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Abstract—Performance improvement of computer system 
I/O has been slower than CPU and memory technologies 
in terms of latency, bandwidth, and other factors.  Based 
on this observation, how I/O is performed needs to be re-
examined and explored for optimizations.  To optimize 
the performance of computer system having multiple 
CPU cores and integrated memory controllers, this 
paper re-visits a CPU oriented I/O method where data 
movement is controlled directly by the CPU cores, 
instead of being indirectly handled by DMA engines 
using descriptors.  This is achieved by leveraging the 
write-combining memory type and implementing the I/O 
interface as simple FIFOs.  Our implementation and 
evaluation of the proposed method show that transmit 
latency and throughput significantly better for small and 
medium sized messages, and throughput for large 
messages is comparable to descriptor-based DMA 
approach. 
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I.  INTRODUCTION 
I/O transactions are typically performed using descriptor-

based Direct Memory Access (DMA), which decouples the 
software that produces data on a CPU core from the data 
departure from the system.  This allows an I/O device to 
execute I/O transactions as fast as it can handle.  Descriptor-
based DMA transactions are appropriate for transferring 
large messages.  However, the overhead of using descriptors 
diminishes the performance of transferring small and 
medium sized messages.   

In order to better understand this overhead and thus the 
motivation for this paper, Fig. 1 shows the typical Ethernet 
transmit flow.  After the kernel software constructs the 
outgoing packet and enqueues it in the transmit buffer within 
the system memory (1), the core sends a doorbell request to 
the NIC via the platform interconnect (e.g., PCIe) indicating 
that there is a pending packet transmission (2).  The doorbell 
request triggers the NIC to initiate a DMA operation to read 
the descriptor containing the physical addresses of the 
transmit header and payload (3).  The NIC parses the 
descriptor contents and then initiates a DMA operation to 

read the header information (e.g., IP addresses and the 
sequence number) and payload data of the packet (4).  An 
Ethernet frame is constructed with the correct ordering for 
the bit-stream (5).  The NIC will also signal the operating 
system (typically with an interrupt) that the transmit payload 
has been processed, which allows the transmit buffer of the 
packet data to be deallocated.  Finally, the bit-stream is 
passed to a PHYsical (PHY) layer that properly conditions 
the signaling for transmission over the medium (6). 

As can be seen, descriptor-based DMA operations 
require several round-trip latencies between the system 
memory and the I/O device.  A simple and obvious approach 
to eliminating this overhead and improving the performance 
of small messages is to use Programmed I/O (PIO), where a 
CPU core writes directly to an I/O device [7].  However, PIO 
cannot fully utilize the available I/O bus bandwidth, and thus 
the throughput suffers.  Therefore, this paper presents the use 
of Kernel-protected Programmed I/O with Write-Combining 
buffers (kPIO+WC) to improve I/O performance.    The idea 
behind PIO with WC buffers is not new.  Bhoedjang et al. 
first presented a study that showed that PIO with WC buffers 
outperformed DMA for messages less than 1 KB.  However, 

 
Figure 1. Typical Ethernet transmit flow 



there are two major reasons for reevalauting the potential of 
this concept.  First, the original study on PIO with WC 
buffers was performed on older CPUs, which had the issue 
of quickly over-running the few available WC buffers and 
stalling the CPU during packet transmission.  For example, 
their study showed that PIO with WC buffers for message 
sizes larger than 1 KB resulted in only about 70% of the 
traditional DMA throughput.  In contrast, current CPUs have 
many WC buffers per core allowing pipelined write 
transactions to provide near DMA throughput.  Second, with 
the proliferation of cores in CPUs, there are benefits of 
having these cores be more directly involved in I/O 
transactions to improve latency and throughput for small and 
medium-sized messages.  

Low latency for small- and medium-sized messages 
would be beneficial in clustering applications, such as 
Memcached, as well as in the financial market where a 
microsecond can garner millions.  Memcached is a 
distributed memory caching system used by companies such 
as Facebook to quickly access vast amounts of inter-related 
data [18].  Low latency stock prices allow for sophisticated 
high-frequency trading methods such as algorithmic and 
arbitrage trading [1]. One example is Xasax claiming 30 
microseconds delay between NASDAQ quotes and trade 
execution [1]. 

The kPIO+WC approach was implemented as an I/O 
adapter using an FPGA and tested on a current high-
performance system.  Our study shows that the proposed 
kPIO+WC method reduces the latency by 86.7% for small 
messages compared to descriptor-based DMA operations.  In 
addition, kPIO+WC provides similar throughput results as 
descriptor-based DMA operations. 

II. RELATED WORK 
There have been specialized approaches to improve I/O 

performance. Mukherjee et al. proposed the use of coherent 
memory interfaces for I/O communications, bypassing DMA 
transfers completely [2].  Although this can reduce system-
to-system latency and is applicable to top-tier HPC systems, 
our goal is to explore the general-purpose cluster 
interconnect for HPC and datacenters that is more cost 
sensitive and compatible with the existing ubiquitous PCIe-
based Ethernet and InfiniBand interconnects.   

Ethernet-based interconnects are widely used in HPC 
systems as shown by the Top500 supercomputers, where 
41% of the systems are Ethernet-based [3].  InfiniBand, 
which also uses descriptor-based DMA, is also a common 
HPC interconnect [3].  However, InfiniBand is a complex 
I/O device that offloads the connection management task 
(essentially the TCP/IP stack) to the I/O device.  This 
requires I/O device memory to support connection contexts 
and possible re-ordering of packets.  There are also some 
supercomputers that use dedicated I/O processors to perform 
I/O forwarding, which minimizes operating system noise due 
to interrupts and context switches associated with I/O 
transactions [24].   

The proposed kPIO+WC method is baselined to Ethernet 
interconnects since our motivation is to examine 
improvements to generic I/O devices.  Since descriptor-

based DMA is used in most high-performance I/O devices, 
Ethernet interconnects allow for a comparative study of both 
latency and throughput performance.  

The closest related work on simplifying I/O transactions 
can be found in Programmed I/O (PIO) or memory-mapped 
I/O that allows direct access by an application to perform I/O 
transactions.  A comparison of PIO and DMA showed that 
PIO has lower latency for messages less than 64B; however, 
DMA outperforms PIO for messages larger than 64B [4].  
Part of the reason PIO performs poorly for large I/O 
transactions is that they are treated as uncacheable memory 
transactions.  In addition, PIO transactions using the PCIe 
interface occur in maximum of 8-byte PCIe payload packets.  
Adding the 24-byte PCIe packet header effectively reduces 
PCIe bandwidth utilization to 25% of the peak PCIe 
bandwidth.   

A variation of PIO is user-level I/O that avoids system 
calls to the operating system, which may include memory 
copies to kernel buffers impacting I/O transaction 
performance [7].  The primary issue with user-level I/O is 
sharing, or I/O virtualization, which causes possible 
contention between multiple writers and readers for the 
shared I/O queues. 

Another variation of PIO is the PIO with Write-
Combining (WC) buffer [5] (which Intel has recently 
renamed them as Fill Buffers [6]), which involves writing 
packets directly to the I/O device using the WC buffers.  A 
WC buffer can be used to combine multiple 4-byte or 8-byte 
writes into a 64-byte data, which can then be written to an 
I/O device using a single PCIe transaction. 

This approach is similar to our proposed method, but 
with the following differences. First, each Intel CPU core 
implements up to 10 WC buffers allowing for pipelined write 
transactions at near system memory bandwidths using PCIe 
memory writes [16].  For example, if a CPU core issues a 
64-bit write operation each cycle, a 64-byte WC buffer 
would fill in 8 cycles and a 2.5 GHz CPU core could be 
writing at maximum data rate of 20 GB/s.  This throughput is 
comparable to the 16 GB/s bandwidth of a single PCIe Gen3 
×16 slot.  Although this throughput does not account for 
PCIe protocol overhead, a single I/O slot can almost sustain 
the 16 GBps peak throughput of a single PCIe Gen3 ×16 
slot. As a result, an individual PCIe interface can now 
support an individual core throughput. Second, our method 
maintains the OS kernel protection by using a kernel module 
(or driver) to protect accesses between the I/O device and 
system memory.  This approach allows multiple applications 
to access the I/O device without special access arbitration 
control such as virtualization managers or custom software. 

III. PROPOSED METHOD 
The structure of the NIC based on kPIO+WC is shown in 

Fig. 2. In addition to legacy components PCIe Host 
Interface, TX and RX DMAs, TX and RX queues, and the 
MAC and PHY layers, the proposed method requires 
kPIO+WC Queue, EOP Filter, and MUX.  The kPIO+WC 
Queue act as a buffer for contents evicted from WC buffers.  
The EOP Filter module filters demarcation signatures 
required for WC buffer eviction (see Section III.A).  Finally, 



MUX is needed to support both legacy and kPIO+WC-based 
traffic.  

From a software perspective, kPIO+WC utilizes a kernel-
based approach where the contents of WC buffers in the 
CPU core are directly written into the kPIO+WC TX Queue.  
This approach simplifies porting of higher level software 
stack protocols since the driver already has a network packet 
data structure with the proper frame headers and checksums.  
This also provides the device sharing protection that is 
currently supported by mainstream kernels and operating 
systems (such as Linux and Windows).  

The following subsections describe the I/O transmit 
operation, as well as some implementation issues. 

A. I/O Transmit operation 
In order to transmit an I/O message, the driver first 

initializes the kPIO+WC TX Queue as a write combining 
memory type, which allows any writes to the kPIO+WC TX 
Queue to be performed using WC buffers instead of typical 
PIO. Then, the CPU core formulates the message and 
appropriate header information.  The header information is 
the standard Ethernet header with source and destination 
MAC addresses as well as higher-level packet information, 
such as IP, TCP, ICMP, etc.  The CPU core writes the entire 
Ethernet frame to the kPIO+WC TX Queue.  

In our implementation, the driver is coded to align all 
transmit frames on a 64-byte WC buffer.  This allows a CPU 
core to write a 64-byte data to the PCIe interface with a 24-
byte PCIe frame overhead.  This is significantly better than 
PIO that can only transfer an 8-byte data (in a 64-bit 
operating system) on each PCIe frame, which improves the 
PCIe write throughput efficiency from 25% (8/(8+24)) to 
72.7% (64/(64+24)). 

The current Intel WC buffer implementation does not 
guarantee that the writes will occur in the correct order as 
issued by the CPU core, and this is often referred to as 
weakly-ordered memory.  This restriction is not a limitation 
in our kPIO+WC method since the Ethernet driver uses the 
WC buffer such that packets are sent out of the system as 
non-temporal memory writes, i.e., these packets will not be 
cached, and thus do not require coherency checks  

The WC buffers are not directly visible to the software 
and can be mapped to different memory regions allowing 
each WC buffer to operate independent of other WC buffers 
within a CPU core.  In our implementation, there is a 4 KB 
address range allocated in the kernel memory for the 
kPIO+WC TX Queue.  This means that when a transmit 
packet is written, a new WC buffer is requested and each 64-
byte region is filled.  A WC buffer gets evicted from the 
CPU core when it becomes full.  In our case, the driver is 
executing in the kernel and the 4 KB transmit region is not 
being shared with any other cores, and thus it has full control 
of the order among WC buffers.  Therefore, transmissions by 
multiple CPU cores would require either a locking 
mechanism or multiple kPIO+WC TX Queues, such as seen 
in Receive Side Scaling (RSS) [7]. 

One limitation of WC buffers is that the data writes needs 
to combined until a WC buffer becomes full, or some other 
event flushes the buffer, to optimally coalesce the write 
operations.  The WC buffers can be flushed with x86 
instruction cflush, sfence, or mfence [8], but each of 
these instructions is a costly operation of about 100 CPU 
core cycles [9].  In our implementation, the eviction of WC 
buffers is carefully controlled in the kernel driver code to 
avoid this explicit flush requirement as explained below.  

The Intel specification for WC buffer eviction [8] notes 
an “option” to evict a given WC buffer, but the wording is in 
the context of cache coherency.  This is a critical 
specification for proper memory coherence (which does not 
apply to our non-temporal data movement instructions) as 
well as the understanding that a partial fill of a WC buffer 
may not be evicted for a long period of time.  Our 
interpretation is that as soon as a WC buffer is completely 
filled, its eviction is triggered.  This assumption was verified 
by our measurements over multiple WC buffer writes as well 
as PCIe trace analysis, where 4 KB writes to WC buffers 
were measured and very little variability between PCIe write 
transactions were observed.   

Since transmit frames may not align on 64-byte 
boundaries of WC buffers, the remaining bytes are “stuffed” 
with an 8-byte End-Of-Packet (EOP) signature similar to an 
Ethernet frame EOP.  This stuffing serves the purpose of 
reliably flushing the WC buffer.  This EOP field is not part 
of the network packet outside the system, and thus, it is an 
overhead only between the CPU and the I/O device.  In our 
implementation, a special 64-bit code is used to implement 
EOP.  There is some inefficiency due to this artificial 
stuffing of data, but the overhead is small when compared to 
the bandwidth inflation involved with doorbells and 
descriptors [10]. 

Fig. 3 shows how the PCIe write transactions are 
enqueued in the kPIO+WC TX queue of the I/O device.  
Each entry is 64 bytes and the figures shows four packets of 
different payload sizes. In our implementation, the EOP 
signature is included in the message passed between the CPU 
core and I/O device.  The EOP Filter module then filters the 
EOP signatures before the message is sent out to the 
network.  This allows compatibility between legacy devices 
and kPIO+WC-enabled devices. Packet A with 120-byte 
payload has a single 8-byte EOP signature.  Packet B with 
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Figure 2. Structure of the proposed method 

 



64-byte payload requires an additional 64-byte of EOP 
stuffing to notify the I/O adapter that it is only 64 bytes.  
This is because it needs to signal an EOP, but there is no 
space within a single 64-bit WC buffer.  Packet C contains 
240 bytes with two EOP signatures.   

Note that there is a potential of having a code generate a 
false EOP signature.  However, the probability of this is 
extremely low (~1/264 or 5.4×10-20), and when such an event 
occurs the false transmit payload will effectively be treated 
as a dropped packet.  Thus, higher-level protocols will be 
relied on to recover the packet via retransmissions.   

A CPU core can quickly over-run the kPIO+WC TX 
Queue on an I/O device, and thus a larger buffer would be 
needed to account for increase in bandwidth-delay products.  
To address this issue, our implementation takes advantage of 
each CPU core in a typical system having between 6~10 WC 
buffers depending on the core architecture.  Some tests have 
shown 2×~4× throughput improvement by pipelining writes 
across the available WC buffers using inline assembly 
instructions that bypass L1 and L2 lookups [8].  An example 
of such a device driver code that writes two 64-byte portions 
of a packet using in-line assembly is shown below where 
each SSE2 movntdq instruction writes 16 bytes to a WC 
buffer so that it can be filled with four instructions.  

__asm__ __volatile__ ( 
 "  movntdq %%xmm0, (%0)\n" 
 "  movntdq %%xmm0, 16(%0)\n" 
 "  movntdq %%xmm0, 32(%0)\n" 
 "  movntdq %%xmm0, 48(%0)\n" 
 : : "r" (chimera_tx) : "memory"); 
__asm__ __volatile__ ( 
 "  movntdq %%xmm1, (%0)\n" 
 "  movntdq %%xmm1, 16(%0)\n" 
 "  movntdq %%xmm1, 32(%0)\n" 
 "  movntdq %%xmm1, 48(%0)\n" 
 : : "r" (chimera_tx + 64) : "memory"); 
chimera_tx+=64; 
The above code shows that WC buffer xmm0 is first 

written.  As xmm0 is flushed to the PCIe interface, the second 

half of this code increments the index to WC buffers and 
writes to xmm1.  This code segment can be expanded with 
pointers to different WC buffers based on the number of WC 
buffers available to each core in the CPU.  By efficiently 
using the available WC buffers on each CPU core there will 
be no throughput transmit bottleneck and the throughput will 
track closely with the available PCIe bandwidth.  

Note that the movntdq instruction is a non-temporal 
move, meaning there are no cache lookups or coherency 
checks.  Moreover, since the example code is part of the I/O 
device driver code, the operating system protects the device 
and only allows access with the normal function calls such as 
send().  
 

B. kPIO+WC Implementation Issues 
There are two general implementation options for 

kPIO+WC.  The simplest implementation is similar to I/O 
adapter accelerator functions, e.g., Large Receive Offloads 
(LRO) [11], which are enabled for all connections using the 
I/O adapter during driver initialization.  In this case, all 
network connections are either descriptor DMA based or 
kPIO+WC generated transmissions.  To enable kPIO+WC 
transmits, a control bit in the I/O adapter would be set via an 
operating system command such as modprobe(). 

The second more complex implementation is to define 
each network connection to be either kPIO+WC or 
descriptor-based DMA.  For example, kPIO+WC can be 
used for a certain range of TCP ports.  It is also possible to 
control kPIO+WC versus descriptor-based DMA 
transmission on a per-packet basis, but the added overhead 
probably may not justify the flexibility.  

IV. MEASUREMENTS AND ANALYSIS 
Our baseline measurements and analysis are based on a 

2.5 GHz Intel Sandy Bridge 4-core i5-2400S platform 
configured as shown in Fig 1.   A Linux x64 kernel 2.6.35 is 
used with an Ubuntu distribution to support the custom 
network driver code.  The proposed method is implemented 
using a PCIe-based Xilinx Virtex5 (XC5VTX240T) FPGA.  
The PCIe bandwidth is 8 Gbps simplex.  Although PCIe 
Gen1 interface technology is used, the subsequent PCIe 
generations also follow the same protocol basically 
increasing lane speed and number of lanes.  This allows 
extrapolation of our Gen1 data to the current Gen2 I/O 
devices, and future Gen3 devices.  Each core in the CPU 
used has 10 WC buffers.  The measurements are taken using 
a combination of Lecroy PCIe analyzer tracing and internal 
FPGA logic tracing.  These hardware measurements are 
strictly passive and do not induce any latency or performance 
overhead.  The software micro-benchmarks ICMP/IP ping 
and iperf are used for latency and bandwidth testing, 
respectively, to compare the proposed method versus the 
standard Ethernet. 
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 Our test code is built on the example Ethernet driver 
code found in Linux Device Drivers [12], which loops back 
the subnet and IP addresses allowing experiments to be run 
without a real external network.  This is done by instantiating 
two bi-directional Ethernet interfaces on two separate 
subnets.  This allows us to isolate the system latencies for 
analysis without wire and fiber PHY latencies and their 
variations. 

Note that it is also possible to utilize kPIO+WC on the 
receive path.  However, existing I/O devices prefetch and 
coalesce Ethernet frame descriptors, and thus there is no 
significant latency improvement by having kPIO+WC for 
receive data.  As a result, latency savings appear only in the 
transmit path, and thus our analysis is focused on the 
transmit path. 

Fig. 4 shows how the kPIO+WC-based I/O adapter 
implemented in FPGA is interfaced to the host system.  Our 
implementation only includes a single I/O adapter with a 
single kPIO+WC Queue since our interest is in how a single-
core interacts with a single I/O adapter.  This avoids any 
undesired PCIe traffic, such as TCP/IP ACK frames, and 
other multi-core and multi-interface traffic that occurs over a 
single PCIe device to skew the experiment.  Therefore, the 
only traffic on the PCIe interface, marked by the green 
arrow, is transmitted from the chi0 interface and received by 
the chi1 interface.  The reverse traffic (from chi1 to chi0 
marked with a red arrow) occurs only in memory as the 
original driver is coded to avoid irrelevant PCIe traffic in the 
analysis.  This reverse traffic is needed to support higher-
level network protocols such as TCP, which assumes ACK 
packets to ensure a reliable connection.  

In order to compare the CPU transmit overhead, similar 
tests are performed on a descriptor-based Intel 10GbE NIC.  
Using the Linux perf performance tool show that up to 2% of 
CPU overhead was due to transmit descriptor related 
operations in the ixgbe_xmit_frame() function.   

If the PCIe bandwidth cannot sustain the CPU core 
throughput, meaning the 10 WC buffers (640 bytes) are not 
drained, the transmitting core will stall and CPU transmit 
overhead will increase.  The risk of stalls is highly workload 
dependent and requires further explorations [10].  

 

A. Latency Results 
The latency is evaluated by sending a single Ethernet 

ICMP ping packet, which consists of 64 bytes along with the 
required IP (24-byte) and Ethernet (12-byte) header 
information.  Since an 8-byte EOP signature is used, a packet 
needs to be aligned to 8 bytes.  Therefore, four more bytes of 
dummy data are needed for a total payload size of 104 bytes.  
The 104-byte payload requires three 8-byte EOP signatures 
to align the 104-byte ICMP message across two 64-byte WC 
buffers.  

Fig. 5 shows the loopback trace for the proposed method 
where each PCIe packet is shown as a separate line and 
enumerated in the field marked “Packet”.  The two PCIe 
write transactions for the ICMP message are indicated by 
PCIe packets #1572 and #1573.  The temporal reference 
point at the beginning of packet #1572 is T0.  These two 
packets are acknowledged with packets #1574 and #1576 by 
the FPGA I/O device at T0 + 492 ns and T0 + 692, 
respectively.  Note that there are CRC failures in the 
upstream PCIe frames due to a PCIe analyzer failure, but the 
software verified that the expected loopback data was 
properly written into the pinned system memory buffers. 

The I/O device initiates the DMA write to the system 
memory for the looped back packet starting with packet 
#1578.  This transaction is seen on the PCIe interface at 
T0+1,292 ns.  The second 64-byte PCIe packet containing 
EOP signatures is written to the system memory with packet 
#1579 at time T0 + 1,388 ns.  

Fig. 6 shows the latency breakdown of the 64-byte ICMP 
message using a standard 1GbE NIC [13, 14].  Since the 
measurement was between two different systems, Fig. 6 only 
shows the transmit operation.  Again, T0 is used as the initial 
observance of PCIe traffic in the transmit direction of the 
doorbell write in packet #2555, which is acknowledged with 
packet #2556 at T0+184 ns in.  The NIC responds with the 
transmit descriptor fetch request in packet #2557.  The read 
request is completed with data in packet #2559 and 
acknowledged at T0+1,064 ns in packet #2560.  After parsing 
the descriptor, the NIC requests the payload data in packet 
#2561, which completes with data in packet #2563 and is 
acknowledged by the NIC at T0+2,048 ns. 
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Since both the kPIO+WC method and the standard 1GbE 
use DMA for receive transactions, there is little latency 
difference in the I/O receive path.  Table 1 compares the 
latencies in these two example traces for a 64-byte ICMP 
message between two systems.  Table 1 shows that 
kPIO+WC reduces the latency by 1,504 ns.   

Note that our proposed approach can reduce latency even 
further when the message is within a single WC buffer 
instead of the two WC buffers shown in Fig. 5.  Accounting 
for the header and EOP requirement, only a single WC 
buffer is needed if the message is less than 20 bytes, which is 
applicable in the financial trading market.  Based on multiple 
back-to-back WC buffer writes, there is on average 108 ns 
delay between two consecutive WC buffer writes.  
Therefore, the minimum latency to send a message out of a 
system in our implementation is 108 ns.  In contrast, the 
minimum latency to send a 64-byte message out of a system 
in a descriptor-based 1GbE NIC, including the frame header, 
is 1,736 ns. 

Fig. 7 shows the transmit latency as a function of 
message size for kPIO+WC and the descriptor-based DMA 
operation.  The figure also shows the 8 Gbps PCIe 
theoretical bandwidth limitation of our test environment, 

which is the limit of our ×4 Gen1 configurations and 
provides the asymptote that the latencies for both kPIO+WC 
and descriptor-based DMA approach.  The descriptor-based 
DMA transmit latency curve is smoother than the latency for 
the proposed method since the latter uses 64-byte alignment 
while the former uses byte-level alignment. 

 

B. Throughput Results 
Fig. 8 compares throughput as a function of message size 

for the two methods, which shows that the proposed method 
outperforms descriptor-based DMA for small messages and 
the throughput converges with descriptor-based DMA as 
message size increases.  The abrupt degradation for 
kPIO+WC is again due to the 64-byte WC buffer alignment.  

Our analysis of the iperf microbenchmark throughput 
results (sampled for > 100 ms) on the PCIe interface using a 
dual 10GbE Intel 82599 NIC shows that for transmit 
overhead, up to 43% of the traffic on the PCIe interface is 
used for descriptors or doorbells for small 64-byte messages.  
For larger messages, e.g., 64 KB, the overhead is less than 
5%. The proposed approach removes this PCIe bandwidth 
overhead. 

 
Figure 5. Ping loopback trace on the PCIe interface for kPIO+WC.  
 

 
Figure 6. Ping loopback trace on the PCIe interface for Intel 82575EB 1GbE 
 



V. CONCLUSION AND FUTURE WORK 
This paper evaluated the performance of PIO with WC 

buffers.  Our results show that the proposed method provides 
significant latency improvement on current systems. 
Although some changes are required in both the hardware 
implementation and software driver interface, the 
implementation costs are small relative to the benefits gained 
in HPC applications where latency and throughput 
performance is crucial. 

Other less quantifiable benefits of the kPIO+WC 
approach include a core directly controlling the I/O transmit 
transactions to allow system power algorithms involving the 
on-die Power Control Unit (PCU) [15] to react more 
effectively than sending slow control messages to a PCIe 
attached I/O DMA engine.  I/O transaction Quality-of-
Service (QoS) also improves since a core can control (or 
filter) I/O transactions based on priority. In addition, system 
memory bandwidth utilization and memory latency improve 
by not having I/O DMA transactions between multiple I/O 
devices contending with core related memory transactions. 

As future work, we plan to explore other improvements 
to the kPIO+WC approach.  For example, increasing the WC 

buffers would benefit I/O performance in general.  We also 
want to further explore and quantify the receive flow benefits 
with and without descriptor-based DMA.  Finally, we plan to 
study how kPIO+WC can be used to moving data across a 
PCIe switch fabric.  
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Table 1: 64-byte Latency Breakdown Comparison 

Latency critical 
path for 64B 
message 

kPIO+WC 
(Fig.7)  

Standard 1GbE Intel 
82575EB (Fig. 8)  

Doorbell to PCIe  0 T0  
Descriptor fetch 0 T0  + 1,064 ns 
Payload (DMA 
fetch or core 
write) 

T0 + 232 ns T0  + 1,736 ns 
 

PCIe NIC to 
fiber 

NA (equivalent) NA (equivalent)  

Fiber delay NA (equivalent) NA (equivalent) 
Fiber to PCIe NA (equivalent) NA (equivalent) 
PCIe to system 
memory 

NA (DMA 
operations are 
similar) 

NA (DMA 
operations are 
similar) 

Total latency 232 ns 1,736 ns 
 

 
Figure 8. Transmit throughput comparison 
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