
Direct Device-to-Device Transfer Protocol: A New Look at the Benefits of a
Decentralized I/O Model

Steen Larsen∗†, Ben Lee†, Jin-Hyuk Yoon‡, and Jae-Yeun Yun‡

∗Intel Corp.
2238 NW Beck Rd, Portland OR 97231

Email: steenx.k.larsen@intel.com.

†School of Electrical Engineering and Computer Science
Oregon State University

1148 Kelley Engineering Center
Corvallis, OR 97331-5501, USA

Email: benl@eesc.orst.edu

‡SK Telecom
Fusion Technology R&D Center

9-1 Sunae-dong, Pundang-gu, Sungnam
Kyunggi 463-784, Korea

Email: {jhyoon01, jaeyeun.yun}@sk.com

Abstract—Current I/O devices communicate based on the
PCIe protocol, and by default, all the traffic passes through
the CPU-memory complex. However, this approach causes
bottleneck in system throughput, which increases latency and
power as the CPU processes device specific protocols to move
data between I/O devices. This paper examines the cost of
this centralized I/O approach and proposes a new method
to perform direct device-to-device I/O communication. Our
proof-of-concept implementation using NetFPGA shows that
latency can be reduced by more than 2x, CPU utilization can
be reduced by up to 18%, and CPU power can be decreased
by up to 31 W.

Keywords-PCIe; I/O device; system architecture

I. INTRODUCTION

I/O transactions are typically handled using a centralized
approach where all I/O data passes through the CPU-
memory complex. This approach has a cost in terms of
performance as well as power consumption especially for
media streaming. This is because typical I/O transactions
involve device DMA access to system memory. In order
to illustrate the aforementioned cost, Fig. 1 shows the
conventional I/O streaming model where two I/O devices,
i.e., Solid State Drive (SSD) and Network Interface Card
(NIC), communicate with each other, e.g., in a VoD server
environment. First, the transmitting device (i.e., SSD) buffers
I/O data in the system memory using DMA write transac-
tions, and then requests service from the CPU, usually via an
interrupt. Second, the CPU copies the system memory buffer
region to the NIC buffer region. Third, the CPU notifies the

P
C I

e

CPU

System Memory

Receiver Device
(e.g., NIC)

TX
Queues

RX
Queues

Sender Device
(e.g., SSD)

Disk Write
Queues

Disk Read
Queues

DDR3
Kernel buffer for

disk data

Kernel buffer for
network packet data

3

2

1

P
C

I
e

Figure 1. Conventional I/O Streaming

receiving device (i.e., NIC) to perform DMA read trans-
actions. This DMA process is managed with descriptors,
which increases overhead and thus latency. In addition, I/O
transactions consume CPU resources in the form of cache
lookups to maintain memory coherency among the caches
and system memory as a part of the descriptor-based DMA
processing, which detracts from non-I/O system loads. In
terms of power, DMA operations are asynchronous to CPU
power policies, and thus I/O transactions will wake the CPU
out of its possible sleep states reducing the system power
efficiency.

The primary advantage of a CPU-centric model for I/O

transactions is that the control of data (e.g., system security,
coherency with other data, etc.) can be maintained by
the software by only enabling the trusted DMA engines.
Another advantage of the CPU-centric model is the flexi-
bility software provides as protocols evolve (e.g., IDE to
SATA and SCSI to SAS). However, the CPU-centric model
taxes the CPU and system memory performance and power.
Furthermore, as CPUs provide larger core count and greater
feature integration, the cost of managing I/O transactions
will increase in the form of power, CPU utilization, and
latency.

This paper proposes a method called Device-to-Device
(D2D) transfer protocol that allows I/O devices to communi-
cate directly with each other using PCIe transactions without
any CPU involvement. This allows the CPU to drop to a
sleep state or execute non-I/O related tasks to save mem-
ory bandwidth while reducing latency and improving I/O
throughput, particularly for streaming I/O workloads such
as VoD servers. Moreover, as in the traditional descriptor-
based DMA transfers, the control of data is maintained by
having the software enable only the D2D streams that occur
between trusted devices.

II. RELATED WORK

The prior work related to D2D can be found in two gen-
eral application areas: High-Performance Computing (HPC)
and server systems.

Among the Top500 supercomputers, 84% of them use
descriptor-based DMA I/O protocols, such as Ethernet and
InfiniBand [11]. Since D2D eliminates the need for DMA
descriptors, it is possible to replaces these traditional in-
terfaces with D2D-enabled devices and thus remove CPU-
centric descriptor-based DMA processing in the CPUs.

Among the top 10 supercomputers, eight of them use
a variety of custom system interconnects [11]. Ali et al.
proposed I/O forwarding to optimize communications be-
tween compute nodes and the interconnection network by
using I/O nodes [4]. I/O forwarding is used as a hardware
infrastructure for Message-Passing Interface (MPI) variants
(e.g., OpenMPI and MPICH2) [6] and other file-based
communication methods such as Buffered Message Interface
[7] and ZOIDFS [8]. It is also commonly used in system
architectures such as the IBM BlueGene/P to reduce OS
interference for POSIX kernel I/O system calls [9]. I/O
forwarding reduces OS noise in the compute nodes of
the system (e.g., context switches, cache poisoning, and
interrupts) by using I/O nodes to offload the I/O transaction
overhead. Much of the OS noise is due to device-driven
interrupts requesting CPU services that result in context
switches to I/O software routines, which reduce CPU per-
formance. The proposed D2D also addresses the OS noise,
but by removing the descriptor-based DMA transactions that
help induce the OS noise.

Although detailed documentations on custom intercon-
nects for the top supercomputers [11] are unavailable, they
may well utilize the PCIe Non-Transparent Bridges (NTB)
technology to communicate between PCIe-based systems
[12]. NTB allows I/O transactions to be performed directly
across the PCIe switch fabric. The PCIe NTB effectively
allows nodes to share memory regions over the PCIe switch
fabric without the traditional CPU-centric networking pro-
tocol of Ethernet or InfiniBand. This allows a given node to
directly access memory of any other node using the CPU’s
load and store instructions. Although NTB is similar to
D2D, its intended application space is the interconnection
of multiple CPUs within an HPC, not between I/O devices.
Moreover, while both NTB and D2D use the PCIe protocol,
NTB relies on a hierarchical protocol to allow separate PCIe
root complexes (e.g., systems) to communicate over direct
PCIe links. In contrast, the proposed D2D transfer proto-
col focuses on allowing any PCIe device to communicate
with any other PCIe device. D2D uses PCIe bridges to
communicate between peer devices, but does not require
CPU software to perform descriptor processing for the I/O
transaction. In addition, D2D is an open architecture instead
of a proprietary custom architecture, meaning an arbitrary
D2D device can work with any other D2D device.

For typical server systems, where I/O expandability and
types of I/O transactions supported are important, there have
been proprietary proposals such as the Toshiba ExaEdge [10]
for streaming storage data to a network device. However,
ExaEdge is not expandable since it bonds a particular SSD to
a particular NIC. This bonding is managed using a processor
to move data between the SSD and NIC, which limits
its scalability since the sub-processor may not be able to
expand beyond the current storage or network configuration.
In contrast, D2D is a scalable, open protocol allowing
any D2D I/O device to communicate with other D2D I/O
devices (e.g., multiple SSDs communicating with multiple
NICs).The ExaEdge has been available for two years [?], and
it has yet to establish a significant market share compared to
mainstream server systems that are expandable and scalable.
This slow adoption may be an indication that methods to
address I/O transaction optimization may be more widely
accepted by an open standard approach such as D2D.

III. D2D TRANSFER PROTOCOL

The proposed D2D transfer mechanism relies on the
existing PCIe protocol, which is ubiquitous across various
segments of computer systems ranging from personal com-
puters to supercomputers. Figs. 2 and 3 show how PCIe-
based SSD and NIC devices, respectively, can be extended
with the D2D capability to support the flow of traffic for
video streaming (i.e., video servers), which is the application
studied in our prototype (see Sec. IV).

The three major components required for D2D transfer
from SSD to NIC are (1) D2D Stream Control Registers in

D2D-enabled SSD

Legacy	
Tx	 DMA	

PCIe	 TLP/DLP/LLP	 processing	

Legacy	
Rx	 DMA	

Optional

SSD	

SSD	 Controller	 and	 Buffers	

Legacy	 NIC	 Control	 	
Registers	

D2D	 Flow	 Control	
Registers	

PCIe BARx
Memory Space

D2D Tx FSM D2D Rx FSM

PCIe	 PHY	

D2D Tx Queue D2D Rx Queue

Modified Rx DMA Modified Tx DMA

Figure 2. D2D-enabled SSD.

the SSD, (2) D2D Tx Finite State Machine (FSM) and Tx
Queue in the SSD, and (3) D2D Rx FSM and Rx Queue in the
NIC. In addition, the NIC requires D2D UDP/IP Offloading
Engine (UOE) and UOE Control Registers for UDP-based
video streaming. While our prototype only supports UOE, a
TCP Offload Engine (TOE) can also be included to support
TCP-based streaming.

Note that D2D Rx FSM and Rx Queue for SSD and D2D
Tx FSM and Tx Queue for NIC are not required for a D2D
stream from SSD to NIC. Other D2D-based devices can also
be designed using the D2D transfer protocol as defined in
this section. In addition to making I/O devices D2D capable,
some changes are needed in the device driver software to
enable D2D streaming. Finally, D2D-enabled devices are
fully backward compatible, and thus the legacy functions
will continue to operate with no changes to software or other
hardware.

The following three subsections discuss these components
in the context of a D2D stream from SSD to NIC. After-
wards, Sec. III-D discusses how the NIC and SSD can be
configured to support the reverse stream, i.e., NIC to SSD.

A. Configuration of D2D Stream Control Registers and
Tx/Rx Queues

Before D2D communication can occur, D2D Stream Con-
trol Registers for both the sender and receiver devices need
to be properly configured. In addition to the standard NIC
control registers, Table I defines all the D2D Stream Control
Registers. These registers together with the standard PCIe
control registers (not shown) facilitate both D2D and legacy
I/O transactions.

Tx and Rx Addresses represent the transmitter and receiver
addresses, respectively. The device driver writes Rx Address
of the D2D receiver device into the Tx Address register
of the D2D transmitter device. This address is defined by
the BIOS on system bootup. As described by the PCIe
specification [1], the device after reset specifies the memory

D2D-enabled NIC

Transmit
Packet
Queue(s)

TX	 PHY	

Receive
Packet
Queue(s)

RX	 PHY	

Legacy	
Rx	 DMA	

UOE / Packet-Based Priority Control

PCIe BARx
Memory
Space

PCIe	 TLP/DLP/LLP	 processing	

Legacy	 NIC	 Control	 	
Registers	

D2D	 UOE	 Control	
Registers	

Legacy	
Tx	 DMA	

UOE	 /	 Parse	 Control	

D2D Rx FSM

D2D Rx Queue
+

Frame Header

D2D Tx Queue
+

Frame Header

D2D Tx FSM

Optional

D2D	 Flow	 Control	
Registers	

PCIe	 PHY	

Figure 3. D2D-enabled NIC.

D2D Stream Control Register Definition
Registers [64b] Description
Tx Address The D2D-enabled sender device performs PCIe writes

to this address for the D2D stream (bits [63:2]). Writing
a one to bit 0 resets the D2D stream. Writing a one to
bit 1 clears D2D Tx/Rx Queues. Bit 2 is reserved.

Rx Address The address of the D2D-enabled receiver device for
the D2D stream (bits [63:2]). This address is used by
the D2D driver software to configure the Tx Address
register of the D2D-enabled sender device. Bits [2:0]
are reserved

D2D Data Rate
(B/s) & Granularity
(s)

The streaming data rate in bytes per second and the
chunk size in sec.

Tx and Rx Base
Credits

Credits supported by the I/O device for transmit and
receive transactions.

D2D Transmit Byte
Count

A counter initialized with the number of bytes that are
to be streamed by D2D.

Tx Credit Update
Address

The address to write new credit grants. D2D Rx FSM
can write a new credit grant to this address when there
is space available in D2D Rx Queue.

Table I
D2D STREAM CONTROL REGISTER DEFINITIONS.

region size required for each device to function. The BIOS
then maps this device address range into the overall system
address space. The location of the Tx Address register is
simply an offset into the PCIe BAR address space, and
it varies depending the system configuration and operating
system boot sequence. D2D uses Tx and Rx Queues that are
instantiated as flat memories in the I/O device. As such, Tx
and Rx Addresses do not change once a D2D session has
been initialized.

Occasionally, the stream may need to be reset, stopped, or
reinitialized. The lower 3 bits of the 64-bit address field are
used for this purpose. When the 0th bit of Tx Address is set
to one, the D2D device resets the D2D stream. When the 1st

bit of Tx Address is set to one, the Tx and Rx Queues will
be emptied. The 2nd bit is reserved for pausing the stream.

The Data Rate for a stream can be defined in terms of
bytes per second. Moreover, its Granularity can be defined in
terms of time-slot per stream chunk. For example, a 20 Mbps

stream with 4 KB chunks has a time interval of 1.64 ms,
thus SSD would write 4 KB of VoD data to NIC every 1.64
ms. As the chunk size decreases, the time interval decreases
and the D2D write frequency increases. This mechanism is
discussed further in the PCIe specification [1].

Tx and Rx Base Credits define the flow control of a stream.
Upon reset, Rx Base Credit is initialized based on the size
of D2D Rx Queue of the receiver device (i.e., D2D-enabled
NIC). These credits are read and programmed by the device
driver to prevent buffer overflow/underflow. For example,
D2D-enabled NIC may initialize its Rx Base Credit at a
quantity of 32 credits, where each credit is equivalent to 4
KB of data. The D2D-enabled SSD device would then have
its Tx Base Credit set to 32, which corresponds to D2D Tx
Queue size of 128 KB. Afterwards, each 4 KB of data sent
by SSD to NIC reduces the credit counter by one. When
the credit counter reaches zero, D2D transfer stalls until Tx
Base Credit in D2D-enabled SSD is updated with a positive
value.

There are two approaches to updating Tx Base Credit in a
D2D-enabled SSD. The simplest and most flexible method
is to interrupt the CPU and rely on the D2D driver software
to appropriately update Tx Base Credit. The other method is
to have D2D-enabled NIC directly update Tx Base Credit as
space becomes available in D2D Rx Queue. This is achieved
by having D2D Rx FSM perform a PCIe write to the address
defined in the Tx Credit Update Address register with an
appropriate credit value. The frequency of Tx Base Credit
updates depends on various factors, such as the type of
data being passed between D2D-enabled devices and the
D2D Rx Queue size. While this approach adds no CPU
load throughout the stream, there may be significant number
of PCIe transactions for credit exchange if the D2D Rx
Queue is small. As a result, the D2D Rx Queue should be
at least several kilobytes in size. The exact Rx Queue size is
determined by a tradeoff among the D2D Rx Queue silicon
footprint, power, and available PCIe bandwidth.

Finally, D2D Transmit Byte Count defines the total num-
ber of bytes to be transferred. This is needed by D2D Tx
FSM to determine when the D2D stream is finished.

Note that the D2D Stream Control Registers described
above are for a single streaming session. The set of control
registers will need to be replicated to support multiple
concurrent streaming sessions. The amount of register space
supported is defined by the BAR register mapping and
depends on the space available on the FPGA and the external
memory. In our implementation, each streaming session
requires only 48 bytes of register space.

The memory-mapped D2D Rx Queue is referenced by a
single address. D2D-enabled sender devices (and the CPU)
write to this address to queue D2D transactions. In the case
of D2D-enabled NIC, the D2D Rx FSM is triggered when
there is enough data in D2D Rx Queue for an Ethernet
packet (typically 1500 bytes). Then, the D2D Rx FSM stores

Check	

Idle	

Init	

Parse	

Send	

Wait	

True

False

Figure 4. D2D Tx FSM.

the data in a temporary frame buffer, which is used by UOE
to perform frame related calculations such as checksum.

D2D Tx Queue is basically a buffer for data to be
transmitted by the D2D Tx FSM. In the case of a D2D-
enabled SSD, D2D Tx Queue will hold the sequence of
blocks that the D2D-enabled SSD device will send to a
D2D-enabled NIC. The D2D Tx FSM specified in Sec. III-B
parses the job requests from D2D Tx Queue and then fetches
data from the SSD. Since a D2D stream provides chunks of
data in SSD block sizes, the SSD’s D2D Tx FSM writes
data directly from the SSD controller to the PCIe interface
based on the address of a D2D-enabled NIC (i.e., NIC’s) Rx
Address.

B. D2D Tx FSM

The D2D-enabled sender device (i.e., SSD) needs to
support D2D Tx Queue, and D2D Tx FSM. Note that D2D
Tx FSM will be slightly different for different types of D2D-
enabled sender devices. Our discussion is based on D2D-
enabled SSD.

The D2D Tx FSM is shown in Fig. 4. In the Init state,
the driver reads the Rx Address register from the NIC and
writes it to the Tx Address register of the SSD. Since
SSD is addressed in block format, the necessary support
for translation or memory-mapped access will be needed.
The list of the data blocks also needs to be converted into a
task list so that D2D Tx FSM can fetch data from the SSD
for transmission.

The number of bytes to be sent is written to the D2D
Transmit Byte Count register in the SSD. Based on the
VoD streaming requirements, such as latency sensitivity
and D2D Rx Queue size, the Data Rate and Granularity
parameters are calculated and programmed into the Stream
Control Registers of the SSD. The initialization of Tx and
Rx Base Credits is also done by setting the registers to zeros.
Afterwards, the D2D stream is started by writing a positive
value to the Tx Base Credit register and setting the 0th bit
of the Tx Address register.

After the initialization, D2D Tx FSM transitions to the
Parse state where the data to be transmitted during the

streaming session is defined. Since the SSD block addresses
from the VoD streaming application are non-contiguous, a
method is needed to reference the SSD data for transmission.
This is accomplished by storing the SSD block addresses
in the D2D Tx Queue. Since logical to physical address
translation is needed, the Parse state maps the operating
system block addresses to the SSD physical sector addresses.
The Parse state is performed at the beginning of the D2D
stream to avoid any CPU involvement during the stream
session.

The specific architecture of the SSD or other storage
devices will define the exact lower level SSD read opera-
tions. Generally, the Send state will fetch a block of SSD
data based on the address at the head of D2D Tx Queue
and forward it to the PCIe interface. For example, if the
SSD block size is 4 KB, the Send state would read the
address of the 4 KB block from the head of D2D Tx Queue
and generate the PCIe memory write transactions for the
address defined in the Tx Address register. The size of each
PCIe memory write operation is determined by the system
architecture, which is usually either 128 or 256 bytes per
PCIe frame. Moreover, these write bursts will be based on
the value defined in the D2D Granularity field. For example,
with a default chunk size of 4 KB and PCIe frame MTU of
256 bytes, there will be bursts of 16 PCIe memory writes
with the frequency defined by D2D Data Rate.

After a chunk is sent, D2D Tx FSM transitions into the
Wait state until the next chunk needs to be sent. After waiting
some predefined time of Granularity in µs, D2D Tx FSM
transitions to the Check state, where the total number of
bytes written to the NIC is compared with the value set in
the D2D Transmit Byte Count register. If they are equal,
D2D Tx FSM stops transmitting and transitions to the Idle
state; otherwise, a transition is made to the Send state to
send another chunk. The Granularity parameter modulates
the higher PCIe bandwidth to the bandwidth delivered by
the stream session.

At any point in D2D Tx FSM, events such as pause or
replay will trigger the state machine to revert to the Init state.
When this occurs, the application may re-program the D2D
Stream Control Registers to start a new D2D transaction.

C. D2D Rx FSM and UOE

The D2D-enabled receiver device (i.e., NIC) needs to
support D2D Rx Queue, D2D Rx FSM, and UOE. Again,
the design of D2D Rx FSM will depend on the type of D2D-
enabled receiver devices. Our discussion is based on D2D-
enabled NIC with UOE. Moreover, UOE is an integral part
of the D2D Rx FSM, thus their operations will be explained
together.

D2D Rx FSM is shown in Fig. 5. In the Init state,
the driver initializes D2D UOE Control Registers so that
the UDP header information can be properly attached as
data is packetized for network transmission. These fields

Idle	

Init	

Fetch	

Frame	

Send	

Calc	

Figure 5. D2D Rx FSM.

are defined in Table II. The MAC Source address is the
MAC address of the transmitter device (i.e., SSD). The MAC
Destination address is the MAC address of the receiver
device (i.e., NIC), which is made available using the TCP
session that initiated the streaming session. Similarly, the
Source IP address is the IP address of the transmitter device
and the Destination IP address is the IP address of the
receiver device. The UDP Destination Port is an agreed-
upon port based on the TCP session that initializes the
streaming session. The other fields are self-explanatory and
static throughout the streaming session. The exceptions are
Ethernet length, Ethernet CRC, IP length, IP checksum,
UDP length, UDP checksum, RTP timestamp, and RTP
sequence number. Each of these fields are calculated on a
per-packet basis and written by the D2D Rx FSM.

Once these registers are configured, D2D Rx FSM enters
the Fetch state where D2D Rx Queue is monitored for re-
ceived data. When there is sufficient amount of data in D2D
Rx Queue to a transmit packet (typically 1500 bytes), D2D
Rx FSM transitions into the Calc state where packet-specific
details are assigned to the packet header, such as MAC and
IP addresses. The Calc state is part of the UOE logic that
calculates the Ethernet length, Ethernet CRC, IP length, IP
checksum, UDP length, UDP checksum, RTP timestamp,
and RTP sequence number. The explanation of the UOE
operation will be explained shortly. After the packet has
been fully formed, it is queued in the legacy Transmit Packet
Queue for network transmission. Afterwards, D2D Rx FSM
transitions to the Check state, where the packet is dequeued
and sent to the MAC layer for final framing. The Rx FSM
will wait in the Fetch state for data until the stream is reset.

The D2D-enabled NIC also has a module to differentiate
D2D packets from legacy packets. During the Send state op-
erations, the Packet-Based Priority Control module arbitrates
between D2D and legacy packets with priority given to the
latter. This is because there is stream control information
that are carried over legacy packets that have higher priority

D2D NIC UOE Configuration Registers
Registers [64b] Description
MAC Dst [6B] 6-octet destination MAC address for the stream.
MAC Src [6B] 6-octet source MAC address for the stream.
802.1Q [4B] &
Length [2B]

Optional setting for 802.1Q tag. The length is calcu-
lated by the NIC based on data size read from D2D
RX Queue

IP Header1 First 8 bytes of IP header including Version, IHL,
DSCP, ECN, length, ID, and flags. Only the length
[2B] is calculated by NIC based on the size of the
D2D RX Queue entry. All other fields are set during
D2D initialization

IP Header 2 TTL, protocol, header checksum, and source IP ad-
dress. Only header checksum [2B] is calculated by
NIC, and all others are static based on D2D stream
initialization.

IP Header 3 Destination IP address and UDP option fields. Static
based on D2D stream initialization values except for
the UDP length [2B] field that is calculated by the NIC
based on the length of the UDP header and data.

UDP Header UDP source and destination port, length and checksum.
UDP length [2B] is calculated by NIC as the sum
of UDP header and data. UDP checksum [2B] is
calculated by NIC for both header and data.

RTP Header 1 Version and bit definitions, sequence number, and
timestamp. Timestamp is tracked by D2D-enabled NIC
and written based on when the RTP packet leaves
the NIC buffer if needed. Sequence number is set on
initialization and incremented per RTP packet.

RTP Header 2 SSRC and CSRC identifiers. Specified by the driver
during initialization.

Table II
D2D UOE CONTROL REGISTERS.

than D2D packets.
Finally, the NIC UOE engine takes data from the head

of the Rx Queue and applies proper framing protocol to
generate an Ethernet packet based on the UOE control
registers defined in Table II. This packet is then sent to the
NIC PHY for transmission.

D. D2D Stream: NIC to SSD

The previous subsections discussed the D2D streaming
of data from an SSD to NIC. This subsection discusses the
reverse stream from NIC to SSD to illustrate the flexibility
of the D2D transfer mechanism for other applications. A
typical example could be network storage services, where
the D2D-enabled NIC would utilize its D2D Tx FSM and
Tx Queue (D2D Rx FSM and Rx Queue would be optional).
In addition, the UOE and Parse Control module are needed
filter and process the received packets and enqueue them
in the D2D Tx Queue. On the other hand, the SSD would
require the D2D Rx FSM and Rx Queue (D2D Tx FSM and
Tx Queue would be optional).

For a D2D-enabled NIC, UOE appropriately parses the
headers of incoming network packets and enqueues them
in D2D Tx Queue based on the packet header information.
This means that the incoming network packets need to be
filtered before any D2D or legacy DMA transactions can
occur. This is accomplished by the Parse Control module
that distinguishes between received legacy network and
D2D packets based on the D2D UOE Control Registers in

Xilinx Virtex-5 TX240T FPGA, 10GbE, and memories

Driver	 Interfaces

AXI	 Lite	

AMB	 AXI-‐Stream	 Interface	 (160	 MHz,	 64-‐bit)	

DMA	 Engine	 Registers	

nf0 nf1 nf2 nf3 ioctl

MAC
TxQ

MAC
RxQ

Ethernet	

MAC
TxQ

MAC
RxQ

MAC
TxQ

MAC
RxQ

MAC
TxQ

MAC
RxQ

Shared	 PCIe	 interface	

D2D	 Tx/Rx	 	
Queues	 &	

FSMs	

Legacy	
DMA	 Rx	 Q	

Legacy	
DMA	 Tx	 Q	

Read/write from/to
D2D control
registers

Control & Status
Interface

Data Path
Interface

Software
Interface
Layer

NetFPGA PCIe
Interface Layer

NetFPGA
Internal
Control and
Routing

Figure 6. NetFPGA design hierarchy.

Table II. If an incoming packet is determined to be a valid
D2D stream packet, the legacy DMA is bypassed and the
packet is written into D2D Tx Queue. For a D2D-enabled
NIC, the D2D stream rate is determined by the rate at which
the network traffic is received. Therefore, D2D Tx FSM
can immediately send the received network packets to other
D2D-enabled devices.

A special consideration is needed for IP layer packet frag-
mentation. If IP fragmentation is used and the IP fragments
are not reassembled properly by the receiving system, video
streaming applications such as VLC cannot properly display
the video stream. As a result, UOE on the D2D-enabled NIC
has to parse the incoming packets for proper reassembly of
the fragmented packets.

IV. PROOF-OF-CONCEPT EVALUATION

This section discusses the implementation and evaluation
the proposed D2D transfer protocol discussed in Sec. III.

A. NetFPGA Implementation

The D2D transfer protocol was implemented using a
NetFPGA board [14], which has Xilinx Virtex-5 TX240T
FPGA, 4×10GbE, and memories. A block diagram of a
D2D-enabled NIC design using NetFPGA is shown in Fig. 6.
The AMB AXI-Stream Interface is used to interface and route
the four 10GbE MACs with a single DMA engine. The
DMA engine controls all the PCIe traffic to and from the host
system. The driver software interfaces to the nf0, nf1, nf2,
nf3 ports to allow for processing of the higher layers of the
networking protocol. A basic direct PCIe register interface,
which does not use DMA to transfer data, is also available in
the NetFPGA architecture to access the D2D configuration
registers defined in Tables I and II using the common ioctl
interface. AXI Lite is the interface for the microcontroller

PCIe Interface

PCIe Bridge

CPU System Memory

PCIe InterfaceIncoming network data is treated
as storage data to be written to

D2D-enabled NIC

System Output Display (SOD)

Out-bound device: UDP VoD stream

Stimulus System (SS)

In-bound device: Emulated SSD stream

System Under Test (SUT)

PCIe Interface

D2D-enabled NIC

Transmit
Packet
Queue(s)

TX
PHY

Receive
Packet
Queue(s)

RX
PHY

Legacy
RX

DMA

PCIe BARx
Memory
Space

PCIe TLP/DLP/LLP processing

Legacy NIC Control
Registers

D2D Flow Control
Registers

D2D UOE Control
Registers

Legacy
TX

DMA

PCIe
PHY

UOE / Parse Control

D2D Rx
FSM

D2D Rx Queue
+

Frame Header

D2D Tx Queue
+

Frame Header

D2D Tx
FSM

D2D-enabled NIC

Transmit
Packet
Queue(s)

TX PHY

Receive
Packet
Queue(s)

RX
PHY

Legacy
RX

DMA

UOE / Packet-Based Priority Control

PCIe BARx
Memory
Space

PCIe TLP/DLP/LLP processing

Legacy NIC Control
Registers

D2D Flow Control
Registers

D2D UOE Control
Registers

Legacy
TX

DMA

PCIe
PHY

UOE / Parse Control

D2D Rx
FSM

D2D Rx Queue
+

Frame Header

D2D Tx Queue
+

Frame Header

D2D Tx
FSM

UOE / Packet-Based Priority Control

Figure 7. D2D prototype with emulated SSD.

and other internal components on the FPGA, and is used to
initialize the MAC configuration.

Each 10GbE MAC has an outgoing master AXI-Stream
interface and an incoming slave AXI-Stream interface. The
AXI-stream interface is 64-bit wide and operates at 160
MHz allowing for full 10GbE throughput. The UOE must
therefore process both transmit and receive network packets
at 160 MHz. Since the Xilinx PCIe interface used by
the DMA engine is 64 bits, both the master AXI-Stream
interface and the D2D Rx Queue entries are 64 bits.

The NetFPGA PCIe interface was modified to support
the D2D transfer protocol by adding the D2D Tx and Rx
FSM logic and queues and the UOE logic. The rest of the
NetFPGA design shown in Fig. 6 is left unchanged.

B. Evaluation of Methodology

The evaluation of the D2D transfer protocol was per-
formed using two NetFPGA cards connected to a host
system as shown in Fig. 7. The System Output Display
(SOD) representing a client requests a VoD stream from the
System Under Test (SUT), which represents a VoD server.
This results in video stream being sent from Stimulus System
(SS) via the SUT to the SOD. In this setup, the SS together
with the in-bound D2D-enabled NIC emulate an SSD. The
SS will have a preloaded video file for streaming over to the
SUT for D2D performance measurements.

The host system contains an Intel 2500K quad-core CPU
running at 3.1 GHz. The streamed video has a resolution of
720×480 @29 fps with an average bit rate of 7,820 kbps.
The audio stream is also part of the video stream requiring
320 kbps of bandwidth. The VLC application is running
in server mode on the SS and uses MPEG-2 packets [15],
which is the only UDP streaming configuration currently
supported by VLC.

The SOD initiates a VoD stream by requesting service
from the CPU in the SUT on a specific UDP port using
a TCP connection. In our prototype, this is executed as
an ssh Linux operating system command. The CPU in the
SUT responds by requesting the UDP video stream from
the SS using a TCP connection. The SS then responds
by running a VLC application to start an MPEG-2 video
stream on the specified UDP address of the SUT. We
have successfully performed video streaming on the testbed
shown in Fig. 7, and an example run can be seen at
https://www.youtube.com/watch?v=qgGCPHDMbK0.

The SUT receives UDP Ethernet frames from the SS
on the in-bound D2D-enabled NIC and strips the transport,
Internet, and link layer header information. This is done by
the UOE based on the D2D Tx FSM (see Sec. III-B) and the
D2D Stream Control Register parameters (see Sec. III-A).
After extracting the MPEG TS segments, the D2D emulated
SSD performs PCIe memory writes to move the TS data to
the memory address space of the out-bound D2D-enabled
NIC as specified by the Tx Address (see Table I). The out-
bound D2D-enabled NIC executes the D2D Rx FSM and
stores the received PCIe data into the D2D Rx queue. When
there is a sufficient amount of data for a network packet,
the D2D-enabled NIC Rx FSM forms a TS-aligned Ethernet
frame. This frame has header information defined by the
UOE of the D2D-enabled NIC, which is based on the D2D
UOE configuration parameters (see Table II). After the UOE
task is complete, the entire frame is transmitted to the SOD.
Finally, the SOD receives the Ethernet packet stream and
displays it using a VLC client application.

In our prototype, the D2D stream configuration parame-
ters are hard coded, but ultimately these parameters would
be programmed into D2D-enabled devices in the SUT using
device driver calls.

C. Performance Evaluation and Results

1) Latency: In order to compare the latency of D2D
transactions with conventional descriptor-based DMA trans-
actions, the measurements obtained from our prototype is
compared with the results obtained by Larsen et al. [2]. This
study showed that on two recent servers, each with a 10GbE
NIC connected back-to-back using the well known netpipe
latency test, the descriptor-based DMA latency required for
a 64-byte packet to be received, processed by the CPU, and
transmitted is 11,906 ns. A large part of this delay can be
removed with D2D since the emulated SSD in our prototype
performs PCIe memory write transactions directly to the
10GbE NIC.

In order to analyze the latency of the D2D prototype, the
delay between when the in-bound NIC (i.e., the emulated
SSD) receives a 1500 byte VoD packet from the SS and
when it is processed by the out-bound D2D NIC was mea-
sured. Fig. 8 shows the various latency components based
on the measurements obtained using Xilinx Chipscope.

16000
0.563 mbps per session

5555.556

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time (ns)

La
te

nc
y

cr
iti

ca
l a

ct
iv

ity

SUT D2D write 3 of 6, 392ns

SUT D2D write 6 of 6, 352ns

SUT D2D write 5 of 6, 392ns

SUT D2D write 4 of 6, 392sns

SUT out-bound NIC forms D2D packet header, 20ns

SUT D2D write 1 of 6, 392ns

SUT in-bound NIC posts PCIe memory write, 180 ns

SUT in-bound NIC parses packet header, 32ns

SUT in-bound NIC receives packett, 1188ns

SUT D2D write 2 of 6, 392ns

SUT out-bound NIC transmits D2D packet, 1188ns

Figure 8. Example 1500 byte packet latency in the D2D prototype

The NetFPGA AXI Stream Interface is 8 bytes wide and
operates at 160 MHz, so a 1500-byte packet with a 20-
byte Ethernet header requires 1,188 ns to move between the
10GbE PHY and the PCIe DMA engine. Once the packet
is in the DMA engine, it is in the FPGA internal memory
and it can be determined if it is a D2D packet for D2D
transfer or a legacy packet for CPU-centric descriptor-based
DMA processing. The PCIe interface operates at 125 MHz
with the maximum PCIe packet frame size of 256 bytes.
Our Chipscope measurements show that each 256 byte PCIe
frame write operation, including the PCIe protocol header
information, requires 392 ns. Note that the last PCIe write is
a fragment, and thus it only takes 352 ns. After the Ethernet
and UDP/IP protocol information is removed, the 1500-byte
packet requires six PCIe frames for a total PCIe latency of
2,352 ns. Therefore, the total latency to transfer across both
PCIe devices in our prototype is 4,959 ns. Comparing this
latency to the 11,906 ns latency discussed in [2], which is
for a smaller 64-byte packet, D2D provides more than 2x
latency improvement. Note that using D2D for a smaller 64-
byte packet requires only one PCIe write operation, which
reduces latency by up to 9x. Also note that the PCIe protocol
implementation on the FPGA is likely not as optimized as
an ASIC implementation, which would have better latency
characteristics.

2) Throughput: The iperf bandwidth test tool [16] was
used to stream UDP packets from the SS to the SOD using
D2D on the SUT. VoD streaming was not used because the
inter-packet delay of the video streams cannot be controlled
under VLC. As a result, some clusters of video packets
with small inter-packet delays may exceed the throughput
limitation of our prototype (see the discussion in Sec. V)
causing video packets to be dropped.

The resulting measurements are shown in Fig. 9, where
the red bars shows the data throughput received by the
SOD and the blue curve shows the data throughput sent
by the SS. As can be seen, the two results match until the
throughput reaches 922 Mbps. UDP data rates higher than

1

10

100

1000

10000

1 10 100 922 2000 4000 8000

Th
ro

ug
hp

ut
 (M

bp
s)

iperf send throughput (Mbps)

iperf SOD received

iperf UDP SS
transmit

Figure 9. D2D iperf UDP throughput measurements

922 Mbps resulted in dropped packets, which is due to the
throughput limitation of the NetFPGA board used for our
implementation (see Sec. V). Repeating the tests with the
SUT in a router configuration using standard off-the-shelf
Intel 82599 10GbE NICs shows that the received throughput
for the SOD matches with the transmitted throughput of
SS until 9.8 Gbps, which is the maximum throughput
that includes the Ethernet protocol overhead. Although the
throughput results for D2D were low due to the limitation of
the NetFPGA board, it is important to emphasize that there
were no CPU cycles used during this test.

3) Power: To measure CPU power, an ammeter was
placed across the 12 V power rail that powers the CPU
and the voltage regulator. The CPU voltage regulator itself
consumes power to convert the 12 V power rail to about 1.1
V for the CPU power pins. Thus, the CPU voltage regulator
power increases as the CPU power increases. To compare
D2D power dissipation against a reference, the SUT was
converted to act as a Linux-based IP router between the
two IP subnets containing the SS and the SOD. In other
words, the emulated SSD was essentially converted to an
NIC receiving VoD streams and the SUT is used to route
the video stream to the SOD. In this router configuration,
the CPU will consume power as it processes the TCP/IP
protocol and data is passed from the in-bound NIC to the
out-bound NIC using descriptor-based DMA transfers.

Fig. 10 shows the CPU and CPU regulator power dissipa-
tion as a function of number of streams, where each point is
an average of 10 measurements. The SS transmits multiple
7.82 Mbps video stream files to the SUT using iperf. Note
that the maximum of 120 video streams corresponds to the
maximum throughput in our test environment. The average
CPU power dissipation for D2D is only 4.32 W since
there is no network traffic is being processed by the CPU.
In contrast, the average CPU power for the SUT router
configurations is 32 W. The SUT router configurations was
also tested up to 9.8 Gbps, and it showed a similar trend of

0

5

10

15

20

25

30

35

40

1 10 20 30 40 50 60 70 80 90 100 110 120

CP
U

 a
nd

 C
PU

 V
ol

ta
ge

 R
eg

ul
at

or
 P

ow
er

 (W
)

Emulated video streams

SUT router

SUT D2D

Figure 10. D2D CPU power benefit

around 32 W for CPU power. Although D2D was not able
to handle more than 120 video streams, its power would
expect to continue the sub-5W trend.

These results show that there is almost no CPU power
increase from the idle state since most of the time the cores,
caches and even the entire CPU are in sleep states during
D2D streaming. The amount of time a task sleeps is usually
represented as a ratio of time when the given CPU core is
active and when it is in one of the possible sleep states. A
high ratio indicates that the CPU is sleeping most of the time,
and thus it correlates with lower power. D2D allows for a
high ratio of sleep states to be maintained, since there is no
CPU activity required during the VoD session. As soon as
system memory DMA operations and interrupts are required
for network routing, the percentage of the time the CPU can
be put into sleep is reduced resulting in higher CPU power
dissipation.

The SUT router configuration results in Fig. 10 also show
that the CPU power dissipation is relatively independent of
video stream count over 10 streams because the CPU is held
in an active state, i.e., a very low sleep ratio. This is because
the parts of the CPU that are monitored by PCU are not idle
for sufficient periods of time to be put to sleep resulting in
a relatively constant CPU power dissipation for more than
10 video streams

The SUT D2D results show that D2D scales very well
as the number of video streams increases since the only
CPU interaction is the session control (i.e., setting up the
D2D streams and side-band control such as stopping or
forwarding a video stream). The SUT router also scales well,
but as the stream count increases at some point need more
CPUs will be needed.

Although D2D could support thousands of streaming
sessions with a single CPU, the actual number of sessions
that can be supported will depend on how frequently sessions
are started and stopped. For instance, D2D can service long
video streams more effectively than short video streams.

0

2

4

6

8

10

12

14

16

18

20

1 10 20 30 40 50 60 70 80 90 100 110 120

CP
U

 u
til

iza
tio

n
pe

rc
en

ta
ge

Emulated video streams

SUT router

SUT D2D

Figure 11. D2D CPU utilization benefit

This is because the CPU-centric descriptor-based model
needs to perform both the stream management as well as
move the stream data, while D2D only requires the stream
management allowing the CPU context switch to other tasks
or to save power.

4) Utilization: Fig. 11 shows the CPU Utilization as a
function of number streams, which was analyzed using the
Linux process monitoring program top [17]. Again, these
results are based on the average of 10 measurements. As
expected, the CPU utilization for D2D is close to 0%. For
the SUT router configuration, there is correlation between
CPU utilization and network throughput (for 1 and 80 video
streams), since the amount of descriptor processing required
increases as traffic increases. With network traffic higher
than 70 video streams, CPU utilization becomes relatively
constant possibly due to NIC default acceleration functions
(e.g., LRO, TSO, NAPI, etc.). These results show that up to
18% utilization of the 4-core CPU is saved using D2D.

V. IMPLEMENTATION AND PERFORMANCE ISSUES

Our proof-of-concept implementation of the D2D transfer
protocol had some limitations. The biggest issue is the PCIe
throughput limitation of the NetFPGA board. Although there
have been reports of up to 1.5 Gbps throughput from the
NetFPGA board [14], the maximum verifiable throughput
of the D2D prototype with two NetFPGA cards was only
922 Mbps. Most of the prior studies using NetFPGA have
been on network routing related research. These kinds of
studies do not require high throughput on the PCIe interface
since the routing among the four 10GbE Ethernet ports is
performed on the NetFPGA. As a result, the throughput
measured on our D2D prototype is not an issue for most
NetFPGA users. Although no root cause has been reported
by the NetFPGA community for the low PCIe throughput
and no solutions have been proposed to solve this problem
[14], we feel the issue is due to a variety of factors including:

• The Xilinx Virtex 5 silicon is 8 years old, and there may
be some inherent limitations on its hard IP implementa-
tion of the PCIe interface. Our Xilinx Chipscope debug

traces shows that there is a clock timing issue (i.e.,
a setup-hold violation within the FPGA logic) at data
rates higher than 922 Mbps, where one or two bytes
are sometimes corrupted on the 64-bit data interface of
the hard IP implementation of the PCIe protocol. We
do not suspect that there is a problem with the D2D
logic implementation since this issue is not seen on the
entire 64-bit data interface and does not occur for lower
data rates.

• The Xilinx PCIe endpoint logic supports only a single
outstanding PCIe transaction. Other PCIe devices, such
as Intel 10GbE, support 24 outstanding PCIe transac-
tions allowing for pipelining of multiple DMA tasks.

• The NetFPGA DMA logic supports only a single net-
work queue, while other NICs, such as Intel 10GbE,
support 64 or more queues allowing multiple IP ses-
sions to occur concurrently.

VI. CONCLUSION AND FUTURE WORK

The open and scalable D2D transfer protocol offers sig-
nificant benefits compared to the CPU-centric descriptor-
based DMA operations used in current server and HPC
environments. Our results show three primary areas of
I/O transaction performance improvement. First, the latency
between I/O devices in a server is reduced by at least 2x.
Second, CPU power is reduced by up to 31 W. Third, up
to 18% of a 4-core CPU cycles are made available for
servicing other tasks. The D2D transfer protocol is based
on the standard PCIe specification, and thus, it is scalable to
many devices and application models, such as HPC, servers,
and mobile devices.

Our future plan is to expand D2D to support different
devices and more complex networking scenarios.

ACKNOWLEDGMENT

This research was supported in part by SK Telecom,
Fusion Technology R&D Center, Korea.

REFERENCES

[1] PCIe Base Spec 3.0. [Online] Available: http://pciesig.com

[2] S. Larsen, P. Sarangam, R. Huggahalli, S. Kulkarni, “Architec-
tural Breakdown of End-to-End Latency in a TCP/IP Network,”
in International Journal of Parallel Programming, Dec. 2009,
Vol. 37, Issue 6, pp. 556–571.

[3] C. Maciocco, “Power breakdown analysis of iPad operations,”
Intel Labs study 2012 unpublished

[4] N. Ali, P. Carns, K. Iskra, D. Kimpe, S. Lang, R. Latham, R.
Ross, L. Ward. “Scalable i/o forwarding framework for high-
performance computing systems,” in CLUSTER, 2009

[5] “Intel unveils 72-core x86 Knights Landing CPU
for exascale supercomputing” [Online] Available:
http://www.extremetech.com/extreme/171678-intel-unveils-72-
core-x86-knights-landing-cpu-for-exascale-supercomputing

[6] “MPI Forum, MPI-2: Extensions to the Message-
Passing Interface”, [Online] Available: http://www.mpi-
forum.org/docs/docs.html, 1997.

[7] P. H. Carns, W. B. Ligon III, R. Ross, P. Wyckoff, “BMI: A net-
work abstraction layer for parallel I/O,” in IEEE International
Parallel and Distributed Processing Symposium, Workshop on
Communication Architecture for Clusters, Denver, CO, Apr.
2005.

[8] K. Iskra, J. W. Romein, K. Yoshii, and P. Beckman, “ZOID:
I/O-forwarding infrastructure for petascale architectures,” in
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, Salt Lake City, UT, 2008, pp. 153-162.

[9] “IBM, Overview of the IBM Blue Gene/P project,” in IBM
Journal of Research and Development, vol. 52, no. 1/2, pp.
199-220, 2008.

[10] White Paper, “ExaEdge: Advanced Distribution for
Rapid HTTP Streaming Delivery.” [Online] Available:
https://www.webcom.toshiba.co.jp/snis/en/whitepaper.php

[11] Top500. 2012; [Online] Available: http://i.top500.org/stats

[12] J Regula, “Using Non-transparent Bridging
in PCI Express Systems.” [Online] Available:
http://www.plxtech.com/files/pdf/technical/expresslane/
NontransparentBridging.pdf

[13] PCIe Specification, rev. 3.0, Appendix A Isochronous Appli-
cations; [Online] Available: http://www.pcisig.org

[14] NetFPGA. [Online] Available: http://netfpga.org

[15] Video LAN client and server Available:
http://www.videolan.org/

[16] Iperf network throughput utility Available:
http://en.wikipedia.org/wiki/Iperf

[17] Task manager for system resources Available:
http://en.wikipedia.org/wiki/Top (software)

