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ABSTRACT
High Definition video streaming over WLANs faces many
challenges because video data requires not only data in-
tegrity but also frames have strict playout deadline. Tra-
ditional streaming methods that rely solely on either UDP
or TCP have difficulties meeting both requirements because
UDP incurs packet loss while TCP incurs delay. This pa-
per proposed a new streaming method called Flexible Dual-
TCP/UDP Streaming Protocol (FDSP) that utilizes the ben-
efit of both UDP and TCP. The FDSP takes advantage of
the hierarchical structure of the H.264/AVC syntax and uses
TCP to transmit important syntax elements of H.264/AVC
video and UDP to transmit non-important elements. The
proposed FDSP is implemented and validated under differ-
ent wireless network conditions. Both visual quality and de-
lay results are compared against pure-UDP and pure-TCP
streaming methods. Our results show that FDSP effectively
achieves a balance between delay and visual quality, thus
it has advantage over traditional pure-UDP and pure-TCP
methods.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Communica-
tions Applications; C.2.1 [Computer-Communication Net-
works]: Network Architecture and Design—wireless com-
munication

General Terms
Design, experimentation, performance
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1. INTRODUCTION
High Definition (HD) video streaming over WLANs has

become a viable and important technology as network band-
width continues to improve and the use of smartphones,
Mobile Internet Devices, and wireless display devices in-
creases. Some notable HD wireless streaming technologies
include Apple AirPlay R© [1], Intel WiDi R© [2], and Cavium
WiVuR© [3]. These technologies are deployed in an ad hoc
mode, and the state-of-the-art video compression standard
H.264 facilitates wireless video streaming by providing more
efficient compression algorithm and thus less data needs to
be transmitted through the network. Moreover, H.264 pro-
vides many error-resilience and network-friendly features,
such as Data Partitioning (DP), Flexible Macroblock Or-
dering (FMO), and Network Adaption Layer (NAL) struc-
ture [4]. However, wireless video streaming still faces many
challenges. This is because, unlike transmitting traditional
data, video streaming requires not only data integrity but
also frames have strict playout deadline in the presence of
packet delay and loss. Both of these factors are also closely
related to streaming protocols.

Transmission Control Protocol (TCP) and User Datagram
Protocol (UDP) are the two fundamental Transport Layer
protocols used to transmit video data through the network.
TCP is a reliable protocol but delay and bandwidth con-
sumption increase due to re-transmissions of lost packets,
which further increase the likelihood of packet loss. For ex-
ample, HTTP-based streaming video relies on TCP. Much
work has been done to hide or reduce delay caused by TCP
[5–7], but this remains a major problem for real-time video
streaming. By contrast, UDP offers minimal delay but does
not guarantee delivery of packets. These lost packets cause
errors that propagate to subsequent frames.

Although considerable amount of research has been done
on both TCP and UDP to improve video streaming in gen-
eral, little attention has been paid to utilize the advantages
of using both TCP and UDP for wireless video streaming.
Recently, Porter and Peng proposed a Hybrid TCP/UDP
streaming method, which relies on TCP to transmit higher
priority data and UDP to transmit lower priority data [8].
However, they did not actually implement their method in
a realistic network environment and instead used a tool to
randomly remove data from an encoded video locally in or-
der to simulate packet loss caused by UDP. This evalua-
tion process lacks rigor and prevents them from providing
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Figure 1: Typical GOP structure. Each arrow indicates
the relationship between current (i.e., predicted) frame and
reference frame(s).

meaningful results such as visual quality and buffering time
caused by using both TCP and UDP.

In contrast to previous research that rely on either UDP
or TCP, this paper presents a new video streaming method
called Flexible Dual-TCP/UDP Streaming Protocol (FDSP)
that utilizes the benefits of combining TCP and UDP. FDSP
achieves a balance between visual quality and buffering time
by sending important data via TCP and less important data
via UDP. In order to validate our idea, FDSP was imple-
mented and tested on a complete video streaming simula-
tor using HD videos. Our results show that the proposed
method has advantage over traditional pure-UDP and pure-
TCP streaming methods. Although this paper focuses on
streaming real-time HD video in a wireless ad-hoc network
environment, FDSP can also be applied to sub-HD videos
and other types of networks.

The rest of the paper is organized as follows: Sec. 2 presents
a background on H.264, streaming protocols, and packeti-
zation methods. Sec. 3 discusses the related work. The
proposed streaming method is presented in Sec. 4 and our
experimental study and results are discussed in Sec. 5. Fi-
nally, Sec. 6 concludes the paper and discusses possible fu-
ture work.

2. BACKGROUND
This section provides the background information neces-

sary to understand the proposed FDSP, and the relationship
between how H.264 video is encoded and streamed and the
effect of packet delay and loss on its visual quality.

2.1 Features of H.264
H.264 is the state-of-the-art video compression standard.

Compared to its predecessors, H.264 provides more aggres-
sive compression ratio and has network-friendly features that
make it more favorable for mobile video streaming.

There are several characteristics of H.264, and video com-
pression in general, that are important for efficient wireless
video streaming. The two most important characteristics
are the syntax for encoding video data to bitstream data
and how the bitstream is packetized and transmitted. These
issues are discussed below.

2.1.1 I, P, and B-Frame
An encoded video stream consists of a sequence of Group

of Pictures (GOPs) as shown in Fig. 1. Each GOP consists of
an intra-frame (I-frame), predicted-frames (P-frames), and
bi-predicted frames (B-frames). An I-frame contains all the
data required to reconstruct a complete frame and does not
refer to other frames. Conversely, P- and B-frames require
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Figure 2: H.264 bitstream syntax [9].

reference frame(s) during decoding. If a reference frame con-
tains errors, these errors will propagate through subsequent
frames that refer to this frame. Since an I-frame does not de-
pend on any other frame, error propagation will cease when
a new I-frame arrives. Consequently, I-frames should be
given higher priority if possible during video streaming.

2.1.2 H.264 Bitstream Syntax and the Effect of Data
Loss on Video

The hierarchical structure of the H.264 bitstream syntax
is shown in Fig. 2. Network Adaption Layer (NAL) con-
sists of a series of NAL units. Three common NAL units
are Sequence Parameter Set (SPS), Picture Parameter Set
(PPS), and slice. SPS contains parameters common to an
entire video, such as profile and level the coded video con-
forms to. Therefore, if SPS is lost, then the entire video
cannot be decoded. PPS contains common parameters that
are applied to a sequence of frames, such as entropy coding
mode employed. If PPS for a sequence of frames is lost,
then these frames cannot be decoded. A slice is a unit for
constructing a frame, and a frame can have either a single
slice or multiple slices. A slice can be I-slice, P-slice, B-slice,
or Instantaneous Decoder Refresh (IDR) slice. An IDR slice
is a special form of I-slice that indicates that this slice can-
not reference any slice before it, and is used to clear the
contents of the reference frame buffer. Each slice contains
a slice header and a slice data containing a number of mac-
roblocks (MBs). Slice header contains information common
to all the MBs within a slice. If a slice header is lost, then
the entire slice cannot be decoded even if the slice data is
properly received [4, 9].

Fig. 3 illustrates the effect of packet loss on a frame from
a HD video clip called “battlefield” streamed via UDP using
VLC media player [10] and analyzed using Wireshark [11]
and Elecard StreamEye Studio [12]. Fig. 3a shows the orig-
inal transmitted frame, while Fig. 3b shows the received
frame with some information missing due to packet loss.
In this example, the slice header for Slice 4 is lost, thus
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(b) The received frame.
Figure 3: Effect of slice header loss.

the entire slice cannot be decoded. In contrast, the slice
header for Slice 5 is received but the last two RTP packets
are lost, which allowed most of the slice to be decoded. Af-
terwards, Error Concealment (EC) techniques can be used
to recover the lost information with some artifacts (which is
not shown). Therefore, PPS, SPSs, and slice headers are the
most important data, and thus more care should be given
to them during video streaming.

2.1.3 Data Partitioning
DP is an error-resilience feature in H.264. The coded data

for each slice is placed in three separate data partitions A, B,
and C. Partition A contains the slice header and a header for
each MB (i.e., MB type, quantization parameter, and mo-
tion vectors), Partition B contains Coded Block Patterns
(CBPs) and coefficients for intra-coded MBs, and Partition
C contains CBPs and coefficients for inter-coded MBs [4].
To decode Partition B, Partition A must be present. To de-
code Partition C, both Partition A and B must be present.
DP can be used with Unequal Error Protection (UEP) meth-
ods to improve streaming performance. UEP will be dis-
cussed further in Sec. 3. Although DP is a powerful tool for
error resiliency, it has not yet been widely adopted because it
requires videos to be re-encoded and 802.11e networks [13].

2.2 Streaming Protocols
Existing streaming protocols include Real Time Streaming

Protocol (RTSP), HyperText Transfer Protocol (HTTP),
Microsoft Media Server (MMS), and Real-time Transport
Protocol (RTP). Note that RTSP, HTTP, MMS, and RTP
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Figure 4: Method 1 H264→TS→RTP.

are Application Layer protocols so they do not deliver the
streams themselves. For example, RTP uses UDP or TCP
to deliver multimedia data. RTSP, HTTP, and MMS add
more control features for streaming but they also use TCP
or UDP to deliver multimedia data.

RTSP allows a client to remotely control a streaming me-
dia server. For example, a client can play, pause, and seek
a video during streaming. RTSP can be used together with
RTP Control Protocol (RTCP) to obtain statistical data on
Quality of Service (QoS). Typically, RTSP uses TCP to de-
liver control signal and RTP/UDP to deliver multimedia
data.

HTTP also allows a client to control streaming, and uses
TCP to transmit both multimedia and control data. Since
HTTP uses TCP, packets are never lost. Another advantage
of HTTP is that it works across firewalls as the HTTP port
is usually turned on. However, HTTP will incur high end-
to-end delay when lost packets need to be retransmitted.

RTP typically uses UDP to deliver multimedia data. An
RTP header contains a sequence number and a timestamp.
Sequence number is increased by one for each packet sent
and is used for packet-loss detection. Timestamp can be
used to synchronize multiple streams such as video and au-
dio. Note that there is no control functionality by using only
RTP/UDP.

For our purpose, the focus is on RTP/UDP and RTP/TCP
direct streaming as they are fundamental to all other stream-
ing protocols.

2.3 Packetization Methods
Packetization method defines how a H.264 bitstream is en-

capsulated into RTP packets. Different packetization meth-
ods can affect video streaming performance and thus visual
quality. Two basic packetization methods are discussed be-
low.

2.3.1 Method 1 (H264→TS→RTP)
Transport Stream (TS) is a legacy format designed to

transport MPEG-2 video streams and is still used to carry
H.264 video. This method is illustrated in Fig. 4. First, each
TS packet is filled with H.264 bitstream as much as possi-
ble until the limit of 188 bytes is reached. Afterwards, each
RTP packet is filled with as many TS packets as possible un-
til the Maximum Transmission Unit (MTU) size is reached.
Because the MTU size is 1500 bytes for Ethernet, there are
typically seven TS packets in one RTP packet. Method 1
does not consider the H.264 NAL unit structure.

2.3.2 Method 2 (H264→RTP)
This method shown in Fig. 5 is specifically designed for

H.264 video. If the size of a NAL unit is less than or equal
to the MTU size, one RTP packet contains only one NAL
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Figure 5: Method 2 H264→RTP.

unit. If the size of a NAL unit is greater than the MTU
size, the NAL unit will be fragmented into multiple RTP
packets. This method also supports NAL unit aggregation,
which is used when NAL units are very small. For example,
since SPS and PPS have a few bytes at most, they can be
aggregated with other NAL units into a single RTP packet
to reduce the overhead for headers [4].

Method 2 has several advantages over Method 1 [14]. The
most important one is that intelligently mapping NAL units
to RTP packets provides better error resilience since the loss
of one RTP packet affects only the NAL unit inside that
packet (unless aggregation is used). In contrast, the size of
RTP packets in Method 1 is fixed regardless of the size of
NAL units. Therefore, multiple NAL units can be corrupted.
In addition, Method 2 does not use TS packetization so there
is less packet header overhead. For these reasons, Method 2
is used in the proposed FDPS method.

3. RELATED WORK
UDP is generally accepted to be more suitable than TCP

for real-time video streaming since it offers low end-to-end
delay for smooth video playout [4, 15]. Although UDP is
prone to data loss, multimedia data to a certain degree (un-
like traditional data) is loss-tolerant. In addition, a decoder
uses EC techniques to reduce the artifacts caused by data
loss. Numerous EC techniques have been developed to re-
duce the impact caused by packet loss [16, 17]. However,
as discussed in Sec. 2.1.2, if lost packets contain important
data, such as SPS, PPSs, and slice headers, the decoder sim-
ply cannot reconstruct the video even with the aid of EC.

In order to tolerate packet loss caused by UDP, UEP is
often used in UDP-based streaming [4, 18, 19]. UEP aims
to prioritize important data over the others because some
syntax elements are more critical than others. A basic UEP
method is to send important packets more than once, which
raises the probability for the packets to arrive at the re-
ceiver [4]. More advanced UEP methods incorporate For-
ward Error Correction (FEC) [18, 19]. By using FEC to
code important packets with redundancy, a receiver can re-
cover these lost packets without retransmission. However,
FEC introduces additional overhead, which increases net-
work bandwidth required to transmit video.

Despite the conventional wisdom that TCP is not de-
sirable for streaming, a significant fraction of commercial
video streaming traffic uses it [20]. TCP provides guaran-
teed service so the transmitted packets are always preserved.
Nevertheless, TCP’s re-transmission and rate control mech-
anisms incur delay, which can cause packets to arrive after
the playout deadline. A typical solution for this problem
is to add a buffer in front of the video decoder. At the
beginning of video streaming, the decoder waits until the
buffer is filled before displaying video to accommodate ini-
tial throughput variability or inter-packet jitters. This wait-
ing time is called initial buffering. After the decoder starts
to decode video data in the buffer, decrease in throughput

within a TCP session may cause buffer starvation. When
this happens, the decoder stops displaying video until suf-
ficient number of video packets are received. This waiting
time is called rebuffering [5]. Buffering prevents late pack-
ets to be dropped; however, network congestion can cause
long initial buffering and frequent rebuffering that degrades
users’ experience. Mok et al. performed a subjective as-
sessment to measure Quality of Experience (QoE) of video
streaming [21]. Their analysis showed that the frequency of
rebuffering is the main factor responsible for variations in
user experience. Much research has been done on determin-
ing the appropriate buffer size to reduce the frequency of
rebuffering [5,6]. Besides buffer size estimation, Brosh et al.
presented packet splitting and parallel connection methods
to reduce TCP delay [7].

Another approach to improve wireless video streaming is
using IEEE 802.11e networks, which define a set of QoS
enhancements through modifications to the Media Access
Control (MAC) layer [13]. In an 802.11e network, delay-
sensitive data such as video and audio can be assigned to
higher priority class. If contention occurs at the MAC layer,
smaller contention window size is used to transmit data with
higher priority, and thus lower transmission delay can be
achieved. 802.11e is specially tailored for multimedia, but it
has not been widely adopted perhaps due to the hardware
changes required.

To the best of our knowledge, the work closest to ours
was done by Porter and Peng [8]. The authors proposed
the Hybrid TCP/UDP method that prioritizes video data
by using H.264 Data Partitioning (see Sec. 2). However,
our proposed FDSP method has a couple of advantages over
their method. First, FDSP is more flexible because it is not
tied to DP. FDSP integrates a H.264 syntax parser within
the streamer to segregate SPS, PPSs, and slice headers from
rest of data. Thus, videos do not have to be re-encoded
and the network does not have to support DP. Moreover,
any syntax element from a video stream can be segregated
and prioritized. For example, some of the slice data (in
addition to SPS, PPS and slice header can be segregated
and prioritized to further improve visual quality. In contrast,
DP strictly defines contents of the three partitions and so
what can be prioritized are fixed. Second, authors did not
implement their proposed method as a complete system that
includes a network simulator. For example, they used a
modified rtp loss utility (provided by JM reference software)
to preserve partition A and randomly drop other partitions
for a given video to simulate network behavior.

In contrast, FDSP was implemented on a complete video
streaming simulator (see Sec. 4) that simulates realistic net-
work scenarios and provides more insight on frame-by-frame
behavior and buffering time, which are key indicators of
video streaming QoE. Moreover, our simulation study is
based on HD video, which is state-of-the-art and is also more
demanding in terms of bandwidth and delay requirements.

4. FLEXIBLE DUAL-PROTOCOL VIDEO
STREAMING

The system diagram of the proposed FDPS is shown in
Fig. 6. The Sender consists of an encoder, MUX, Dual Tun-
neling (UDP+TCP), and the H.264 syntax parser. MUX
together with the H.264 Syntax Parser are responsible for
segregating critical data from the video bitstream and steer-



Figure 6: Flexible Dual-protocol Streaming system diagram.
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ing the two parts to UDP and TCP tunnels. Dual Tunnel-
ing keeps both UDP and TCP sessions active during video
streaming. The Receiver consists of Dual Tunneling, DE-
MUX and a decoder. DEMUX re-orders the packets, merges
UDP packets with TCP packets, and sends them to the De-
coder, which is implemented using FFmpeg [22].

The proposed FDPS was implemented within Open Evalu-
ation Framework for Multimedia Over Networks (OEFMON)
[23], which integrates the DirectShow multimedia module [24]
and the QualNet network simulator [25]. A simplified dia-
gram of OEFMON is shown in Fig. 7. The main components
used by FDSP are QualNet Connector, Video Source Filter,
and Video Writer Filter. The QualNet Connector is respon-
sible for RTP paketization. The Video Source Filter reads
an H.264 file and sends the data to the QualNet Connector
and the Video Writer Filter writes the decoded frame data
to a raw video file. The detailed discussion of OEFMON
can be found in [23].

The following subsections describe the implementation of
the key components of FDSP.

4.1 Dual Tunneling (UDP+TCP)
OEFMON already implements UDP streaming in the Qual-

Net network simulator. In order to implement Dual Tunnel-
ing, the existing code for UDP streaming required modifi-
cation and a TCP streaming module needed to be imple-
mented. QualNet is a discrete-event simulator and an event
is represented by a data structure called MESSAGE. The orig-
inal code already contains MESSAGE for UDP and there is a
pair of MESSAGEs (one for the sender and another for the re-
ceiver). The changes required for UDP mainly involved re-
structuring the code to handle the corresponding MESSAGEs.
However, the implementation of TCP requires more MES-

SAGEs because it uses three-way handshaking. MESSAGEs such

HDR HDR HDR

HDR H DR HDR

Send 3 RTP 
packets via TCP:  

Receive 5  
TCP segments:  

Figure 8: TCP Fragmentation.

as MSG_TRANSPORT_FromAppOpen (request to open TCP socket)
and MSG_TRANSPORT_FromAppListen (respond to request) must
be properly handled before transmitting video data. To en-
able Dual Tunneling, the functions for handling both UDP
and TCP MESSAGEs were implemented inside a single appli-
cation file called app_fdspvideo.cpp in QualNet.

4.2 TCP Segment Reassembly
TCP is a stream-oriented protocol (instead of being packet-

oriented) and data is viewed as an unstructured, but or-
dered, stream of bytes [26]. Because TCP does not pre-
serve data message boundaries, an RTP packet carried by
TCP may be divided into several segments. Fig. 8 illustrates
the fragmentation caused by TCP. In order to recover RTP
packets from a TCP byte stream, TCP segments must be
reassembled.

The length information of a UDP packet is required to
accomplish TCP segment reassembly. Because the standard
UDP header does not include length information, the 12-
byte RTP header is extended by two bytes to indicate the
length of each UDP packet. This allows the receiver to de-
termine whether or not the current TCP segment contains
a complete RTP packet.

The algorithm for TCP reassembly involves first checking
whether an RTP header is complete. If not, it waits for
next TCP segment(s) to complete the RTP header. Once
the RTP header is complete, it determines whether the RTP
payload is complete using the RTP length information. If
not, it waits for the next TCP segment(s) to complete the
RTP payload.

4.3 H.264 Syntax Parser
The H.264 Syntax Parser was developed based on an open

source library called h264bitstream [27]. The parser was im-
plemented within QualNet and linked to app_fdspvideo.cpp.
Before streaming, the parser parses the video bitstream and
returns its syntax information (such as start address and
length and type of each NAL unit) as input to MUX. Dur-
ing streaming, each NAL unit is encapsulated into an RTP
packet by the QualNet Connector in OEFMON. At the same
time, MUX uses the stored syntax information to determine
whether an RTP packet that contains a NAL unit is SPS,
PPS or slice header. If an RTP packet contains an important
NAL unit, MUX will steer it to the TCP tunnel; otherwise,
the packet will be steered to the UDP tunnel.

4.4 MUX/DEMUX
The implementation of MUX and DEMUX is relatively

straightforward. At the sender, MUX takes as input the
syntax information generated from the H.264 Syntax Parser.
Based on this, MUX steers the corresponding RTP packets
to either TCP or UDP tunnel. At the receiver, DEMUX
first checks the timestamps of received RTP packets from
the UDP tunnel and drops late RTP packets. If an RTP
packet arrives in time, DEMUX merges this packet with
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Figure 9: Simulated network scenarios.

other RTP packets from the TCP tunnel. DEMUX keeps
merging on-time RTP packets and forms the final received
video file.

5. EXPERIMENT SETUP AND RESULTS
The primary video selected for our experiments is 360

frames of raw HD YUV video (12 seconds of 1920×1080
@30fps) from an “African Cats” trailer. The YUV file is en-
coded using x264 with an average bitrate of 4 Mbps and sin-
gle slice per frame1. Using OEFMON, a 802.11g ad-hoc net-
work with 18 Mbps bandwidth was setup and three network
scenarios were created to evaluate video streaming perfor-
mance. In Scenario 1, one pair of nodes stream the primary
video over the network. At the same time, a second pair of
nodes generates a 10 Mbps of constant bitrate (CBR) data
as background traffic. Scenario 2 adds one more CBR data
of 4 Mbps so that the network becomes saturated. Scenario
3 repeats the network traffic of Scenario 1, but the nodes
are now positioned in a classic hidden-node arrangement.
The placement of devices for three scenarios are shown in
Fig. 9. After video streaming completes, the sent and re-
ceived video files are decoded using FFmpeg and PSNR is
computed between the two YUV files using Avisynth [28].
Since PSNR calculation for missing frames and two identi-
cal frames are not well defined, this paper uses 0 dB as the
PNSR value for missing frames and follows the method used
by Avisynth that uses 111 dB to indicate perfect PSNR.
In addition to PSNR information, initial buffering and re-
buffering are recorded to evaluate end-to-end delay.

Our main objective for the experiments is to show the ad-
vantage of the proposed FDSP over traditional pure-UDP
and pure-TCP streaming methods. For FDSP, all the im-
portant data (SPS, PPSs, and slice headers) will be first sent
via TCP and then the rest of data will be sent via UDP. The
time spent sending all the important data in FDSP is treated
as initial buffering. For the pure-TCP method, a buffer is
added to simulate initial buffering and rebuffering. In or-
der to compare between FDSP and pure-TCP, the size of
the buffer for pure-TCP is properly adjusted so that both
methods have the same initial buffering time.

The PSNR comparison for Scenario 1 is shown in Fig. 10.
The figure contains PSNR values as well as frame sizes for
the three streaming methods. As expected, pure-UDP has
the worst PSNR with an average of 54 dB, while FDSP

1The current version of OEFMON does not support multiple
slices.

0 50 100 150 200 250 300 350

−100

−50

0

50

100

Frame Number

P
S

N
R

 

 

0

1

2

3

4

5

6

7

8
x 10

6

F
ra

m
e 

S
iz

e 
(b

yt
e)

FDSP
pure−UDP
pure−TCP

I

I
II

I

t tt t

e

I

Frame
134−146

Figure 10: PSNR comparison for Scenario 1.

Streaming
Method

Initial Buffer-
ing (sec.)

Rebuffering
Count

Avg. Rebuffer-
ing Time (sec.)

FDSP 1.1 0 N/A
pure-UDP 0.0 0 N/A
pure-TCP 1.1 3 1.2

Table 1: Buffering comparison for Scenario 1.

achieves 79 dB. This clearly illustrates the advantage of
FDSP over pure-UDP in terms of visual quality. Pure-TCP
has perfect PSNR of 111 dB because there is no packet loss.

In Fig. 10, the PSNR trends for FDSP and pure-UDP
are in general similar. The transition points (marked as t)
between non-perfect PSNR and perfect PSNR match fairly
well with the position of I-frames (marked as“I”). This is be-
cause I-frames usually have much larger data size than P- or
B-frames. If the network does not have enough bandwidth, a
certain portion of the packets for an I-frame will most likely
be lost or delayed, which reduces PSNR down from 111 dB.
On the other hand, if an I-frame is received without any
loss, it indicates that the network has enough bandwidth to
transmit large frames. Therefore, the subsequent P- or B-
frames are unlikely be lost under the same network condition
since they are smaller than I-frames. Thus, PSNR remains
at 111 dB until the next I-frame. An exception to this sim-
ilarity starts at point e, which is caused by a packet loss.
The packet-level log in OEFMON indicates the last packet
for this I-frame is lost for the pure-UDP streaming, thus
PSNR is not perfect. Due to error propagation, the sub-
sequent frames also cannot achieve perfect PSNR until the
next I-frame. Moreover, in contrast to FDSP, pure-UDP has
many missing frames whose PSNR value is 0. The packet-
level log indicates that those frames having PSNR value of
0 dB are caused by slice header loss. This again shows the
importance of slice header and the advantage of FDSP.

The delay analysis for Scenario 1 is shown in Table 1.
Although pure-TCP and FDSP have same initial buffering
time, pure-TCP incurs very frequent rebuffering. During 12
seconds of video streaming, rebuffering occurs three times
and each lasts on average 1.2 seconds. As mentioned in
Sec. 3, frequency of rebuffering is the main factor responsible
for the variations in users’ experience. Such a high frequency
of rebuffering can be very annoying even though pure-TCP
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Figure 11: PSNR comparison for Scenario 2.

Streaming
Method

Initial Buffer-
ing (sec.)

Rebuffering
count

Avg. Rebuffer-
ing Time (sec.)

FDSP 1.6 0 N/A
pure-UDP 0.0 0 N/A
pure-TCP 1.6 6 1.6

Table 2: Buffering comparison for Scenario 2.

provides perfect visual quality. This is a clear advantage of
FDSP over pure-TCP.

For Scenario 2, the network was saturated by introduc-
ing another CBR data of 4 Mbps. The PSNR and delay
comparisons are shown in Fig. 11 and Table 2, respectively.
The pure-UDP method has a very low average PSNR value
of 16 dB mainly because there are only 120 frames out of
360 that can be reconstructed by FFmpeg. In contrast, all
360 frames are reconstructed using FDSP, which results in
much better PSNR value of 44 dB. FDSP experiences no
missing frames because all the slice headers are properly re-
ceived. For example, Fig. 11 shows that frames 134-146 are
lost for pure-UDP, but these frames are not lost in FDSP.
The packet-loss log in OEFMON shows that both pure-UDP
and FDSP lose all the packets from UDP tunnel for these
frames. The only difference is that FDSP properly receives
the slice headers for these frames from the TCP tunnel. As
discussed before, the presence of slice headers is critical for a
decoder to reconstruct a frame. Once a slice header is prop-
erly received, the decoder can use various EC techniques to
conceal missing MBs even if rest of data is lost. For example,
Fig. 12 shows the decoded frame 134. The upper-left water-
mark shows the frame number 134, which is the information
retrieved from the packet that contains the slice header. The
lower-right watermark shows frame number 132, which in-
dicates that FFmpeg using EC copied information from the
previous frame 132 to the current frame 134.

Our delay analysis shows that initial buffering time for
both FDSP and pure-TCP increases to 1.6 seconds, which is
caused by network saturation. However, rebuffing for pure-
TCP occurs six times and each lasts on average 1.6 seconds.
This implies that FDSP is very effective in a congested net-
work because pure-UDP and pure-TCP tend to be unaccept-
able in terms of visual quality and delay, respectively. Al-
though FDSP incurs delay and results in non-perfect PSNR,

Figure 12: The decoded Frame 134 for FDSP.
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Figure 13: PSNR comparison for Scenario 3.

it effectively achieves a balance between delay and visual
quality.

Fig. 13 and Table 3 show the PSNR and delay compar-
isons for Scenario 3, respectively. As can be seen, PSNR and
delay further degrade compared to Scenarios 1 and 2. This
is caused by packet collisions resulting from the hidden-node
effect. For pure-UDP, the average PSNR value is only 3 dB
and there are total of 320 missing frames out of 360. FDSP
has an average PSNR value of 32 dB, which is significantly
better than pure-UDP. Again, FDSP experiences no miss-
ing frames and this is due to prioritizing slice headers using
TCP. Our delay analysis shows that hidden node further in-
creases initial buffering time to 1.9 seconds for FDSP and
pure-TCP. In addition, although pure-TCP has the same
rebuffering count, each lasts on average 2.1 seconds.

As mentioned earlier, the current implementation of FDSP
will first send all the important data via TCP and then send
rest of data via UDP. For the test video, the initial buffering
(i.e., the time spent sending all the important data) is less
than 2 seconds. However, initial buffering can be quite long
when streaming an entire movie. This issue can be solved

Streaming
Method

Initial Buffer-
ing (sec.)

Rebuffering
Count

Avg. Rebuffer-
ing Time (sec.)

FDSP 1.9 0 N/A
pure-UDP 0.0 0 N/A
pure-TCP 1.9 6 2.1

Table 3: Buffering comparison for Scenario 3.



by adding a special buffer. The streaming process for FDSP
with the special buffer is as follows. First, an entire movie
will be divided to serval sub-streams with a fixed length (i.e.,
n seconds). FDSP will send all the important data for the
first n-second sub-stream via TCP and then rest of data for
the first n-second sub-stream via UDP. As long as FDSP is
not sending any UDP packet, it will send important data for
next n-second video sub-streams via TCP. FDSP will stop
and perform re-buffering only if the important data for a
n-second sub-stream is not in the special buffer. This solu-
tion is similar to pure-TCP but the special buffer only stores
important data instead of all the video data. Because the
data required to send via TCP for FDSP is significantly less
than pure-TCP, FDSP will experience much less rebuffering
than pure-TCP. In addition, the size of the special buffer is
determined by the fixed length (n seconds) of sub-streams
and the choice of buffer size should be based on network
conditions as discussed in [5]. The implementation of this
special buffer is left as future work.

6. CONCLUSION AND FUTURE WORK
This paper presented a new streaming method called FDSP,

which utilizes the benefit of both UDP and TCP. The pro-
posed FDSP was implemented within OEFMON and com-
pared against traditional pure-UDP and pure-TCP methods.
A 1920×1080 @30fps HD video clip was used to evaluate
the three streaming methods in an ad-hoc network environ-
ment. Three network scenarios were constructed and for
each scenario both delay and visual quality were analyzed.
Our analysis shows that FDSP achieves higher PSNR than
pure-UDP and less buffering time than pure-TCP for all
three scenarios. This shows that FDSP is effective in strik-
ing a balance between delay and visual quality and thus has
advantage over pure-UDP and pure-TCP methods.

As a future work, the special buffer will be added to FDSP
to handle rebuffering and evaluated by streaming longer HD
videos. The frequency of rebuffering for FDSP is expected
to be very low because the data required to send via TCP is
significantly less than the pure-TCP method. In addition,
the function for supporting multiple slices per frame will be
added to OEFMON. This will allow us to explore whether
FDSP can provide better performance in terms of delay and
visual quality by using videos encoded with multiple slices
per frame.
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