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A b s t r a c t .  Recent trend in high-performance computing focuses on net- 
works of workstations (NOWs) as a way of realizing cost-effective parallel 
machines. This has been due to the availability of powerful wide-issue 
processors, high-speed networks, and software infrastructure systems. 
Due to its distributed nature, message-passing has been the choice of 
communication model for NOWs. This paper, however, examines the 
viability of using multithreading on NOWs. A matrix multiplication al- 
gorithm was studied by simulating a shared-memory abstraction on top 
of Parallel Virtual Machine (PVM) to characterize the behavior of multi- 
threading. Our experiments indicate the performance of multithreading, 
with a small number of threads per processor, is very comparable to that 
of programs written using message-passing. Our studies also show mul- 
tithreading has an added advantage over message-passing in that it is 
relatively insensitive to initial data distribution. 

1 Introduct ion  

Over the past several years, distributed computing using networks of worksta- 
tions (NOWs) has gained wide acceptance for both scientific and general purpose 
applications. Distributed computing employs powerful workstations, or nodes, 
connected by high-speed local area networks (LANs). A software infrastruc- 
ture system provides the capability to emulate virtual parallel machines with 
efficiency ranging from moderate to high. Therefore, it is possible to build low- 
cost parallel machines as an alternative to more expensive Massively Parallel 
Processors (MPPs). For example, Parallel Virtual Machine (PVM) supports a 
heterogeneous parallel computing environment with message-passing [7]. In the 
message-passing model, a parallel machine is viewed as a collection of processors, 
or nodes, where the memory is disjoint and distributed among the nodes. Al- 
though the message-passing model is suitable and efficient for many applications, 
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Fig. 1. An example of multithrea- 
ding. Numbers indicate the order 
of execution. It is assumed that 
the remote load operation at node 
2 is completed before the context- 
switch occurs from node 9 to node 
10. 

Matrix_Multiplic at ion ( A, B, C) 
for i=O to n-1 

for j=O to n-I 
c [i ,  j] =0 
f o r  k = 0  t o  n - 1  

C[i, j] =C [i,j]+A[i,k] xB[k, j] 
end 

end 

end 

Fig. 2. A serial matrix multiplication algorithm 
for two matrices. 

it is often hard for a programmer to manage a large number of concurrent tasks 
in a parallel program. Moreover, because the distributed nature of the memory 
is exposed to the programmer, the programmer has to be fully aware of when 
and how to communicate with other nodes. 

To alleviate this problem, many researchers have turned to distributed shared 
memory (DSM) as a way of providing a shared-memory abstraction on top of 
message-passing. In DSM, memory is physically distributed among the nodes, 
but a software system provides a virtual global memory space for ease of pro- 
gramming by eliminating the need to explicitly specify synchronization and com- 
munication requirements among nodes. 

Although the ease of programming is one of DSM's primary assets, the 
shared-memory abstraction inevitably leads to performance degradation due to 
long and unpredictable memory latency [1]. A memory latency occurs when a 
miss in the local memory requires a request/reply to/from the remote node. To 
tolerate memory latency, multithreading can be used where a processor main- 
tains a pool of ready threads and a context-switch occurs to a new thread of 
computation after a remote memory request is sent out as shown in Figure 1. 
This effectively masks long and unpredictable latencies due to remote loads. 
However, in order for multithreading to be effective, a number of interrelated is- 
sues must be carefully considered. Issues such as the number of contexts, thread 
run-length, thread scheduling, and granularity of threads have to be carefully 
considered to provide the best performance for a given architecture. Therefore, 
this paper studies the viability and effectiveness of multithreading in a networked 
computing environment, and its performance is compared to the message-passing 
model. 

The paper is organized as follows: Section 2 provides a brief discussion of 
multithreading. Section 3 discusses parallel matrix multiplication algorithms 
and presents analytical models that characterize their performance using both 
message-passing and multithreaded execution models. Section 4 provides sim- 
ulation results of the two execution models. Finally, Section 5 provides a brief 
conclusion. 
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2 A n a l y t i c a l  M o d e l s  f o r  M a t r i x  M u l t i p l i c a t i o n  

Matrix multiplication is a simple yet widely used algorithm in many scientific 
and engineering applications. Matrix multiplication algorithm is well structured 
in the sense that elements of the matrices can be evenly distributed to the 
nodes and communications among the nodes have a regular pattern. Therefore, 
exploiting data parallelism based on message-passing is very suitable for solving 
the matrix multiplication problem. 

Figure 2 shows a sequential version of an n × n matrix multiplication al- 
gorithm consisting of three nested loops. As can be seen, the complexity of the 
algorithm is n 3. Thus, assuming each pair of multiplication/addition in the inner- 
loop requires a time of c, the total sequential execution time is given by Ts = cn 3. 
Our motivation for studying the matrix multiplication algorithm is to see how 
its multithreaded version compares to the message-passing counterpart in a net- 
worked computing environment. Therefore, the following two subsections derive 
the analytical models for both message-passing and multithreaded versions of 
the matrix multiplication algorithm. 

2.1 Matrix Multiplication using Message-Passing 

For message-passing, nodes need to communicate data among different parts 
of the program. For a large parallel system, this exchange of data introduces 
large communication delays during the execution of a program. Thus, proper 
implementation of communication operations is important to achieve an effi- 
cient execution based on message-passing. There are a few basic communication 
patterns that frequently appear in various parallel algorithms, e.g., one-to-one, 
one-to-all broadcast, all-to-all broadcast, and shift with wrap-around [4]. To sim- 
plify the development of a communication model of one-to-one communication 
used in matrix multiplication, we focus only on two major components of the 
communication cost: startup cost, ts, and transmission cost, t~. Startup cost 
consists of the time to setup a network channel between the source and desti- 
nation nodes, the time to allocate a buffer space, and the time to package the 
messages. Transmission cost is the time required for a message of unit length 
to travel from one node to the other (i.e., t,~ =l /bandwidth) .  Based on this, 
one-to-one communication between two processors takes t ,  + t~m, where m is 
the message length. 

Data distribution for matrix multiplication can be divided into three classes: 
element-wise, row or column-wise, and block distribution. In this paper, we im- 
plement a simple row/column-wise distribution to study the performance of both 
message-passing and multithreaded execution models. We have experimented 
with other algorithms such as Cannon's and Fox's algorithms [4], but found that 
their communication requirements do not map well to a LAN environment and 
thus resulted in inferior performance. Assume that the matrices A and B are 
partitioned into p number of n_ x n row-stripped and column-stripped submatri- 
ces respectively, where p is th~ number of processors. The processors are labeled 
from P0 to Pp-1 and the submatrices Ai and Bi are initially assigned to Pi (for 
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Fig. 3. Data distribution among four processors. Each processor has submatrices of A 
and B. Submatrices of B are shifted with a wrap-around in each communication step. 

0 < i < p - 1) as shown in Figure 3(a). To compute Ci, every processor requires 
allp submatrices Bk (for 0 < k < p - l ,  k # i ), which requires excessive memory 
if all the submatrices are duplicated in each processor. To avoid this problem, 
each row of submatrices Bk is systematically shifted so that every processor gets 
a new Bk from its neighbors on each communication step. Therefore, the basic 
communication step involved in the simple row/column-wise matrix multiplica- 
tion is to rotate all B~ (for 0 _< k <_ p -  1 ) by one step up with a wra_p-around in 
each communication step as depicted on four processors shown in Figure 3. Since 
the communication in a static network is done sequentially, each communication 
step has to be done in p sequences. 

The algorithm proceeds by having every processor perform multiplication/a- 
ddition on its local submatrices before each communication step. Each processor 
also has to perform p -  1 number of communication steps before completing the 

multiplication, requiring a total o fp (p -1 ) ( t8  + tw-~) matrix time for communi- 
cation. It is possible to reduce the total number of communication steps to p -  1 
if one-to-all broadcast is used. However, this means the exchange of all subma- 
trices has to be completed before the computation can proceed, and therefore 
extra memory has to be provided on each node to temporarily store all the sub- 
matrices. For the computation part, every processor performs multiplications on 
its local ~ x n submatrix, which takes c ~  time, and the computation has to 
be repeated p times. Therefore, the total computation time for each processor is 

n 8 c- F .  The overall parallel run-time for the message-passing version is then given 
by 

Tm-p = c m  + p (p - 1 )  ts + tw • 
p 

(1) 

2.2 Matrix Multiplication using MultithreacUng 

For the multithreaded version, we assume the initial distribution of matrices A 
and B is the same as in the message-passing case. Also, each ~ x n submatrix 
of Ai and Bi are further partitioned into rSth threads per processor. Therefore, 
each thread consists of an _ n___=_ x n submatrix. There are four basic operations 
performed in a thread: requ'e~ send, request service, computation, and context- 
switch. First, each processor Pi sends out a request for Bj,~ (for 0 < j < p -  1, 
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j ~ i and  0 < k < nth -- 1 ) of size ~ x n to the remote processor Pj, where j is 
the processor number and k represents the k th thread (i.e., request send). While 
this remote access is pending, each processor performs the following operations 
(see Figure 4): (1) polls to see if a request from other processors has arrived 
and if there are any, services it (first request service); (2) performs multiplica- 
tion/addition on a thread that resides on its local memory (computation); (3) 
once again, polls to see if a remote request has arrived during the computation 
portion and services it if there are any (second request service); (4) polls to 
determine if its own requested data has arrived; otherwise, processor idles until 
the data arrives; finally, context-switches to the next thread (context-switch). 

For simplicity, assume that te8 is the context-switching cost, and tr is the 
time required to send out a request plus the time to check for a remote request. 
Note that t~ will be very close to ts 4- tw because the request message is of unit 
length, and detecting a remote request by polling takes minimal time. The op- 
timal execution time for multithreaded matrix multiplication occurs when the 
communication time is completely masked by the computation. In this case, we 
can assume that the time to service a request is approximately equal to the 

n2 startup time, ts, since the network transfer time (i.e., t w - -  will be hidden by 
n t h P  

the computation as depicted by P0 in Figure 4. In other words, the total time 
required for request send and first or second request service will be approxi- 

n~ mately equal to t~ + ts. Because each thread consists of ~ elements, and the 
computation requires ~ number of multiplications/additions for each element 

n~ in a thread, the total computation time is cm--~. Therefore, the run-time of a 

(i.e., granularity) is given as tr + ts + cnn~hp + tcs. Every processor thread will 
eventually repeat the above step nthp times b ~ r e  the matrix multiplication 
completes. Considering the fact that remote request and service are not neces- 
sary after n t h ( P -  1) steps, the run-time of the multithreaded version can be 
expressed as 

( n3)( 3) 
"1~ideat = nth (p - -1 )  tr 4- ts 4- C - -  4- tes 4- nth C - -  4- tes 

n hf mhP 2 
n 3 

= c - -  4- nthptcs + nth (p -- 1) (tr + ts) 
P 

?%3 
c - -  + n thp  (tr 4- ts + tcs) .  (2) 

P 

The approximation for Equation (2) is obtained assuming p >> 1. Note that 
Equation (2) is valid only if the granularity is optimal so that the computation 
time is long enough to mask remote latencies. However, it is more likely that 
the round-trip time for the remote access takes longer than the computation 
time since the network speed is very slow compared to the processor speed 
and/or servicing of the remote request by the remote processor is deLuyed (i.e., 
the request is serviced after the local computation has been completed). This 
can be modeled by considering two different cases. In the first case, the request 
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Fig. 4. An example of multithreaded execution as a function of time. A thread exe- 
cution is composed of request-send, request-service, computation, remote receive, and 
context-switch. Note that when remote access takes longer than the computation idling 
OCCURS, 

is serviced immediately by the remote processor. This situation is depicted in 
Figure 4 where P2 sends a request to P1 and the request is immediately serviced 
by P1 (i.e., the remote processor services the request before performing its local 
computation). The round-trip time for the remote access can be estimated as 

,2 
tr + ts  ÷tw n--~'~hp, where tr is the time to send/detect a request to/from the remote 

2 . 

processor, and t8 + tw ~ is the time spent by the remote processor to service 
the request plus the n ~ r k  transfer t ime--note that network transfer time may 
be unbound in reality, but we use the communication model based on ts + twm 
for simplicity. For this case, the run-time of a thread is composed of the time to 
send out a request, the round-trip time for the remote access, and the context- 

n2 switching cost, requiring a time of tr + t8 ÷ tw ~ + tcs. Figure 4 shows another 
case where P1 sends a request to P2 and P2 services the request after its local 
computation. This situation gives the worst performance and can be estimated 
by adding computation time to remote access time. Therefore, each thread will 

n 2 n 8 require a time of tr + ts + t~ ~ + c~h---~ + tes. Assuming p >> 1, the total 
run-time is given as 

T m t = n t h ( p - - 1 )  t r + t s + t w - - + C - - + t c 8  ÷ n t h  C - - + t c 8  
n~hp nthP 2 nthP 2 

n 3 ( n' ) 
-----C--+n~h(p--1) t r ÷ t s ÷ t w - - + t e s  +nthtcs  

P nthP 
n 3 

c - -  + nthp (tr + ts + tcs) + twn 2. (3) 
P 

Equation (3) shows that the overall execution time depends on the communi- 
cation time rather than the computation time in the worst case. This situation 
wilt occur when the number of threads is too large or the granularity is too 
small to effectively mask the remote latency. Therefore, the granularity has to 
be properly determined such that the computation and communication are well 
balanced to achieve optimum performance. 
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Table 1. Speedup of multithreaded version vs. sequential version. 

Dimension 200140016001800 lloool 
Speedup 2.18 2.81]3.08 3.27 3.45 

3 E x p e r i m e n t a l  R e s u l t s  

In the previous section, several key characteristics of message-passing and mul- 
tithreaded versions of the matrix multiplication algorithm were identified using 
analytical models. This section presents experimental results of the two ver- 
sions running on four 100MHz Pentiumobased LINUX workstations connected 
via Ethernet. To compare performance, the simulation programs were developed 
using PVM. Since PVM does not support multithreading, a run-time system was 
implemented to provide a virtual global memory space and thread scheduling. 

Our simulation program for the multithreaded version allows granularity of 
threads to be varied by assigning an arbitrary number of threads to each node. 
The scheduling of threads is software-controlled to exploit locality as much as 
possible rather than relying the dynamic behavior of the run-time scheduler pro- 
vided by PVM or TPVM [2,7]. The measured execution time of each simulation 
includes the time taken for PVM processes to initialize as well as the time to exe- 
cute the matrix multiplication routine. In addition, the thread context-switching 
cost is assumed to be 50/~sec [2]. 

In the message-passing implementation, each processor proceeds first with 
the multiplication of submatrices and then communicates among all four nodes. 
For the multithreading implementation, we simulate the shared-memory abstrac- 
tion by sending out an explicit remote request to prefetch the next submatrices 
required by the computation part. Also, each processor checks to see if there are 
any incoming requests before and after the computation step on local submatri- 
ces. If a request is detected before the computation, the processor immediately 
prepares the requested data and sends them out to the requesting nodes. Other- 
wise, incoming requests are serviced after the computation. After servicing the 
remote requests and performing computation, each processor checks to see if 
its own requested data has arrived. If the remote data has arrived, a context- 
switch occurs to the next thread. If not, the processor waits for the requested 
data. Table 1 shows the speedup of the multithreaded version over the sequential 
version as a function of matrix dimension. These results indicate the speedup 
increases from 2.18 to 3.45 as the matrix dimension increases. A low speedup was 
obtained for n = 200 because each node experiences a large portion of remote 
latencies due to its relatively fine granularity. On the other hand, the speedup 
factor was higher for n -- 1000, indicating that its coarse granularity allows a 
larger portion of the remote access time to be tolerated. 

Figure 5 shows the overall execution time of matrix multiplication for the 
matrices of size 200 x 200 through 1000 x 1000. The results for l~T were based 
on five threads per each processor, and the results for MT-opt were obtained 
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Fig. 5. Execution times of message-passing and multithreaded versions of the row-wise 
stripped matrix algorithm. 

when each processor has an optimum number of threads relative to matrix di- 
mensions, i.e., nth = 5 for n = 200 and 400, n~h = 20 for n = 600, n~h = 25 
for n = 800, and nth = 50 for n ---- 1000. It can be seen that message-passing 
version, MP, gives slightly better performance compared to MT. However, when 
n~h is chosen properly, as in the case of MT-opt, performance is comparable to 
MP. For example, 50 threads per processor for 1000 × 1000 matrix multiplication 
resulted in very close or even better performance than MP. We have also exper- 
imented with random distribution of submatrices among nodes for the purpose 
of investigating the sensitivity of MT or MT-opt to initial data distribution. The 
resulting graphs MT-rd and I~r-rd-opt show that performance suffered less than 
5 percent compared to gr. This indicates that matrix multiplication algorithm 
using multithreading is somewhat insensitive to the initial data distribution. 

Figure 6 shows the execution time increases when the number of threads 
is either very small or large. These effects can be explained as follows: When 
r~h is small, the processor has to idle because more data is needed per thread 
thus requiring more communication time (i.e., %wn 2 term in Equation 3 becomes 
dominant and the computation time cannot mask the remote access delay). As 
n~h becomes large, the number of context-switches required increases thereby 
degrading the performance as indicated by the term n~hP(t~,+ts+tes) in Equation 
3. The experimental results indicate that depending on the sizes of the matrices, 
approximately 5 to 25 threads per processor is enough to achieve the best possible 
performance. 
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Figure 7(a) shows the percentages of time spent on each component of a 
thread as a function of n for n~h = 5. For illustration purpose, a thread execution 
is subdivided into the following five components: Computation is the time spent 
on multiplications/additions; Req Send is the time taken to send a request to a 
remote processor; 1st  Req Srvc is the time spent to service the remote request 
before the computation; 2ad Req Srvc is the time required to service the remote 
request a~er the computation (a remote request will be serviced either in 1st  
Req Srvc portion or 2rid Req Srvc portion, but not both); and Remote Recv 
represents the idle time incurred due to remote access. It can also be seen 
that Computation portion increases as n increases, thereby tolerating longer 
remote tatencies (e.g., this can be seen by the decrease in Remote Recv as a 
function of n). Req Send takes almost constant amount of time because tr is 
independent of matrix dimension. However, the total amount of time spent on 
sending out a remote request will increase if the number of threads becomes large. 
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Our experiments also showed there is no definite pattern in terms of whether 
a remote request is more likely to f~l in the 1st  Eeq Srvc portion or in the 
2ad Eeq Srvc portion--our experiments show that  the chances of an incoming 
remote request to be serviced before or after the computation is about the same. 
Figure 7(b) shows the changes in the various components of a thread execution 
as a function of •th for n = 600. It shows that only the components related 
to remote operation increases as nth increases. Therefore, each processor has to 
spend more time servicing remote requests, and the performance will degrade. 

4 Conc lus ion  

The paper examined the matrix multiplication algorithms to see how the multi- 
threaded execution compares to the message-passing counterpart in a networked 
computing environment. Our findings indicate that the message-passing execu- 
tion outperforms its multithreaded counterpart when thread computation cannot 
effectively mask the remote latency. Also, context-switching and interruptions 
within a thread to service remote requests adds to the overhead of implementing 
a multithreaded system. However, the overhead can be reduced if the granular- 
ity of threads is properly chosen so that thread computation effectively masks 
the remote memory latency. We also found that  the multithreaded execution 
of the matrix multiplication is relatively insensitive to initial data distribution. 
Our future plan is to further study the issues such as thread granularity, thread 
scheduling, and the effects of non-deterministic data distribution on multithread- 
ing. 
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