
Linux/SimOS - A Simulation Environment for Evaluating
High-Speed Communication Systems

Chulho Won and Ben Lee
Electrical and Computer
Engineering Department
Oregon State University

{chulho, benl}@ece.orst.edu

Chansu Yu
Department of Electrical and

Computer Engineering
Cleveland State University

c.yu91@csuohio.edu

Sangman Moh, Yong-Youn Kim,
and Kyoung Park

Computer and Software Laboratory
Electronics and Telecommunications

Research Institute (ETRI)
Taejon, Korea

{yykim, smmoh, kyoung}@etri.re.kr

Abstract
This paper presents Linux/SimOS, a Linux operating sys-
tem port to SimOS, which is a complete machine simula-
tor from Stanford. The motivation for Linux/SimOS is to
alleviate the limitations of SimOS, which only supports
proprietary operating systems. The contributions made in
this paper are two-fold: First, the major modifications
that were necessary to run Linux on SimOS are described.
Second, a detailed analysis of the UDP/IP protocol and
M-VIA is performed to demonstrate the capabilities of
Linux/SimOS. The simulation study shows that
Linux/SimOS is capable of capturing all aspects of com-
munication performance, including the effects of the ker-
nel, device drivers, and network interface.

1. Introduction
The growing demand for high-performance communica-
tion for system area networks (SANs) has led to much
research efforts towards low-latency communication pro-
tocols, such as Virtual Interface Architecture (VIA) [10]
and InfiniBand Architecture (IBA) [11]. As these new
protocols emerge, accurate evaluation method is needed
to understand how the protocols perform and to identify
key bottlenecks. Communication protocols closely inter-
act with the kernel, device driver, and network interface.
Therefore, these interactions must be properly captured to
evaluate the protocols and to improve on them.

The evaluation of communication performance has
traditionally been done using instrumentation [3], where
data collection codes are inserted to a target program to
measure the execution time. However, instrumentation
has three major disadvantages. First, data collection is
limited to the hardware and software components that are
visible to the instrumentation code, potentially excluding
detailed hardware information or operating system be-
havior. Second, the instrumentation codes interfere with
the dynamic system behavior. That is, event occurrences
in a communication system are often time-dependent, and
the intrusive nature of instrumentation can perturb the
system being studied. Third, instrumentation cannot be

used to evaluate new features or a system that does not
yet exist.

The alternative to instrumentation is to perform
simulations [1, 4, 6, 13, 14]. At the core of these simu-
lation tools is an instruction set simulator capable of
tracing the interaction between the hardware and the
software at cycle-level. However, they are suitable for
evaluating general application programs whose perform-
ance depends only on processor speed, not communica-
tion speed. That is, these simulators only simulate por-
tions of the system hardware and thus are unable to
capture the complete behavior of a communication sys-
tem.

On the other hand, a complete machine simulation
environment [3, 2] removes these deficiencies. A com-
plete machine simulator includes all the system compo-
nents, such as CPU, memory, I/O devices, etc., and
models them in sufficient detail to run an operating sys-
tem. Another advantage of a complete system simula-
tion is that the system evaluation does not depend on the
availability of the actual hardware. For example, a new
network interface can be prototyped by building a simu-
lation model for the network interface.

Based on the aforementioned discussion, this paper
presents Linux/SimOS, a Linux operating system port to
SimOS, which is a complete machine simulator from
Stanford [3]. Our work is motivated by the fact that the
current version of SimOS only supports the proprietary
SGI IRIX operating system. Therefore, the availability
of the popular Linux operating system for a complete
machine simulator will make it an extremely effective
and flexible open-source simulation environment for
studying all aspects of computer system performance,
especially evaluating communication protocols and net-
work interfaces. The contributions made in this paper
are two-fold: First, the major modifications that were
necessary to run Linux on SimOS are described. These
modifications are specific to SimOS I/O device models
and thus any future operating system porting efforts to
SimOS will experience similar challenges. Second, a
detailed analysis of the UDP/IP protocol and M-VIA is
performed to demonstrate the capabilities of

Proceedings of the International Conference on Parallel Processing (ICPP’02)
0-7695-1677-7/02 $17.00 © 2002 IEEE

Linux/SimOS. The simulation study shows that
Linux/SimOS is capable of capturing all aspects of com-
munication performance in a non-intrusive manner, in-
cluding the effects of the kernel, device driver, and net-
work interface.

The rest of the paper is organized as follows. Section
2 presents the related work. Section 3 discusses the
Linux/SimOS environment and the major modifications
that were necessary to port Linux to SimOS. Section 4
presents the simulation study of UDP/IP and M-VIA, an
implementation of the Virtual Interface Architecture for
Linux. Section 5 concludes the paper and discusses some
future work.

2. Related Work
There exist a number of simulation tools that contain de-
tailed models of today’s high-performance microproces-
sors [1, 2, 3, 4, 6, 13, 14]. SimpleScalar tool set includes
a number of instruction-set simulators of varying accu-
racy/speed to allow the exploration of microarchitecture
design space [6]. It was developed to evaluate the per-
formance of general-purpose application programs that
depend on the processor speed. RSIM is an execution-
driven simulator developed for studying shared-memory
multiprocessors (SMPs) and non-uniform memory archi-
tectures (NUMAs) [1]. RSIM was developed to evaluate
parallel application programs whose performance depends
on the processor speed as well as the interconnection net-
work. However, neither simulators support system-level
simulation because their focus is on the microarchitecture
and/or interconnection network. Instead, system calls are
supported through a proxy mechanism. Moreover, they
do not model system components, such as I/O devices and
interrupt mechanism that are needed to run the system
software such as the operating system kernel and hard-
ware drivers. Therefore, these simulators are not appro-
priate for studying communication performance.

SimOS was developed to facilitate computer archi-
tecture research and experimental operating system de-
velopment [3]. It is the most complete simulator for
studying computer system performance. There are sev-
eral variations of SimOS. SimOS-PPC is being developed
at IBM Austin Research Laboratory, which models a vari-
ety of uni- and multiprocessor PowerPC-based systems
and micro-architectures [16]. There is also a SimOS in-
terface to SimpleScalar/PowerPC being developed at UT
Austin [17]. However, these systems only support AIX as
the target operating system. Therefore, it is difficult to
perform detailed evaluations without knowing the inter-
nals of the kernel. Virtutech’s SimIC [2] was developed
with the same purpose as SimOS and supports a number
of commercial operating systems including Linux. The
major advantage of SimICS over SimOS is improved
simulation speed using highly optimized codes for fast
event handling and a simple processor pipeline. How-

ever, SimICS is proprietary and thus the internal details
of the simulator are not available to the public. This
makes it difficult for users to add or modify new hard-
ware features. The motivation for Linux/SimOS is to
alleviate these restrictions by developing an effective
simulation environment for studying all aspects of com-
puter system performance using SimOS with the flexi-
bility and availability of the Linux operating system.

3. Overview of Linux/SimOS
Figure 1 shows the structure of Linux/SimOS. An x86-
based Linux machine serves as the host for running the
simulation environment. SimOS runs as a target ma-
chine on the host, which consists of simulated models of
CPU, memory, timer, and I/O devices, such as disk, con-
sole, and Ethernet NIC. On top of the target machine, a
Linux/MIPS kernel version 2.3 runs as the target oper-
ating system.

3.1. SimOS Machine Simulator
This subsection briefly describes the functionality of
SimOS and the memory and I/O device address map-
ping. For a detail description of SimOS, please refer to
[3].

SimOS supports two execution-driven, cycle-
accurate CPU models: Mipsy and MSX. Mipsy models
a simple pipeline similar to the MIPS R4000, while
MSX models a superscalar, dynamically scheduled
pipeline similar to MIPS R10000. The CPU models sup-
port the execution of the MIPS instruction set [12], in-
cluding privileged instructions. SimOS also models a
memory management unit (MMU), including the related

Figure 1. The structure of Linux/SimOS.

X86-based Host

SimOS

Applications

Linux Operating System

Applications

Console
Driver

Timer
Driver

NIC
Drive

Disk
Driver

Linux/SimOS Interface

NICDisk Boot-
loader

CPU MMU

Console Timer

Proceedings of the International Conference on Parallel Processing (ICPP’02)
0-7695-1677-7/02 $17.00 © 2002 IEEE

exceptions. Therefore, the virtual memory translation
occurs as in a real machine. SimOS also models the be-
havior of I/O devices by performing DMA operations
to/from the memory and interrupting the CPU when I/O
requests complete. It also supports the simulation of a
multiprocessor system with a bused-based cache-coherent
memory system or a Cache-Coherent Non-uniform Mem-
ory Architecture (CC-NUMA) memory system.

Figure 2 represents the SimOS memory and I/O de-
vice address mapping. The virtual address space is subdi-
vided into four segments. Segments kseg0 through kseg2
can only be accessed in the kernel mode, while segment
kuseg can be accessed either in user or kernel mode. The
kernel executable code is contained in kseg0 and mapped
directly to lower 512 MB in the physical memory. The
segments kuseg and kseg2, which contain user process
and per process kernel data structures, respectively, are
mapped to the remaining address space in the physical
memory. Therefore, communication between CPU and
main memory involves simply reading and writing to the
allocated memory.

On the other hand, I/O device addresses are mapped
to the uncached kseg1 segment, and a hash table called
the device registry controls its accesses. The function of
the device registry is to translate an I/O device register
access to the appropriate I/O device simulation routine.
Therefore, each I/O device first has to register its device
registers with the device registry, which maps an appro-
priate device simulator routine at a location in the I/O
address space. This is shown in Table 1. In response to
device driver requests, I/O device models provide I/O
services and interrupt the CPU as appropriate.

SimOS provides several I/O device models for con-

sole, timer, SCSI disk, and NIC. These models provide
not only the device functionality but also the interface
between the simulator and the real world. The console
model provides the functionality of allowing a user to
read messages from and type in commands into the
simulated machine’s console. The SimOS NIC model
enables a simulated machine to communicate with other
simulated machines or real machines through the
Ethernet. By allocating an IP address for the simulated
machine, it can act as an Internet node, such as an NFS
client or a Web server. SimOS uses the host machine’s
file system to provide the functionality of a hard disk,
maintaining the disk’s contents in a file on the host ma-
chine. Reads and writes to the simulated disk become
reads and writes to this file, and DMA transfers require
simply copying data from the file into the portion of the
simulator’s address space representing the target ma-
chine’s main memory.

Table 1. I/O device address map.
Device Start address Size in bytes

Timer 0xA0E00000 4
Console 0xA0E01000 8
Ethernet NIC 0xA0E02000 2852
Disk 0xA0E10000 542208

3.2. Linux/SimOS Interface
In this subsection, the major modifications that were
necessary to port Linux to SimOS is discussed, i.e.,
Linux/SimOS interface. Most of the major modifications
were done on the I/O device drivers for Linux. There-
fore, the description will focus on the interfacing re-
quirements between the Linux device drivers and SimOS
I/O device models.

3.2.1. Timer and Console
SimOS provides a simple real-time clock that indicates
the current time in seconds past since January 1, 1970.
The real-time clock keeps the time value in a 32-bit reg-
ister located at address 0xA0E00000 (see Table 1), and a
user program reads the current time using the gettimeof-
day() system call.

Linux timer driver was modified to reflect the sim-
plicity of the SimOS timer model. The SimOS real-time
clock has a single register, while a timer chip in a real
system has tens of registers that are accessed by the
driver. Also, the Linux timer driver periodically adjusts
the real-time clock to prevent it from drifting due to
temperature or system power fluctuation. Since these
problems are not present in a simulation environment,
these features were removed to simplify debugging.

Figure 2. Address mapping mechanism in SimOS.

Device
Models

Timer
 Range

Virtual Address Space

Kernel Cached
(kseg2)

Kernel
Uncached
(kseg1)

Kernel Cached
(kseg0)

Console
Range

NIC
 Range

Disk
 Range

Console
Routine

Device Registry

3584 MB

512 MB
(Kernel Resident)

)

Physical Address Space

0xFFFFFFFF

0xA0000000

0x80000000

0x00000000

0xC0000000 Timer
Routine

Disk
Routine

NIC
Routine

Kernel/User
Cached
(kuseg)

Proceedings of the International Conference on Parallel Processing (ICPP’02)
0-7695-1677-7/02 $17.00 © 2002 IEEE

The console model in SimOS consists of two regis-
ters: a control/status register and a data register. In par-
ticular, the data register is implemented as a single entry
FIFO queue. However, real serial controllers, such as
UART, have multiple-entry FIFO queue for faster serial
I/O. Therefore, the Linux console driver was modified to
support only a single character transfer over the single
entry FIFO.

3.2.2. SCSI Disk
The SimOS disk model simulates a SCSI disk, which has
the combined functionality of a SCSI adapter, a DMA, a
disk controller, and a disk unit. Therefore, the registers in
the SimOS disk model represent the combination of SCSI
adapter registers, DMA descriptors, and disk status and
control registers. This is different from a real SCSI disk,
which implements them separately, and thus how the
Linux disk driver views the disk. In particular, the prob-
lem arises when application programs make disk requests.
These requests are made to the SCSI adapter with disk
unit numbers, which are then translated by the disk driver
to appropriate disk register addresses. But, the SimOS
disk model performs the translation internally and thus the
Linux disk driver is incompatible with the SimOS disk
model. Therefore, the SimOS disk model had to be com-
pletely rewritten to reflect how the Linux disk driver
communicates with the SCSI adapter and the disk unit.

3.2.3. Kernel Bootloader
When the kernel and the device drivers are prepared and
compiled, a kernel executable is generated in ELF binary
format [15]. It is then responsibility of the SimOS boot-
loader to load the kernel executable into the main mem-
ory of the simulated machine.

When the bootloader starts, it reads the executable
file and looks for headers in the file. An ELF executable
contains three different type headers: a file name header,
program headers, and section headers. Each program
header is associated a program segment, which holds a
portion of the kernel code. Each program segment has a
number of sections, and a section header defines how
these sections are loaded into memory. Therefore, the
bootloader has to use both program and section headers to
properly load the program segment. Unfortunately, the
bootloader that came with the SimOS distribution was
incomplete and thus did not properly handle the ELF for-
mat. That is, it did not use both program and section
headers to load the program. Therefore, the bootloader
was modified to correct this problem.

3.2.4. Ethernet NIC
The SimOS Ethernet NIC model supports connectivity to
simulated hosts as well as to real hosts. This is achieved
using UDP packets of the local host. The Ethernet NIC
model encapsulates its simulated Ethernet frames in UDP

packets and sends them through NIC of the local host to
a network simulator called EtherSim [4], which runs on
a different host. The main function of EtherSim is to
forward the received packets to the destination host.

The Ethernet NIC model is controlled by a set of
registers mapped into the memory region starting at
0xA0E02000 (see Table 1). The data transfer between
the main memory and NIC occurs via DMA operations
using descriptors pointing to DMA buffers. Typically,
the Linux NIC driver allocates DMA buffers in the un-
cached kseg1 segment. Since the device registry con-
trols this memory region in SimOS, two modifications
were necessary to differentiate between I/O device ac-
cesses and uncached memory accesses. First, the Linux
Ethernet driver was changed to allocate DMA buffers
using the device registry. Second, the device registry
was modified to handle the allocated DMA buffer space
as an uncached memory space.

4. Simulation Study of UDP/IP and M-VIA
This section presents the simulation results of UDP/IP
and M-VIA [12] to demonstrate the capabilities of
Linux/SimOS. To evaluate the performance of these two
protocols, a test program was run on Linux/SimOS that
accepts command-line options specifying send/receive, a
message size, and an address. In order to aid the meas-
urement of execution times of send/receive through the
protocol layers, a simple program called Echo Server
was written. The function of the Echo Server is to re-
ceive the network packets generated from a simulated
host through the NIC, appropriately modify the headers
of the received packets, and send back to the same
simulated host. This allowed us to avoid the loop back
mode and properly measure the performance of the
driver and NIC.

The UDP/IP performance was evaluated by directly
sending messages through the legacy protocol stack in
Linux/SimOS. On the other hand, M-VIA, which is
Virtual Interface Architecture implementation for Linux,
requires three components: VI provider library (vipl) is a
collection of library calls to obtain VI services; M-VIA
kernel module (vipk_core) contains a set of modularized
kernel functions implemented in user-level; and M-VIA
device drivers (vipk_dev) provide an interface to NIC.

In order to run M-VIA on Linux/SimOS, some
modifications were necessary. First, because M-VIA
was released only for x86-based Linux hosts, some of
the source codes had to be modified to run it on
Linux/SimOS. In particular, the code for fast traps
(vipk_core/vipk_ftrap.S) had to be rewritten because the
MIPS system supports a different system call convention
than x86-based systems. Second, the driver for M-VIA
had to be modified (as discussed in Subsection 3.2) to
work with SimOS Ethernet NIC.

Proceedings of the International Conference on Parallel Processing (ICPP’02)
0-7695-1677-7/02 $17.00 © 2002 IEEE

The CPU model employed was Mipsy with 32 KB L1
instruction and data caches with 1 cycle hit latency, and 1
MB L2 cache with 10 cycle hit latency. The main mem-
ory was configured to have 32 MB with hit latency of 100
cycles, and DMA on the Ethernet NIC model was set to
have a transfer time of 240 MB/sec. The results were
obtained using SimOS’s data collection mechanism,
which uses a set of annotation routines written in Tcl [18].
These annotations are attached to specific events of inter-
est, and when an event occurs the associated Tcl code is
executed. Annotation codes have access to the entire state
of the simulated system, and more importantly, data col-
lection is performed in a non-intrusive manner.

The simulation study focused on the execution time
(in cycles) required to perform send/receive using UDP/IP
and M-VIA. These simulations were run with a fixed
MTU (Maximum Transmission Unit) size of 1,500 bytes
and varying message sizes. The total execution times
required to perform the respective send/receive for differ-
ent message sizes are shown in Figure 3. The send results
are based on the number of cycles required to perform the
socket call sendto() for UDP/IP and VipPostSend() for M-
VIA. The receive results are based on the time between
the arrival of a message and when the socket call
recvfrom() for UDP/IP and VipPostRecv() for M-VIA
return. These results do not include the time needed to set
up the socket communication for UDP/IP and memory
region registration for M-VIA. It also does not include
the effects of MAC and physical layer operations. The
results in Figure 3 clearly show the advantage of using
low-latency, user-level messaging. The improvement
factors for send and receive range from 3.5 to 9.3 and 2 to
24 over UDP/IP, respectively.

The cycle times for UDP and M-VIA send/receive
were then divided based on the various layers available
for each protocol. This allows us to see how much time is
spent at each layer of the protocol and how the data size
affects the number of cycles required to perform a

send/receive. For UDP/IP, the layers are Socket, UDP,
IP, Driver, and DMA operations for NIC. For M-VIA,
the layers are VI Library calls, Transport layer, Driver,
and DMA operations for NIC. These results are shown
in Figures 4 and 5, where each message size has a pair of
bar graphs representing the execution times of M-VIA
(left) and UDP/IP (right).

For UDP/IP send/receive, the amount of cycle time
spent on the Socket layer stays relatively constant for all
message sizes and represents only a small portion of the
total execution time. In contrast, the amount of time
spent on the IP layer increases as the message size in-
creases. This is due to the fact that in Linux, in addition
to IP fragmentation, data copying from user space to
sk_buff buffer during a send is done at the IP layer. In
contrast, data copying from sk_buff buffer to user space
during a receive is done at the UDP layer. For receive,
the time spent on the IP layer increases for message sizes
larger than MTU mainly due to defragmentation.

For M-VIA send/receive (i.e., V i p P o s t-
Send/VipPostRecv), the Library layer creates a descriptor
in the registered memory, adds the descriptor to the send

Figure 5. Receive execution times for each layer
vs. message size.

Figure 4. Send execution times for each layer
vs. message size.

0

20000

40000

60000

80000

100000

120000

140000

160000

T
im

e
(C

yc
le

s)

64 256 1k 4k 8k 16k

Message Size (Bytes)

UDP/IP (recv)

Socket
UDP

IP
Driver

NIC-DMA

M-VIA (recv)
Library

Transport
Driver

NIC-DMA

Figure 3. Total execution time vs. message size.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

64 256 1k 4k 8k 16k

Message Size (Bytes)

T
im

e
(C

yc
le

s)

send (UDP)

recv (UDP)

send (M-VIA)

recv (M-VIA)

0

20000

40000

60000

80000

100000

120000

T
im

e
(C

yc
le

s)

64 256 1k 4k 8k 16k

Message Size (Bytes)

UDP/IP (send)

Socket
UDP

IP
Driver

NIC-DMA

M-VIA (send)
Library

Transport
Driver

NIC-DMA

Proceedings of the International Conference on Parallel Processing (ICPP’02)
0-7695-1677-7/02 $17.00 © 2002 IEEE

queue, and rings the door bell. The Transport layer then
performs virtual-to-physical address translation and trans-
fers the control to the Driver layer. As can be seen from
the figures, the Library layer has a negligible effect on the
overall performance. However, virtual-to-physical ad-
dress translation and fragmentation/defragmentation in the
Transport layer constitute a significant portion of the total
execution time.

For Driver and NIC layers, both protocols show simi-
lar results. This is because M-VIA uses a similar type of
driver to communicate with the Ethernet NIC model. The
primary function of the Driver layer is to set up the NIC’s
DMA and receive interrupts from NIC. As can be seen,
the execution time of the Driver layer varies as a function
of the message size and represents only a small portion of
the total execution time. The DMA transfer in the NIC
also varies linearly with the message size. This is consis-
tent since DMA setup and interrupt processing are already
reflected in the Driver layer; therefore, DMA transfer time
is dependent only on the message size.

The pie charts shown in Figures 6 and 7 give further
details about what contributes to the amount of time spent
on each layer. The UDP layer has the following opera-
tions: UDP header operations, data copy (for receive),
sk_buff structure operations, and error processing. For
send, data copying and fragmentation occurs at the IP
layer and it becomes dominant as message size grows. As
a result it constitutes a large portion of the overall send
time as shown in Figure 6. In contrast, Figure 7 shows
that data copying for a receive operation occurs at the
UDP layer and thus represents a large portion of the over-
all execution time compared to a send operation. How-

ever, due to its large message size (4 Kbytes) IP layer
still dominates because of defragmentation.

For UDP/IP, the Driver layer was further subdivided
into interrupt handling (Intr), device specific driver func-
tions (Dev Drv.), and general device functions (Dev).
Dev Drv. controls NIC hardware functions, such DMA
setup, while Dev provides an interface between the IP
layer and Dev D rv , such as packet multiplex-
ing/demultiplexing. Thus, for a send operation, the IP
layer initiates a DMA operation using Dev Drv. via Dev
and Intr is notified of the completion of the DMA trans-
fer. On the other hand, a receive operation is interrupt
initiated and thus handled only by Intr and Dev. As
shown in Figures 6, all three portions of the Driver layer
represent a significant portion of the overall execution
time for sending a small message. However, for a large
message as shown in Figure 7, the Driver layer becomes
relatively insignificant.

For M-VIA, the Driver layer was further subdivided
into interrupt handling (Intr) and device specific driver
functions (Dev Drv.). There is no Dev in M-VIA since it
is a low-latency, user-level messaging. As can be seen
in Figure 6, the combined effect of Intr and Dev Drv. is
minimal for small messages. However, for a large mes-
sage as shown in Figure 7, Intr portion is significant but
Dev Drv. has no effect. This is because receive opera-
tions are completely handled by Intr.

4. Conclusion and Future Work
This paper discussed our efforts to port Linux operating
system to SimOS. Moreover, the capability of
Linux/SimOS was demonstrated by performing detailed
simulation study of UDP/IP and M-VIA. The results

M-VIA Send (Message Size = 256 Bytes)

3% 5% 3%

82%

7%

NIC-DMA
Intr
Dev Drv.
Transport
Library

Figure 6. Send time breakdown for UDP/IP and
M-VIA for message size 256 bytes.

UDP/IP Receive (Message Size = 4K Bytes)

4%

3%

0%

3%

58%

31%

1%
NIC-DMA
Intr
Dev Drv.
Dev
IP
UDP
Socket

M-VIA Recv (Message Size=4K Bytes)

30%

28%0%

37%

5%

NIC-DMA
Intr
Dev Drv.
Transport
Library

 UDP/IP Send (Message Size=256 Bytes)

1% 13%
5%

10%

47%

13%

11%
NIC-DMA
Intr
Dev Drv.
Dev
IP
UDP
Socket

Figure 7. Receive time breakdown for UDP/IP and
M-VIA for message size 4K bytes.

Proceedings of the International Conference on Parallel Processing (ICPP’02)
0-7695-1677-7/02 $17.00 © 2002 IEEE

confirm that Linux/SimOS is an excellent tool for study-
ing communication performance by showing the details of
the various layers of the communication protocols, in par-
ticular the effects of the kernel, device driver, and NIC.
Moreover, since Linux/SimOS open-source, it .is a power-
ful and flexible simulation environment for studying all
aspects of computer system performance.

There are numerous possible uses for Linux/SimOS.
For example, one can study the performance of
Linux/SimOS acting as a server. This can be done by
running server applications (e.g., web server) on
Linux/SimOS connected to the rest of the network via
EtherSim. Another possibility is to evaluate a new net-
work interface to be implemented. One such example is
the Host Channel Adapter (HCA) for InfiniBand [11],
which is in part based on Virtual Interface Architecture.
Since the primary motivation for InfiniBand technology is
to remove I/O processing from the host CPU, a consider-
able amount of the processing requirement must be sup-
ported by the HCA. These include support for message
queuing, memory translation and protection, remote DMA
(RDMA), and switch fabric protocol processing. The
major advantage of Linux/SimOS over hard-
ware/emulation-based methods used in [19, 24] is that
both hardware and software optimization can be per-
formed. This prototyping can provide some insight on
how the next generation of HCA should be designed for
the InfiniBand Architecture.

Acknowledgement
This research was supported in part by Electronics and
Telecommunications Research Institute (ETRI) and Tek-
tronix, Inc.

6. References
[1] V. S. Pai et al., “RSIM Reference Manual, Version 1.0,”

ECE TR 9705, Rice Univ., 1997.
[2] P. S. Magnusson et al., “Simics: A Full System Simulation

Platform,” IEEE Computer, February 2002, Vol. 35, No. 2,
pp. 50-58.

[3] S. Harrod, “Using Complete Machine Simulation to Under-
stand Computer System Behavior,” Ph.D. Thesis, Stanford
University, February 1998.

[4] D. K. Panda et al. “Simulation of Modern Parallel Systems:
A CSIM-Based Approach,” Proc. of the 1997 Winter
Simulation Conference, 1997.

[5] N. Leavitt, “Linux: At a Turning Point?,” IEEE Computer,
Vol. 34, No. 6, 1991.

[6] D. Burger et al., “The SimpleScalar Tool Set, Version 2.0,”
U. Wisc. CS Dept. TR#1342, June 1997.

[7] M. Beck, et al., LINUX Kernel Internals, 2nd Edition,
Addison-Wesley, 1997.

[8] Libnet, Packet Assembly System. Available at
http://www.packetfactory.net/libnet.

[9] Tcpdump/libpcap. Available at http://www.tcpdump.org.
[10] D. Dunning, et al., “The Virtual Interface Architecture,”

IEEE Micro, March/April, 1998.

[11] Infiniband™ Architecture Specification Volume 1, Re-
lease 1.0.a. Available http://www.infinibandta.org

[12] LBNL PC UER, “M-VIA: Virtual Interface Architecture
for Linux,”
http://www.extremelinux.org/activities/usenix99/docs/mvi
a.

[13] WARTS, Wisconsin Architectural Research Tool Set.
http://www.cs.wisc.edu/~larus/warts.html.

[14] SIMCA, the Simulator for the Superthreaded Architec-
ture. http://www-
mount.ee.umn.edu/~lilja/SIMCA/index.html.

[15] D. Sweetman, See MIPS Run, Morgan Kaufmann Pub-
lishers, Inc., 1999.

[16] SimOS-PPC, see http://ww.cs.utexas/users/cart/simOS.
[17] SimpleScalar Version 4.0 Tutorial, 34th Annual Interna-

tional Symposium on Microarchitecture, Austin, Texas,
December, 2001.

[18] M. Rosenblum et al., “Using the SimOS Machine Simu-
lator to Study Complex Computer Systems,” ACM Trans-
actions on Modeling and Computer Simulation, Vol. 7,
No. 1, January 1997, pp. 78-103.

[19] J. Wu et al. “ Design of An InfiniBand Emulation over
Myrinet: Challenges, Implementation, and Performance
Evaluation,” Technical Report OUS-CISRC-2/01_TR-03,
Dept. of Computer and Information Science, Ohio State
University, 2001.

[20] M. Banikazemi, B. Abali, L. Herger, and D. K. Panda,
“Design Alternatives for Virtual Interface Architecture
(VIA) and an Implementation on IBM Netfinity NT
Cluster,” Journal of Parallel and Distributed Computing,
Special Issue on Clusters, 2002.

[21] M. Banikaze, B. Abali, and D. K. Panda, “Comparison
and Evaluation of Design Choices for Implementing the
Virtual Interface Architecture (VIA),” Fourth Int'l Work-
shop on Communication, Architecture, and Applications
for Network-Based Parallel Computing (CANPC '00),
January 2000.

[22] S. Nagar et al., “Issues in designing and Implementing A
Scalable Virtual Interface Architecture,” 2000 Interna-
tional Conference on Parallel Processing, 2000.

[23] A. Begel, “An Analysis of VI Architecture Primitives in
Support of Parallel Distributed Communication,” to ap-
pear in Concurrency and Computation: Practice and Ex-
perience, 2002.

[24] P. Buonadonna, A. Geweke, and D.E. Culler, “An Imple-
mentation and Analysis of the Virtual Interface Architec-
ture,” Proceedings of SC '98, Orlando, FL, Nov. 7-13,
1998.

[25] A. Rubini, Linux Device Driver, 1st Ed., O’Reilly, 1998.

Proceedings of the International Conference on Parallel Processing (ICPP’02)
0-7695-1677-7/02 $17.00 © 2002 IEEE

