
Automatic Test Case Generation Using Multi-protocol Test Method

Soo-in Lee, Yongbum Park, and Myungchul Kim
School of Engineering

Information and Communications University
Taejon, Korea

{elsie, ybpark, mckim}@icu.ac.kr

Abstract - A method for testing multi-protocol
implementation under test (IUT) with a single test suite has been
proposed in the literature. It tests a multi-protocol IUT in an
integrated way compared to the conventional method, where
single-layer test method and single-layer embedded test method
are applied separately to the upper layer protocol and lower layer
protocol, respectively. However, it did not consider how to
generate the test cases automatically but proposed only an
approach for the test method. This paper proposes an algorithm
called Multi-protocol Test Method (MPTM) for automatic test
case generation based on that approach. With the MPTM, a
multi-protocol IUT consisting of two protocol layers is modeled as
two Finite State Machines (FSMs), and the relationships between
the transitions of them are defined as a set of transition
relationships, pre-execution and carried-by. The proposed
algorithm is implemented and applied to a simplified TCPnP and
B-ISDN Signaling/SSCOP. The MPTM is able to test the multi-
protocol IUT even though the interfaces between the protocol
layers are not exposed. It also allows the same test coverage as
conventional test methods with much smaller number of test
cases and operations.

1. INTRODUCTION

Conformance Testing Methodology and Framework
(CTMF) was published as an international standard by
ISO/IEC JTCl [2]. It focuses on testing single-layer protocols
and proposes successive use of single-layer embedded test
method for testing a multi-protocol implementation under test
(IUT). Here, the single-layer test method is applied to the
highest layer of multi-protocol, while the single-layer
embedded test method is applied to other layers of multi-
protocol IUT except the highest layer.

In light of this, this paper presents a methodology called
Multi-protocol Test Method (MPTM), which is able to test a
multi-protocol IUT with a single test suite. It combines the
single-layer test method used for the highest layer protocol
with the single-layer embedded test method used for the lower-
layer protocol. With the MPTM, the highest layer and the
embedded layers are tested at the same time with a single test
suite by directly controlling and observing the lower point of
control and observation (PCO) and doing that indirectly for the
hidden PCO located between the two protocol layers.

Currently, in the methods such as Multiprotocol Label
Switching (MPLS) [5], more than one layer of communication
protocol are standardized and implemented as a single merged
layer. Considering this trend, the MPTM has the following
advantages over conventional methods such as CTMF. Firstly,
a multi-protocol IUT is able to be tested even though its
interface between the layers is not exposed. Secondly, the
overhead for test description and execution is reduced by
testing several protocols at the same time with a single test
suite. Thirdly, the exact source of failure of a multi-protocol
IUT can be identified.

0-7803-6494-5/00/$10.00 0 2000 IEEE

Hee Yong Youn Ben Lee
Dept. of ECE

Suwon, Korea

Dept. of ECE
SungKyunKwan University Oregon State University

Corvallis, OR 9733 1
y oun@ece.skku.ac.kr benl@ece.orst.edu

A similar idea to the proposed MPTM was reported in [I].
However, the test cases were manually generated. Therefore,
the idea lacks generality, and it was applied only to a
simplified TCP/IP. In this paper we propose and implement an
automated test case generation algorithm for testing a multi-
protocol and apply it not only to a simplified TCP/IP but also
to B-ISDN Signaling/SSCOP. With the MPTM, an IUT is
implemented as two FSMs representing the protocols and the
relationship between the transitions of these FSMs. As the
result of applying the proposed algorithm to TCP/IP, the same
test cases as the ones appeared in [l] are generated. Moreover,
an error in the test cases generated manually [l] is found,
which demonstrates the correctness and effectiveness of the
proposed algorithm. To show the generality of the proposed
MPTM, it is applied to B-ISDN Signaling/SSCOP, and it
displays the same test coverage as the conventional test
method with much smaller number of test cases and operations.

The rest of the paper is organized as follows. Section 2 gives
an overview of existing research on test coverage and test case
generation with respect to multi-protocols. Section 3 proposes
the MPTM which automatically generating the test cases for
multi-protocol IUT. Section 4 presents the application of the
MPTM to TCP/IP and B-ISDN Signaling/SSCOP, and the
results. Finally, Section 5 provides a brief conclusion and
some discussion on future work.

2. RELATED WORK

B-ISDN Signaling/SSCOP [4] and Multiprotocol Label
Switching (MPLS) [5] are examples of multi-protocols. In B-
ISDN Signaling/SSCOP, the upper interface of SSCOP is not
open, and thus it is accessed indirectly only through the
Signaling layer. Therefore, embedded test method should be
used for testing the SSCOP layer. Similarly, MPLS needs the
same test method because the interface between layer 2 and 3
in commercial routers implementing MPLS is not exposed.

Although there have been some related works on test
coverage and test sequence generation, most of the works have
been focused on testing a single-layer protocol embedded in a
multi-protocol IUT [6,7,8]. For example, Petrenko and
Yevtushenko [6] modeled the testing environment as a
communicating FSM and proposed an embedded test method
generating test sequences for IUT. Zhu et al. [7] proposed an
approach and developed a tool evaluating the test coverage of
the embedded test method based on a fault model.
Yevtushenko and Cavali [8] proposed an approach minimizing
the test suite for the embedded test method. All these
approaches assumed an error-free context and focused on
testing a single-layer protocol embedded in a multi-protocol
IUT. The assumption, though, seems to be hard to apply in
real test environment.

360

mailto:benl@ece.orst.edu

According to CTMF, which is the base of the related work
above, test of multi-protocol IUT is performed by successive
use of single-layer embedded test method for each protocol of
multi-protocol IUT. In this approach it is assumed that all the
protocols except the target protocol are error-free, which is
rare in reality. Therefore, it is better to test all the protocols
constructing the multi-protocol IUT at the same time and point
out the exact source of failure. This is the main objective of
the method discussed in [l], which tries to check the
conformity of the multi-protocol IUT with a single test
execution.

Fig. 1 shows the organization of multi-protocol IUT. The
upper interface of (N)-th layer and the lower interface of (N-
1)-th layer are open, but the interface between (N)-th and (N-
1)-th layer is neither directly controllable nor observable by
the tester. In the MPTM, the test case has the same effect as
simultaneously applying the single-layer test method to the
upper layer protocol and single-layer embedded test method to
the lower layer protocol. Therefore, the test event for this
multi-protocol IUT is described with (N)-Abstract Service
Primitive (ASP), (N)-Protocol Data Unit (PDU), and (N-1)-
PDU. In this case, (N)-PDU is included in the user data field
of (N-1)-PDU. We next present the proposed MPTM.

3. THE PROPOSED ALGORITHM FOR MPTM

Fig. 2 shows the overall structure of the proposed multi-
protocol test method (MPTM). Here, given a multi-protocol
of two FSMs representing the upper and lower layer protocol
respectively and the relationship between the transitions of the
two FSMs, the algorithm generates a test suite for the multi-
protocol as an output. To accomplish this, the FSMs
describing the IUT need to be defined in a form that can be
used by the algorithm, and also a method is defined to indicate
the relationship between the transitions of the upper and lower
layer protocol.

In order to briefly illustrate the proposed MPTM, an
example of a multi-protocol described by two FSMs is
depicted in Fig. 3. Fig. 3(a) and 3(b) represent the upper layer
protocol and lower layer protocol, respectively. Observe from
the figure that each transition is marked as TI : X/Y, where T,
is transition identification, X is input , and Y is output. For
example, for TI of Fig. 3(a), the input is PDU message and
output is ASP message represented as P, ,,,/Au o,l .

Definition I : An operator, 4, is defined to represent the
precedence condition between two events. For example, A 4 B
indicates that event A precedes event B.

- -

Teot System System UndaTmt

(N-l)-layer

Servicc Provider

Fig. 1. Organization of multi-protocol IUT.

(a) Upper layer, M I (b) Lower layer, M2

Fig. 3. An example of a multi-protocol.

In addition, the relationships between the two FSMs are
assumed as follows. Here, (a) and (b) means Fig. 3(a) and Fig.
3(b), respectively.

Relationship 1 :
- T I in (b) c3 T2 in (b) 4 TI in (a)
- TI in (a) Q T, in (b) - T2 in (a) c3 T, in (b)
- T, in (a) c3 T4 in (b)
- T, in (a) c3 T, in (b)
- T5 in (a) 4 T, in (b) 4 T, in (b) e T, in (b)

Definition 2 formally represents the FSM of a protocol to be

Definition 2: FSM M, is composed of five elements (S, , I,,

SI : a finite nonempty set of states,
I, : a finite nonempty set of inputs,
0, : a finite nonempty set of outputs,
T, : a finite nonempty set of deterministic transitions defined

S," : the initial state of M,.

According to Definition 2, the FSM, M I , of Fig. 3(a) can be

tested.

0,, TI, S,"), where each element is defined as follows:

as SI x I, 3 SI x 0,, and

represented as follows.

states = { s I , 0 9 1 9 s l , 3 } 2

inputs '1 = {'U 1.13 Au-,,29 pU-1.33 Au_l,49 pu_1.5),
Outputs {A, 0.1, '"-0 2, 0.39 'U 0.49 pu_0,5} 9

transitions TI = { : XP,,~~ 3 SI I x Au_o,l,
'1.2 : '1 I I 2 sl'3 'U 0.29

'1.3 : '1:l 'U-;.; AuIo,3?

'1,4 : '1.2 Au-l,4 'l',3 pu_0,4,
'I,, : '1.3 pu_l,5 '1.0 pu_o.S), and

initial state SIo =

36 1

Definition 3 describes the relationship between the
transitions of two FSMs.

Definition 3: Given two FSMs describing upper layer, Mi,
and lower layer, M,, the relationship R between the transitions
of M, and M, is a set of R,l, where R , k represents the mapping
from transition of M, to the transitions of M, that have
relationship with means the k-th transition of Mi.

The relationship R between the transitions of MI and M, of
Fig. 3 can be represented by Definition 3 as follows.

= { R1,5)

in Definition 3 can be further defined in Definition 4.
Definition 4: Mapping R , k is an ordered set of pre-

execution(?;,,) and carried-by(Tj,,). Preexecution(T ,)
represents a transition in the lower FSM, which has to be
executed first before the execution of T,,k Carried-by(T,,,)
represents a transition in the lower FSM, which is executed
while T,,k of the upper FSM is executed.

Definition 5 : The notation "0" means that the elements
enclosed by it are executed in order from left to right.

According to Definition 4, & , k for Relationship 1 shown in
the previous page can be represented as follows:

RI, l=~pre-execution(T,,l),pre-execution(T,,2),carried-by(T,,,)~,
R,,* = <carried-by(T,,,) >,
R, = <carried-by(T, 4) >,
R,:, = <carried-by(T,:,) >, and

= <carried-by(T,,,),carried-by(T,,),carried-by(T,,,) >.
Based on the aforementioned definitions, the algorithm for

the MPTM is shown as Algorithm 1 in Appendix 1. Let us
look at it in detail. Mainxeneration is the main function
which receives the upper FSM, MI, the lower FSM, M,, and
the relationship R as inputs, and generates test cases as output.
All operations and functions are called by Mainseneration.
The role of f indgreamble is to find the shortest path from the
initial state to the starting state of a transition intended to be
tested. After the preamble of each transition is derived by
findgreamble, test-case-generation is called by each
transition of MI. test-case-generation calls
generategreamble, and then invokes generate-testbody.
Using the shortest path found by findgreamble,
generategreamble provides the sequence of transitions up to
the starting state where a transition is tested.
generate-testbody visits a transition to be tested, and then
generates a corresponding test case.

Using the FSMs and the relationship between the transitions
of them, generate-testbody does the followings. First, it
processes the operations corresponding to the pre-execution
relationship. If there exist some transitions in the lower FSM
that must be executed before executing the transition of the
upper FSM, they are executed first. Accordingly, the
transitions in the lower FSM for pre-execution relationship
execute the behavior lines such as "PC03! Input" and "PC03?
Output". These behavior lines are to send an input and receive
an output from the protocol to be tested. Second, the carried-
by relationship is executed. Here, when the transition of the
upper FSM is executed, the transitions of the lower FSM in the
relationship are also executed concurrently. These operations

related to the input and output of the transitions to be tested are
iteratively executed in order until the input and output are
exhausted. If the input of the upper FSM transition is ASP,
then "PCOl! Input" is generated. If the input is PDU, then
"PC03! Input" is generated. In the case of PDU, the input in a
behavior line is included as an input parameter to the transition
in the lower FSM. If the output of the upper FSM transition is
ASP, then "PCOl? Output" is generated. If output is PDU,
then "PC03? Output" is generated. In the case of PDU, an
output in a behavior line includes the output parameter for a
transition ofthe lower FSM.

After every transition of the upper FSM processes
generate-testbody, the number of the test cases, behavior
lines, and events, and test coverage are printed.

4. APPLICATION OF THE MPTM

In this section the proposed MPTM is applied to TCP/IP and
B-ISDN Signaling/SSCOP, and then the results are analyzed in
terms of test cases and test case coverage.

4.1 Application to TCP/IP

This subsection describes the implementation of the MPTM
proposed in Section 3, and its application to TCP/IP [3] multi-
protocol. With the result, the correctness of the MPTM is
verified.

Fig. 4 and 5 show the FSMs of simplified TCP and IP
protocol, respectively. Transitions in Fig. 4, such as T, and T,,
can be divided into two cases: IP with fragmentation and IP
without fragmentation. This results in T, ,, T,,, T,_,, and T, ,.
The relationship between the transitions o f the two FSMs can
be derived by analyzing the FSMs. For example, let us
examine T2 where the input and output are SYN-ACK and
ACK, respectively. In order for the IUT to receive SYN-ACK,
the tester first sends a datagram containing SYN-ACK and
receives an IP datagram from the IUT containing the result of
the execution of T,, in Fig. 5. The IUT then receives ACK.
To do this, the IUT sends an IP datagram as a result of the
execution of Ts.l in Fig. 5. If a datagram containing ACK is
confirmed, then the execution of T, is confirmed. In this way,
the relationship between the upper FSM of TCP and lower
FSM of IP is defined from their protocol specifications. The
relationships are as follows:

TCP(initiator)
1 1 I rl.rFq.rmallII>AIA

T , d. icq.largdl>AIA

T , = T . , o r T.,

Tt D M A l A C K
7 c re IFIN

Fig. 4. The FSM of a simplified TCP protocol.

362

I P(sender)

Fig. 5. The FSM of IP protocol.

R = { RI, R2, R3 I 3 R, 2 9 4, R5, %, R7, $ - I , $_2 1 where
RI = < carried-by CTS,,) >,
R2 = < carried-by(T,,,), carried-by(T,,) >
R,_, = < carried-by(T,,) >,
R3_, = < carried-by(T,,), carried-by(T,,), carried-by(T,,) >,
4 = < carried-by(T,,)> ,
& = < carried-by(T, ,) >,
& = < carried-by(T,:,) > ,
R7 = < carried-by(T,,), carried-by(T,,) >,
$_, = < carried-by(T,,), carried-by(T,,) >, and
$_2 = < carried-by(T,,), carried-by(T,,), carried-by(T,,),

Applying the implementation of the MPTM to a simplified
TCP/IP results in 10 test cases (see Appendix 2). Using the
test cases, 8 transitions from the upper FSM (TCP) and 8
transitions from the lower FSM (IP) can be tested. The test
cases are same as the ones generated manually in [l] except
for T,. The test case in [l] contains an error, and the correct
test case is shown as "m-tc-TS" in Appendix 2. This
demonstrates one of important benefits of generating the test
cases for multi-protocol automatically, which is correctness.

Now let us illustrate the process of test case generation
using a typical test case shown in Appendix 2. For that,
consider "m-tc-T4" corresponding to T , of TCP (which is
for IP fragmentation). To execute transition T, ,, the IUT has
to be set to the starting state of T, 2 . AccordingTy, the behavior
line "+m-tc-T2" is obtained by generation-preamble. Since
there is no pre-execution for T, ,, the operations associated
with the carried-by relationship are executed. First, the input
of T, , is observed. Because the input is ASP "d-reqlarge",
the behavior line "PCOl! d-reqlarge" is generated for
sending an input to the protocol to be tested. Next, the output
of T, is observed. Since the output is PDU "DATA" and the
relationship of T , of the remaining elements are "carried-
by(T,,)", "carriFd-by(T,,)" and "carried-by(T,,,)", the
algorithm generates behavior lines corresponding to receive
dg-s, dg-s, and dg-f to execute the transitions TS,,, T,,, and T,,,
respectively. "DATA", which is the output of transition T, ,, IS
included as a parameter of the outputs of Tr,,, T,,, and Ts,4.- As
a result, the generated behavior lines are PC03 ?

carried-by(T,,) >.

IP(receiver)

dg-s(DATA)", "PC03 ? dg-s(DATA)", and "PC03 ?
dg-f(DATA)".

We compare the multi-protocol test cases obtained by the
process mentioned above and those obtained by the
conventional test method. According to [13, the conventional
method generates 8 test cases, 22 behavior lines, and 48 events

for testing the TCP described in Fig. 4, and 8 test cases, 23
behavior lines, and 47 events for testing the IP in Fig. 5.
Consequently, the conventional test method needs 16 test cases,
45 behavior lines, and 95 events to test all the transitions of
TCP/IP multi-protocol. On the other hand, the proposed
MPTM allows to test all the transitions with only I O test cases.
In addition, the numbers of behavior lines and events are
decreased to 31 and 63 from 45 and 95, respectively. This
means that the MPTM allows the same test coverage as the
conventional test method with much fewer test cases and
operations.

4.2 Application to B-ISDN Signaling/SSCOP

In the previous subsection, it was shown that the same test
cases presented in [I] can be derived by applying the
implementation of the MPTM to TCP/IP. In this subsection,
the generality of the proposed algorithm is shown by applying
it to a multi-protocol consisting of 4.293 1 signaling layer and
SSCOP [4].

Fig. 6 and 7 in Appendix 3 show 4.2931 signaling layer and
SSCOP, respectively. As in the case for TCP/IP discussed in
Section 4.1, two FSMs are defined corresponding to the
4.2931 signaling layer as the upper layer and the SSCOP as
the lower layer, and the relationship between the transitions of
the two FSMs is extracted. Compared with TCP/IP which has
only the carried-by relationship, there is an additional pre-
execution relationship in 4.293 1 signaling/SSCOP multi-
protocol. For instance, consider the transition J in Fig. 6.
4.2931 Signaling layer transmits PDU through SSCOP. If
there is a pre-established connection in SSCOP, it is used.
Otherwise, a new connection of SSCOP must be established.

Because transition TI of 4.2931 starts from the initial state,
there is no established connection in SSCOP. To execute
transition T,, thus, SSCOP needs to establish a connection.
This means TI and T3 in Fig. 7 must be executed before the
transition in Fig. 6 is executed. After establishing the
connection, T,, in Fig. 7 and TI in Fig. 6 are executed
independently (or concurrently). In other words, transition T,
of 4.2931 FSM has relationships with the transitions T,, T,,
and T8 of SSCOP FSM such as preexecution(T,,,), pre-
execution(T,,,), and carried-by(T,,,). All the relationships
between 4.293 1 and SSCOP can be described as follows.

R = RI, R 2 7 %7 -.-> R20, R71 1 where
R,=<preexecution(Ti,),pre-execution(T,,,),carried-by(T,,,,)>,
h=<carried-by(T, 7q)>,

R;=<carried-by(T&)>,
~=<carried-by(T,,,,),carried-by(T,,,,)>,
&=<carried-by(T,,,,)>,
%=<carried-by(T, ,,),carried-by (T, 28)>,
R7=<carried-by(T,:,,),carried-by(T,:,,)>,
$=<preexecution(T,,,),pre-execution(T2~, ,),carried-by(T,,,,)>,
R+carried-by(T,,,,)> ,
R,,=<carried-by(T,,,,)>,
RI ,=<carried-by(T, ,,)>,
R,,=<carried-by(T,:,,)>,
R,,=<carried-by(T,,,,)>,
R,,=<carried-by (T,,,,)>,
R,,=<carried-by(T, ,,)>,
R,,=<carried-by(T,:,,)>,
R,,=<carried-by(T,,,,)>,

363

R,,=<carried-by(T,.,,)>,
RI ,=<carried-by(T, 29)>.
R,,=<carried-by(T,:,,)>, and
R2 =<carried-by(T,,,,)>.

Based on the relationship defined above, 21 multi-protocol
test cases are derived as a result of applying the MPTM to the
B-ISDN Signaling/SSCOP described in Fig. 6 and 7. The
generated test cases are shown in Appendix 4.

Now let us illustrate the generation process of test cases
using a typical test case shown in Appendix 4. To illustrate
the process, consider "m-tc-T8" for transition T8 in Appendix
4, which has pre-execution relationship as well as carried-by
relationship. Because T, is executed at the initial state, it does
not have a preamble. With respect to T8, the first and second
relationship elements are "preexecution(T,,,)" and "pre-
execution(T,,, ,)", respectively. The MPTM algorithm
generates behavior lines "PC03! BGN" and "PC03? BGAK"
which execute T2,2 and T2,11, respectively. Because no more
pre-execution relationship exists, the operation related to
carried-by is then executed. Since the input of T, is "SETUP"
PDU, the input is passed to the IUT through PC03 as a form
of SSCOP PDU which is the lower FSM. Accordingly, the
algorithm generates a behavior line which executes Tz.z9.
Namely, "SETUP", an input of transition T8, is included a s a
parameter of "SD", which is the output of T2,29. As a result, the
generated behavior line becomes "PC03! SD(SETUP)". As
the next step, we observe the output of T8. Since the output is
ASP "setup-ind", the algorithm generates behavior-line
"PCOI? setup-ind", which receives "setup-ind" from the
protocol to be tested.

The result of the test case generation is summarized in Table
I, which compares it with the conventional method. As can be
seen from the table, 21 out of the 21 transitions of 4.2931 and
6 out of the 29 transitions of SSCOP from the conventional
test method can be tested by 21 test cases obtained by the
proposed multi-protocol test method. Having the limit on
testing the behavior of the lower layer, the multi-protocol test
method cannot test all the transitions of the lower layer. It is
due to the fact that the tester cannot access the internal
interface directly, but control and observe the interface
indirectly through the upper layer protocol. This problem
exists in the embedded test methods [6,7,8] as well.

The proposed MPTM can test each layer of a multi-protocol
at the same time even though the interfaces between the
protocols are not exposed. Also it has the same coverage as
the conventional method with fewer test cases as shown in
Table I. Note also that the MPTM requires more events than
the conventional method. This is because the behavior of the
lower layer required for testing is not included in the
conventional method. For example, consider "m-tc-Tl 'I in
Appendix 4 and "s-tc-Tl" from the single-layer test method
shown in Table II. Note form the table that there are behavior
lines such as "PC03 ? BGN" and "PC03 ! BGAK" in
"mtc-TI", but not in "s-tc-Tl". They are not described in
the single-layer test case, but actually executed in the testing
environment. In other words, "m-tc-Tl" in the multi-protocol
test method includes all the behaviors of 4.2931 and SSCOP.
However, with "s-tc-Tl" in the single-layer test method, the
behaviors of SSCOP is neither presented in the test case nor

Multi-Protocol Test Method

Number of test 21
cases

TABLE I

~MF'ARISON OF TEST CASES FOR
MPTM AND CONVENTIONAL METHOD

Conventional test method

embedded y3 I S1ngle-layer F:: ;$;,"p test method
for SSCOP s s c o p

21 6 27

Number of

T~~~ coverage

16 I 3 4
(176)

all transitions

Of sscop 6 tr,",:',mns

I60
(4+6+6+7+8+9+9+4+6+6+6+ I I
6+8+8+8+8+9+9+11+11+ll) (I6')

all transitions of Q 293 I tranSlbonS 6 transitions Of Q 293 I
6 transitions of SSCOP

TABLE II

MULTI-PROTOCOL TEST CASE AND SINGLE-LAYER TEST CASE

m-tc-Tl s-tc-TI I
PCO I ! setup-req

P C 0 3 ! BGAK

PCOI ! setup-req
PCO2 ? SETUP P C 0 3 ? EGN

included as events. Only the behavior of 4.293 1 is counted in
the single-layer test method.

Since SSCOP behaves as the service provider in the test
environment for the single-layer test method, the number of
events in the single-layer test method will increase if these
factors are considered. If we count the executions of the lower
layer which do not appear in the test case of Table I , the
number of events of s-tc-Tl becomes 4. The total number of
events of the single-layer test method is recomputed in this
way, and then it becomes 160. Adding the number of events
for the embedded test method, the total number of events in
the existing method becomes 176. Consequently, the total
number of events in the MPTM becomes smaller than that
with the single-layer test method if the events of the lower
layer is included.

5. CONCLUSION AND FUTURE WORK

In this paper an approach for automatic test case generation
with the multi-protocol test method proposed in [l] has been
developed and implemented. The method called MPTM
defines two FSMs which represent the protocols to be tested
and the relationship between the transitions of them. Using the
two FSMs and the relationship as inputs, the MPTM
automatically generate test cases for multi-protocols. The
MPTM was applied to TCPIIP, and same result as in [I] was
generated. It also found an error in the test cases generated in
[l]. We have also demonstrated the generality of the MPTM
by applying it to Q.2931/SSCOP. The MPTM is able to test
the multi-protocol IUT even though the interfaces between the
protocol layers are not exposed. In addition, it has the
advantages of providing the same coverage as the conventional
test method with fewer number of test cases and identifying
the exact source of failure in a multi-protocol IUT.

364

The MPTM generates test cases for multi-protocol IUT
consisting of two protocol layers. As a future work, we plan to
extend it to be applicable to multi-protocol IUT consisting of
more than two protocols in a stack. Constructing a test
environment by using the MPTM and applying the
methodology to test real protocols will be done in order to
demonstrate the feasibility of the proposed methodology.

REFERENCES

[I] Y. Park, M. Kim and S. Kang, “Conformance Testing of
multi-protocol IUTs,” International Workshop of Testing
on Communicating Systems ’99, pp. 267-284, 1999.

[2] IS0 9646, “Information Technology - OS1 - Conformance
Testing Methodology and Framework,” 1992.

[3] W. R. Stevens, TCP/IP Illustrated, Addison-Wesley, 1994.
[4] ITU-T Recommendation Q.2110, “B-ISDN ATM

Adaptation Layer - Service Specific Connection-Oriented
Protocol (SSCOP),” 1994.

[5] IETF draft-ietf-mpls-framework64.txt , “A Framework for
Multiprotocol Label Switching,” 1999.

[6] A. Petrenko and N. Yevtushenko, “Fault detection in
embedded components,” International Workshop of
Testing on Communicating Systems ’97, pp. 272-287,
1997.

[7] J. Zhu, S. T. Voung and S. T. Chanson, “Evaluation of test
coverage for embedded system testing,” International
Workshop of Testing on Communicating Systems ’98, pp.
1 1 1-126, 1998.

[8] N. Yevtushenko and A. Cavali, “Test suite minimization
for testing in context,” International Workshop of Testing
on Communicating Systems ‘98, pp. 127-145, Tomsk,
Russia, 1998.

APPENDIX 1. ALGORITHM FOR MPTM

Mnin-generalion(M,, &, R) (
For (T = each transition m M,) (

lindgrenmble(Ml, T)
test-case_generntion(M,, &, R, T)

1
Mite statistics(# of test cases, #of behanor lines. r4 of events, test coverage)

I

findgrenmble (MI, TI,) (
for (P = each transition in MI) (

I
select P which IS the shortest path from the initial state

I f (the ending state of P == the starting state of T,J choose P

t

t~t_cnseqenerat ion(M,, &, R, T h) {
generalc-prramble(MI, T,,)
gencrate-testbody(M,, TI,, R)

generate-preamble(MI. TIJ (1 generate the preamble of TI,

I ’

generate-lcstbody(Ml ,TI,, R) (
I* pre-execution *I
If (pre-execution of T,, exists in RtJ (

if (an input of T,,is ASP type) (
wi le a behavior line concatenahng “PCO 11’’ and the input of T ,,
set pre-execution-flag
i = o
while@re-execubon of T,, exlsts !n RIJ) (

I ++
cur-element = read the current element in RI,
cur-transition = the transihon of the cur-element
if (I IS an odd number)

else if (I IS an even number)
wnte a behavior line concatenahng “PC037” and the output of cur-transinon

wnte a behavior line concatenahng ”PC031” and the input of cur-translhon
1

I
else if (an input of T,,ts PDU type) {

, = O
while (pre-execution of TtJ exlsts m RCJ) (

I ++
cur-element = read the current element in RI,
cur-transition = the transition of the cur-element
if (I IS an odd number)

else if (i is an even number)
wnte a behavior line concatenahng “PCO31” and the input of cur-mansihon

write a behawor line concatenating “PC037” and the output of cur-transmon
1

1
1

/* carr~ed-by */
if (an input of T,,is ASP type and pre-execution-flag i s unset)

else if (an input of T,,is PDU type) (
wnle a behavior line concatenating “PCOI 1” and the input of T

cur-element = read the current element in RI,
cur-transition = the transihon of the cur-element
w i fe a behavior line concatenahng
“PC03 I”, the input of cur-transhon, “(”, the input of TI,. and “)”

)

for (each output of TI,) (
If (the output of T,is ASP type)

else if (the output of Tuis PDU type) (
wnte a behavior line concatenating “PCOI 7” and the output of TI,

cur-element = read the current element in RI,
cur-transihon = the transition of the cur-elemenl
wnte a behanor line concatenating
“PC037”. the output of cur-transition. “(”, the output of T ,,. and ‘)’

1
1

)

Algorithm 1. Algorithm for multi-protocol testing

APPENDIX 2. TEST CASE FOR TCP/IP BY MPTM

m-tc-T I
PCOl 1 cr-req

PC03 ? dg_f(SYN)

m-tc-T2
+m-tc-TI

PC03 ! dgf(SYN-ACK)
PC03 7 dg-f(ACK)

m-tc-T3
+m-tc-T2
PCOl 4 d-req_small

PC03 7 dgf(DATA)

m-tc-T4
+m-tc-T2
PCOl 1 d-req_lnrge

PC03 7 dg-s(DATA)
PC03 7 dg-s(DATA)

PC03 7 dg-f(DATA)

m-tc-TS
+m-tc-T3

PC03 1 dgf(ACK)

m_tc-T6
+m-tc_T2

PCOl 1 e-req
PC03 7 dg-f(FIN)

m-tc-T7
+m-tc-Tb

PC03 I dg_f(ACK)

m_tc-T8
+m_tc-TI

PC03 1 dg-f(FIN)
PC03 7 dg-f(ACK)

m-tc-TP
+m-tc-T2
PC03 1 dg-f(DATA_small)

PC03 7 dg_f(ACK)

m-tc-TI0
+m-tc-T2

PC03 1 dgs(DATA-large)
PC03 I dg-s(DATA_large)

PC03 1 dg-fpATA-large)
PC03 7 dg-f(ACK)

365

APPENDIX 3. ALGORITHMFOR MPTM

Fig. 6. FSM of 4.293 1.

0:: %?:a.:"?
Fig. 7. FSM of SSCOP.

APPENDIX 4. TEST CASE FOR B-ISDN SIGNALING/SSCOP
BY MPTM

m_tc_TI
PCO I 1 setup-req
PCO 3 BGN
Pco 3 BGAK

m-tc-TI I
+m_tc-T8

PCOl I dertlng-req
PC03 7 SD(ALERTING)

PC03 SD(SETUP)
m_tc_TI 2

m_tc-T2 +m-tc-T8
+m-tc_TI PCOl 1 setup-resp

PC03 1 SD(CALL_PROCEEDING) PC03 7 SD(C0NNECT)
PCOl 7 proceeding-md

m tc T I 3
m_tc_T3 +m_G_T I O
+m_tc-TI PCOl 1 setup-resp

PC03 I SD(ALERTING) PC03 7 SD(C0"ECT)
PCOl 7 alerting-md

m tc TI4
m_tc-T4
+m_tc-TI

PC03 I SD(C0NNECT)
PCOl7 setup-conf

+m-c-TI 0
PCOl I alerting-req

PC03 7 SD(ALERllNG)

P C O ~ 7 SD(CONNECT-ACK) m_tc_TIS
+m-tc-TI 1

m-tc_TS PCOl 1 setup-resp
+m_tc_T2 PC03 SD(C0NNECT)
PC03 1 SD(ALERTING1

PC03 1 SD(C0NNECT)
P C O l ? setup-conf

PC03 7 SD(C0NNECT-ACK)

m-tc-T7
+m-tc-T3
PC03 1 SD(C0NNECT)

PCOl ? setup-conf
PC03 7 SD(C0NNECT-ACK)

m_tc-T8
PCO 3 ! BGN
PCO 3 ? BGAK

PC03 1 SD(SETW)
PCOI 7 sehrp-ind

m-tc-TP
+m-tc-T8

PCOl I release-req
PC03 7 SD(RELEASE-COMPLETE)

m-tc-T I O
+m-tc-T8

PCOl I proceedtngreq
PC03 7 SD(CALLPROCEED1NG)

m-tc-TI7
+m-tc-T4

PCO I I release-req
PC03 7 SD(RELEASE)

m_tc_TI 8
+m-tc-T4

PC03 1 SD(RELEASE)
PCOl 7 released-ind

m-tc-T I 9
+m-tc-T17
PC03 1 SD(RELEASE-COMPLETE)

PCOl release-conf

m-tc-TZO
+m-tc-T I7

PC03 1 SD(RELEASE)
P C O l ? release-conf

m-tc-T2I
+m-tc-TI 8

PCOl I release-resp
PC03 7 SD(RELEASE-COMPLETE)

PCOl 7 alemng-md

m-tc-Tb
+m_tc_T2

m_tc_T I 6
+m_tc-TI 2

PC03 1 SD(C0h"ECT-ACK)
PCOl 7 semp-complete-md

366

