  contains an error, and the correct 
test case is shown as "m-tc-TS" in Appendix 2. This 
demonstrates one of important benefits of generating the test 
cases for multi-protocol automatically, which is correctness. 

Now let us illustrate the process of test case generation 
using a typical test case shown in Appendix 2. For that, 
consider "m-tc-T4" corresponding to T , of TCP (which is 
for IP fragmentation). To execute transition T, ,, the IUT has 
to be set to the starting state of T, 2 .  AccordingTy, the behavior 
line "+m-tc-T2" is obtained by generation-preamble. Since 
there is no pre-execution for T, ,, the operations associated 
with the carried-by relationship are executed. First, the input 
of T, , is observed. Because the input is ASP "d-reqlarge", 
the behavior line "PCOl! d-reqlarge" is generated for 
sending an input to the protocol to be tested. Next, the output 
of T, is observed. Since the output is PDU "DATA" and the 
relationship of T , of the remaining elements are "carried- 
by(T,,)", "carriFd-by(T,,)" and "carried-by(T,,,)", the 
algorithm generates behavior lines corresponding to receive 
dg-s, dg-s, and dg-f to execute the transitions TS,,, T,,, and T,,, 
respectively. "DATA", which is the output of transition T, ,, IS 
included as a parameter of the outputs of Tr,,, T,,, and Ts,4.- As 
a result, the generated behavior lines are PC03 ? 

carried-by(T,,) >. 

IP(receiver) 

dg-s(DATA)", "PC03 ? dg-s(DATA)", and "PC03 ? 
dg-f(DATA)". 

We compare the multi-protocol test cases obtained by the 
process mentioned above and those obtained by the 
conventional test method. According to [ 13, the conventional 
method generates 8 test cases, 22 behavior lines, and 48 events 

for testing the TCP described in Fig. 4, and 8 test cases, 23 
behavior lines, and 47 events for testing the IP in Fig. 5. 
Consequently, the conventional test method needs 16 test cases, 
45 behavior lines, and 95 events to test all the transitions of 
TCP/IP multi-protocol. On the other hand, the proposed 
MPTM allows to test all the transitions with only I O  test cases. 
In addition, the numbers of behavior lines and events are 
decreased to 31 and 63 from 45 and 95, respectively. This 
means that the MPTM allows the same test coverage as the 
conventional test method with much fewer test cases and 
operations. 

4.2 Application to B-ISDN Signaling/SSCOP 

In the previous subsection, it was shown that the same test 
cases presented in [ I ]  can be derived by applying the 
implementation of the MPTM to TCP/IP. In this subsection, 
the generality of the proposed algorithm is shown by applying 
it to a multi-protocol consisting of 4.293 1 signaling layer and 
SSCOP [4]. 

Fig. 6 and 7 in Appendix 3 show 4.2931 signaling layer and 
SSCOP, respectively. As in the case for TCP/IP discussed in 
Section 4.1, two FSMs are defined corresponding to the 
4.2931 signaling layer as the upper layer and the SSCOP as 
the lower layer, and the relationship between the transitions of 
the two FSMs is extracted. Compared with TCP/IP which has 
only the carried-by relationship, there is an additional pre- 
execution relationship in 4.293 1 signaling/SSCOP multi- 
protocol. For instance, consider the transition J in Fig. 6. 
4.2931 Signaling layer transmits PDU through SSCOP. If 
there is a pre-established connection in SSCOP, it is used. 
Otherwise, a new connection of SSCOP must be established. 

Because transition TI of 4.2931 starts from the initial state, 
there is no established connection in SSCOP. To execute 
transition T,, thus, SSCOP needs to establish a connection. 
This means TI and T3 in Fig. 7 must be executed before the 
transition in Fig. 6 is executed. After establishing the 
connection, T,, in Fig. 7 and TI  in Fig. 6 are executed 
independently (or concurrently). In other words, transition T, 
of 4.2931 FSM has relationships with the transitions T,, T,, 
and  T8 of SSCOP FSM such as preexecution(T,,,), pre- 
execution(T,,,), and carried-by(T,,,). All the relationships 
between 4.293 1 and SSCOP can be described as follows. 

R = RI, R 2 7  %7 -.-> R20, R71 1 where 
R,=<preexecution(Ti,),pre-execution(T,,, ),carried-by(T,,,,)>, 
h=<carried-by(T, 7q)>, 

R;=<carried-by(T&)>, 
~=<carried-by(T,,,,),carried-by(T,,,,)>, 
&=<carried-by(T,,,,)>, 
%=<carried-by(T, ,,),carried-by (T, 28)>, 
R7=<carried-by(T,:,,),carried-by(T,:,,)>, 
$=<preexecution(T,,,),pre-execution(T2~, ,),carried-by(T,,,,)>, 
R+carried-by(T,,,,)> , 
R,,=<carried-by(T,,,,)>, 
RI ,=<carried-by(T, ,,)>, 
R,,=<carried-by(T,:,,)>, 
R,,=<carried-by(T,,,,)>, 
R,,=<carried-by (T,,,,)>, 
R,,=<carried-by(T, ,,)>, 
R,,=<carried-by(T,:,,)>, 
R,,=<carried-by(T,,,,)>, 
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R,,=<carried-by(T,.,,)>, 
RI ,=<carried-by( T, 29)>. 
R,,=<carried-by(T,:,,)>, and 
R2 =<carried-by(T,,,,)>. 

Based on the relationship defined above, 21 multi-protocol 
test cases are derived as a result of applying the MPTM to the 
B-ISDN Signaling/SSCOP described in Fig. 6 and 7. The 
generated test cases are shown in Appendix 4. 

Now let us illustrate the generation process of test cases 
using a typical test case shown in Appendix 4. To illustrate 
the process, consider "m-tc-T8" for transition T8 in Appendix 
4, which has pre-execution relationship as well as carried-by 
relationship. Because T, is executed at the initial state, it does 
not have a preamble. With respect to T8, the first and second 
relationship elements are "preexecution(T,,,)" and "pre- 
execution(T,,, ,)", respectively. The MPTM algorithm 
generates behavior lines "PC03! BGN" and "PC03? BGAK" 
which execute T2,2 and T2,11, respectively. Because no more 
pre-execution relationship exists, the operation related to 
carried-by is then executed. Since the input of T, is "SETUP" 
PDU, the input is passed to the IUT through PC03 as a form 
of SSCOP PDU which is the lower FSM. Accordingly, the 
algorithm generates a behavior line which executes Tz.z9. 
Namely, "SETUP", an input of transition T8, is included a s  a 
parameter of "SD", which is the output of T2,29. As a result, the 
generated behavior line becomes "PC03! SD(SETUP)". As 
the next step, we observe the output of T8. Since the output is 
ASP "setup-ind", the algorithm generates behavior-line 
"PCOI? setup-ind", which receives "setup-ind" from the 
protocol to be tested. 

The result of the test case generation is summarized in Table 
I, which compares it with the conventional method. As can be 
seen from the table, 21 out of the 21 transitions of 4.2931 and 
6 out of the 29 transitions of SSCOP from the conventional 
test method can be tested by 21 test cases obtained by the 
proposed multi-protocol test method. Having the limit on 
testing the behavior of the lower layer, the multi-protocol test 
method cannot test all the transitions of the lower layer. It is 
due to the fact that the tester cannot access the internal 
interface directly, but control and observe the interface 
indirectly through the upper layer protocol. This problem 
exists in the embedded test methods [6,7,8] as well. 

The proposed MPTM can test each layer of a multi-protocol 
at the same time even though the interfaces between the 
protocols are not exposed. Also it has the same coverage as 
the conventional method with fewer test cases as shown in 
Table I. Note also that the MPTM requires more events than 
the conventional method. This is because the behavior of the 
lower layer required for testing is not included in the 
conventional method. For example, consider "m-tc-Tl 'I in 
Appendix 4 and "s-tc-Tl" from the single-layer test method 
shown in Table II. Note form the table that there are behavior 
lines such as "PC03 ? BGN" and "PC03 ! BGAK" in 
"mtc-TI", but not in "s-tc-Tl". They are not described in 
the single-layer test case, but actually executed in the testing 
environment. In other words, "m-tc-Tl" in the multi-protocol 
test method includes all the behaviors of 4.2931 and SSCOP. 
However, with "s-tc-Tl" in the single-layer test method, the 
behaviors of SSCOP is neither presented in the test case nor 

Multi-Protocol Test Method 

Number of test 21 
cases 

TABLE I 

~MF'ARISON OF TEST CASES FOR 
MPTM AND CONVENTIONAL METHOD 

Conventional test method 

embedded y3 I S1ngle-layer F:: ;$;,"p test method 
for SSCOP s s c o p  

21 6 27 

Number of 

T~~~ coverage 

16 I 3 4  
( 176) 

all transitions 

Of sscop 6 tr,",:',mns 

I60 
(4+6+6+7+8+9+9+4+6+6+6+ I I 
6+8+8+8+8+9+9+11+11+ll) (I6') 

all transitions of Q 293 I tranSlbonS 6 transitions Of Q 293 I 
6 transitions of SSCOP 

TABLE II 

MULTI-PROTOCOL TEST CASE AND SINGLE-LAYER TEST CASE 

m-tc-Tl s-tc-TI I 
PCO I ! setup-req 

P C 0 3  ! BGAK 

PCOI ! setup-req 
PCO2 ? SETUP P C 0 3  ? EGN 

included as events. Only the behavior of 4.293 1 is counted in 
the single-layer test method. 

Since SSCOP behaves as the service provider in the test 
environment for the single-layer test method, the number of 
events in the single-layer test method will increase if these 
factors are considered. If we count the executions of the lower 
layer which do not appear in the test case of Table I ,  the 
number of events of s-tc-Tl becomes 4. The total number of 
events of the single-layer test method is recomputed in this 
way, and then it becomes 160. Adding the number of events 
for the embedded test method, the total number of events in 
the existing method becomes 176. Consequently, the total 
number of events in the MPTM becomes smaller than that 
with the single-layer test method if the events of the lower 
layer is included. 

5. CONCLUSION AND FUTURE WORK 

In this paper an approach for automatic test case generation 
with the multi-protocol test method proposed in [ l ]  has been 
developed and implemented. The method called MPTM 
defines two FSMs which represent the protocols to be tested 
and the relationship between the transitions of them. Using the 
two FSMs and the relationship as inputs, the MPTM 
automatically generate test cases for multi-protocols. The 
MPTM was applied to TCPIIP, and same result as in [ I ]  was 
generated. It also found an error in the test cases generated in 
[l]. We have also demonstrated the generality of the MPTM 
by applying it to Q.2931/SSCOP. The MPTM is able to test 
the multi-protocol IUT even though the interfaces between the 
protocol layers are not exposed. In addition, it has the 
advantages of providing the same coverage as the conventional 
test method with fewer number of test cases and identifying 
the exact source of failure in a multi-protocol IUT. 
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The MPTM generates test cases for multi-protocol IUT 
consisting of two protocol layers. As a future work, we plan to 
extend it to be applicable to multi-protocol IUT consisting of 
more than two protocols in a stack. Constructing a test 
environment by using the MPTM and applying the 
methodology to test real protocols will be done in order to 
demonstrate the feasibility of the proposed methodology. 
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APPENDIX 1. ALGORITHM FOR MPTM 

Mnin-generalion(M,, &, R) ( 
For (T = each transition m M,) ( 

lindgrenmble(Ml, T) 
test-case_generntion(M,, &, R, T) 

1 
Mite statistics(# of test cases, #of behanor lines. r4 of events, test coverage) 

I 

findgrenmble (MI,  TI,) ( 
for (P = each transition in MI )  ( 

I 
select P which IS  the shortest path from the initial state 

I f  (the ending state of P == the starting state of T,J choose P 

t 

t~t_cnseqenerat ion(M,,  &, R, T h )  { 
generalc-prramble(MI, T,,) 
gencrate-testbody(M,, TI,, R ) 

generate-preamble(MI. TIJ ( 1 generate the preamble of TI, 

I ’  

generate-lcstbody(Ml ,TI,, R) ( 
I* pre-execution *I  
If (pre-execution of T,, exists in RtJ ( 

if (an input of T,,is ASP type) ( 
wi le  a behavior line concatenahng “PCO 11’’ and the input of T ,, 
set pre-execution-flag 
i = o  
while@re-execubon of T,, exlsts !n RIJ) ( 

I ++ 
cur-element = read the current element in RI, 
cur-transition = the transihon of the cur-element 
if ( I IS an odd number) 

else if ( I IS an even number) 
wnte a behavior line concatenahng “PC037” and the output of cur-transinon 

wnte a behavior line concatenahng ”PC031” and the input of cur-translhon 
1 

I 
else if (an input of T,,ts PDU type) { 

, = O  
while (pre-execution of TtJ exlsts m RCJ) ( 

I ++ 
cur-element = read the current element in RI, 
cur-transition = the transition of the cur-element 
if ( I IS an odd number) 

else if ( i is an even number) 
wnte a behavior line concatenahng “PCO31” and the input of cur-mansihon 

write a behawor line concatenating “PC037” and the output of cur-transmon 
1 

1 
1 

/* carr~ed-by */ 
if (an input of T,,is ASP type and pre-execution-flag i s  unset) 

else if (an input of T,,is PDU type) ( 
wnle a behavior line concatenating “PCOI 1” and the input of T 

cur-element = read the current element in RI, 
cur-transition = the transihon of the cur-element 
w i fe  a behavior line concatenahng 
“PC03 I”, the input of cur-transhon, “(”, the input of TI,. and “)” 

) 

for ( each output of TI, ) ( 
If (the output of T,is ASP type) 

else if (the output of Tuis PDU type) ( 
wnte a behavior line concatenating “PCOI 7” and the output of TI, 

cur-element = read the current element in RI, 
cur-transihon = the transition of the cur-elemenl 
wnte a behanor line concatenating 
“PC037”. the output of cur-transition. “(”, the output of T ,,. and ‘ )’ 

1 
1 

) 

Algorithm 1. Algorithm for multi-protocol testing 

APPENDIX 2. TEST CASE FOR TCP/IP BY MPTM 

m-tc-T I 
PCOl 1 cr-req 

PC03 ? dg_f(SYN) 

m-tc-T2 
+m-tc-TI 

PC03 ! dgf(SYN-ACK) 
PC03 7 dg-f(ACK) 

m-tc-T3 
+m-tc-T2 
PCOl 4 d-req_small 

PC03 7 dgf(DATA) 

m-tc-T4 
+m-tc-T2 
PCOl 1 d-req_lnrge 

PC03 7 dg-s(DATA) 
PC03 7 dg-s(DATA) 

PC03 7 dg-f(DATA) 

m-tc-TS 
+m-tc-T3 

PC03 1 dgf(ACK) 

m_tc-T6 
+m-tc_T2 

PCOl 1 e-req 
PC03 7 dg-f(FIN) 

m-tc-T7 
+m-tc-Tb 

PC03 I dg_f(ACK) 

m_tc-T8 
+m_tc-TI 

PC03 1 dg-f(FIN) 
PC03 7 dg-f(ACK) 

m-tc-TP 
+m-tc-T2 
PC03 1 dg-f(DATA_small) 

PC03 7 dg_f(ACK) 

m-tc-TI0 
+m-tc-T2 

PC03  1 dgs(DATA-large) 
PC03 I dg-s(DATA_large) 

PC03 1 dg-fpATA-large) 
PC03 7 dg-f(ACK) 
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APPENDIX 3. ALGORITHMFOR MPTM 

Fig. 6. FSM of 4.293 1. 

0:: %?:a.:"? 
Fig. 7. FSM of SSCOP. 

APPENDIX 4. TEST CASE FOR B-ISDN SIGNALING/SSCOP 
BY MPTM 

m_tc_TI 
PCO I 1 setup-req 
PCO 3 BGN 
Pco 3 BGAK 

m-tc-TI I 
+m_tc-T8 

PCOl I dertlng-req 
PC03 7 SD(ALERTING) 

PC03 SD(SETUP) 
m_tc_TI 2 

m_tc-T2 +m-tc-T8 
+m-tc_TI PCOl 1 setup-resp 

PC03 1 SD(CALL_PROCEEDING) PC03 7 SD(C0NNECT) 
PCOl 7 proceeding-md 

m tc T I 3  
m_tc_T3 +m_G_T I O  
+m_tc-TI PCOl 1 setup-resp 

PC03 I SD(ALERTING) PC03 7 SD(C0"ECT)  
PCOl 7 alerting-md 

m tc TI4  
m_tc-T4 
+m_tc-TI 

PC03 I SD(C0NNECT) 
PCOl7 setup-conf 

+m-c-TI 0 
PCOl I alerting-req 

PC03 7 SD(ALERllNG) 

P C O ~  7 SD(CONNECT-ACK) m_tc_TIS 
+m-tc-TI 1 

m-tc_TS PCOl 1 setup-resp 
+m_tc_T2 PC03 SD(C0NNECT) 
PC03 1 SD(ALERTING1 

PC03 1 SD(C0NNECT) 
P C O l ?  setup-conf 

PC03 7 SD(C0NNECT-ACK) 

m-tc-T7 
+m-tc-T3 
PC03 1 SD(C0NNECT) 

PCOl ? setup-conf 
PC03 7 SD(C0NNECT-ACK) 

m_tc-T8 
PCO 3 ! BGN 
PCO 3 ? BGAK 

PC03 1 SD(SETW) 
PCOI 7 sehrp-ind 

m-tc-TP 
+m-tc-T8 

PCOl I release-req 
PC03 7 SD(RELEASE-COMPLETE) 

m-tc-T I O  
+m-tc-T8 

PCOl I proceedtngreq 
PC03 7 SD(CALLPROCEED1NG) 

m-tc-TI7 
+m-tc-T4 

PCO I I release-req 
PC03 7 SD(RELEASE) 

m_tc_TI 8 
+m-tc-T4 

PC03 1 SD(RELEASE) 
PCOl 7 released-ind 

m-tc-T I 9 
+m-tc-T17 
PC03 1 SD(RELEASE-COMPLETE) 

PCOl release-conf 

m-tc-TZO 
+m-tc-T I7 

PC03 1 SD(RELEASE) 
P C O l ?  release-conf 

m-tc-T2I 
+m-tc-TI 8 

PCOl I release-resp 
PC03 7 SD(RELEASE-COMPLETE) 

PCOl 7 alemng-md 

m-tc-Tb 
+m_tc_T2 

m_tc_T I 6  
+m_tc-TI 2 

PC03 1 SD(C0h"ECT-ACK) 
PCOl 7 semp-complete-md 
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