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Abstract

Message-passing multicomputers usually employ
point-to-point direct networks for better scalability.
Cooperating processes in different nodes of multicom-
puters exchange messages through the network, and
thus communication performance is the most criti-
cal factor in assessing the overall system performance.
In particular, barrier synchronization among multi-
ple processes in a process group usually constitutes
the sequential or bottleneck part of a parallel pro-
gram. In this paper, we propose a Barrier Tree for
Meshes (BTM) to minimize the barrier synchroniza-
tion latency for two-dimensional (2-D) meshes. The
proposed BTM scheme has two distinguishing features.
First, the synchronization tree is 4-ary. The synchro-
nization latency of the BTM scheme is asymptotically
O(logyn) while that of the fastest scheme reported
in the literature is bounded between Q(log;n) and
O(n'/?), where n is the number of member nodes. Sec-
ond, the construction of a BTM and synchronization
operations do not interfere with nonmember nodes,
which further reduces the synchronization latency. Ex-
tensive simulation study shows that, for up to 64 x 64
meshes, the BTM scheme results in about 40 ~ 70%
shorter synchronization latency, and it is more scalable
than conventional schemes.

Index terms: Parallel algorithms, routing, barrier
synchronization, latency.

1 Introduction

A barrier is a synchronization point in a parallel
program at which all processes participating in the
synchronization must arrive before any of them can
proceed beyond the synchronization point. For exam-
ple, MPI Barrier () routine defined in Message Pass-
ing Interface standard [1] blocks the calling process
until all members in the same process group call the
routine. Barrier synchronization is not only a funda-
mental and frequently used operation in parallel com-
puting systems but also one of the basic synchroniza-
tion primitives. For example, other collective opera-
tions such as gather and reduce can be regarded as
special cases of barrier operation. In general, barrier
synchronization is split into two phases — reduction and
distribution. During the reduction phase, each partic-
ipating process notifies the root process of its arrival
at the barrier point. After the notification from all
member processes, the distribution phase begins and
the root process notifies them that they can proceed
further.

A straightforward implementation of a barrier syn-
chronization is to have multiple point-to-point mes-
sages transferred between the root and the member
nodes, but the performance can be significantly im-
proved by reducing either the number of messages or
the latency of each synchronization message. The
number of messages can be reduced by combining
them! as in Hamiltonian Path (HP)-based [2], Base

1Synchronization messages may be combined in either hard-



Routing-Confirmed Path (BRCP)-based [3], and Col-
lective Synchronization (CS) tree-based [4] schemes.
Since a combined message needs to be delivered to
multiple destinations, it has to carry multiple ad-
dresses as in HP and BRCP schemes. In the CS
scheme, messages do not carry the destination ad-
dresses. Instead, at the creation time of a process
group, the routers at both the member and the non-
member nodes along the path are properly set up.
The resultant short synchronization message fits into
a small buffer inside a router, which in turn allows
simple deadlock solution.

The CS scheme minimizes the routing steps for a
barrier operation by constructing a combining tree for
barrier synchronization messages. Intuitively, it re-
quires shorter routing steps to reach the destinations
compared to the path-based HP or BRCP schemes.
This is mainly due to the fact that the time complex-
ity of tree-based schemes is O(logn) whereas that of
path-based schemes is O(n), where n is the number
of member nodes. One drawback, however, is the in-
creased overhead for constructing the CS tree. Fur-
thermore, intermediate nonmember nodes are involved
in the barrier synchronization; i.e., nonmember as well
as member nodes have to participate both in building
the CS tree and in executing the corresponding barrier
operation. The irregular structure and nonmember in-
tervention make the CS tree construction algorithm
complex, and consequently result in long synchroniza-
tion latency.

In this paper, we propose a Barrier Tree for Meshes
(BTM) to further improve the performance of a bar-
rier synchronization on 2-D mesh networks. It is a
tree-based combining scheme with the destination ad-
dresses embedded in the routers. The proposed ap-
proach reduces the number of messages and routing
steps, and provides deadlock avoidance. It differs from
the conventional schemes in several aspects. First, the
synchronization tree is 4-ary, which further reduces
the tree height and thus reduces the routing latency
by decreasing the hop counts. BTM is systematically
constructed by first dividing the 2-D mesh network
into four quadrants around the root node. This proce-
dure is then recursively applied to construct the rest
of the tree. The synchronization latency of the BTM
scheme is O(log, n) while that of the fastest scheme
(CS tree) reported in the literature is bounded between
Q(logz n) and O(n'/?). Second, the construction of a
BTM and the synchronization operations do not in-
volve nonmember nodes. Direct consequences of this
are simpler router design, smaller initial setup time,
and more importantly no side effect due to inter-group

ware or software. Our discussion in this paper is restricted to
hardware-supported barriers because they are usually an order
of magnitude faster than software barriers [5].

interference. In BTM, a synchronization message also
traverses nonmember nodes. However, unlike the CS
tree, messages are simply forwarded to the next mem-
ber node without requiring any lookup at the barrier
registers of the router. Thus, the routing delay across
a nonmember node in BTM is only a small fraction of
that in the CS tree. Extensive computer simulation
for up to 64 x 64 meshes shows that the BTM scheme
results in about 40 ~ 70% shorter synchronization la-
tency, and it is more scalable than the conventional
schemes.

The rest of the paper is organized as follows. The
proposed tree-based barrier synchronization mecha-
nism and the corresponding router operation are pre-
sented in the following section. Section 3 analyzes the
characteristics of the BTM scheme. Using simulation,
the performance of the BTM scheme is presented in
Section 4. Conclusions and future works are discussed
in Section 5.

2 Barrier Tree for Meshes (BTM)

The proposed BTM scheme assumes a wormhole-
capable [7, 8, 9] 2-D mesh network, where a router
is connected to the local node via a pair of input and
output channels [6]. Hardware support for barrier syn-
chronization is provided using barrier registers within
the routers. Similar concept has been assumed in most
hardware-supported synchronization schemes [2, 3, 4].
We assume each barrier register can hold an entire
synchronization message. This can be justified by the
fact that a synchronization message is very short and
can be fixed in length since it does not need to carry
multiple destination addresses.

2.1 Construction of a BTM

A BTM is constructed in a recursive manner. The
algorithm starts by partitioning the 2-D mesh into four
disjoint submeshes (or quadrants), denoted by Q4 x,
Q-x, Q+v, and Q_y, around the chosen root node.
Then, for each quadrant, a local root node is chosen
and the quadrant is partitioned again into four sub-
meshes around the local root node. The recursive par-
titioning continues until there remains only one node
(i.e., leaf node) in each submesh.

Figure 1 shows a BTM at the distribution phase in-
volving 14 member nodes. The root node is located
at (4, 4), and the four children of the root are chosen
as (6, 7), (1, 6), (2, 4), and (6, 0). The upper-left
quadrant (Q+y) is partitioned again into four sub-
meshes around the local root (1, 6). Since each of
the four submeshes contains only one node, no further
partitioning is required and thus the four nodes (2, 7),



(1, 5), (0, 5), and (0, 7) become the children of (1, 6).
The distribution message follows the arrows.
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Figure 1: A BTM and its four quadrants (14 member
nodes with the root at (4, 4)).

The root node of BTM is chosen as the one at the
center of the member nodes. This is done by obtaining
the average of respective  and y addresses of all the
member nodes. In the example shown in Figure 1, it
is (3.36, 4.42). The nearest member node to this is (4,
4), and thus it is selected as the root node. In case of
a tie, a priority is given to the one from +X, +Y, — X
and then -Y.

Four quadrants of a 2-D mesh network with a vertex
set V' and a root node r are disjoint submesh networks
with vertex sets Q@+ x(V,7),Q_x (V,r),Q+y (V,r), and
Q_y(V,r). For instance, Q1 x(V,r) can be defined as
Q+X(V7 7‘) = {((E,y) | ((E,y) € VJ T >y, and Y Z yr}

As mentioned earlier, once a root node and four quad-
rants are decided, the same procedure is recursively
applied to each quadrant.

BTM is essentially embedded in the barrier regis-
ters of the routers of the participating member nodes.
When a BTM is constructed, addresses of four children
(Cyx,C_x,Cyy,and C_y) as well as the parent (P)
of a member node are stored in a barrier register as
shown in Figure 2. Here GID field identifies the partic-
ular process group, and the R bit represents the rout-
ing scheme used (X-Y or Y-X routing) when a member
node sends a synchronization message to its parent in
the reduction phase.

Aix, A x,Ary, A y, and message fields are used
when the synchronization message is processed. For
example, A, x indicates whether a reduction message
has arrived from a child node C'y x during the reduc-
tion phase. If there are more barriers than available
registers in the router, some registers can be mapped
onto the node memory to make room for new barriers.

Group Id | Parent R c c

(GID) P) Cix X Cy v PPty | Message
R: Routing scheme to parent C+x : Child on +X edge Ayt Arrived from c+><
0: X-Y routing Cy Child on -X edge Ayt Arrived from Cy

1: Y-X routing C+Y : Child on +Y edge A+Y : Arrived from C+Y

C, :Chidon-Yedge A, :Arivedfrom C,

<

Figure 2: Structure of a barrier register.

Algorithm 1 describes the procedure for setting up
the barrier register within the routers. Every member
node, denoted by m, runs the distributed algorithm at
the process group creation time. It traverses from the
root downward the BTM until a member node finds
itself as the root of a quadrant. The algorithm then
finds at most four children nodes of the member node
and stores the GID, the parent, the routing scheme to
the parent, and the addresses of four children into a
barrier register in the router.

Algorithm 1: Setup_Register(r, m, GID)

1. Around the root node r, partition the mesh into
four quadrants, Q+x, @_x, Q+y, and Q_y.

2. If the member node m is equal to the root node
r, jump to step 4. Otherwise, determine which
quadrant (@) the member node m belongs to.

3. Determine the local root of the quadrant @, and
set the new root as r and the previous root as
parent (P). Go to step 1.

4. Determine the four root nodes of the four quad-
rants and define them as the four children nodes of
the member node m, and write GID, parent (P),
and four children into a barrier register. Set the




R bit to X-Y routing if the member node belongs
to Qi+x or Q_x of the parent node; otherwise,
set the R bit to Y-X routing.

Note that intermediate nonmember nodes need not
allocate any resource for the barrier synchronization.
Only the member nodes are involved in the router
setup operation. Moreover, no inter-node communi-
cation is required during BTM construction, and thus
the overhead of constructing BTM is minimized com-
pared to the conventional schemes. Once a member
node is determined to be a root of a subtree, it is never
examined again during the tree construction. The tree
is also constructed only downward from the root node
to leaf nodes. Therefore, no cycles exist in the con-
structed tree, and the algorithm establishes a 4-ary
barrier synchronization tree containing all the mem-
ber nodes.

2.2 BTM Operations

As described earlier, it is assumed that a barrier
register can hold an entire synchronization message.
Figure 3 shows the format of a synchronization mes-
sage, which contains message type, group identifier,
single destination address, and small synchronization
data. For a 32 x 32 mesh, for example, a synchro-
nization message consists of at most three bytes, i.e.,
2-bit message type for up to four message types, 8-bit
group identifier for at most 256 different groups, 10-bit
destination address, and at most 4-bit synchronization
data for some additional information if any.

2 8 10 4

Message
type

Destination Synchronization

Group id. address data

Figure 3: Format of a barrier synchronization message.

The BTM routing of synchronization messages is
based on a modified simple dimension order routing,
i.e., a modified version of X-Y routing [8, 10]. A rout-
ing path of BTM messages is either X-Y path where
the message travels along X-axis first and then along
Y-axis, or Y-X path where it travels along Y-axis first
and then along X-axis. For the reduction phase, if a
local member node is C;x or C_x of its parent, then
X-Y routing is used; otherwise, Y-X routing is used.
For the distribution phase, X-Y routing is used when a
message is sent to the child in C x or C_x; otherwise,
Y-X routing is used.

During the reduction phase, reduction messages are
received from, at most, four incoming links from the
children nodes, and one of the reduction messages
(e.g., the last arriving message) is forwarded to the

parent node. During the distribution phase, a distri-
bution message is replicated at intermediate member
nodes and forwarded to, at most, four outgoing links
to the children nodes.

3 Characteristics of BTM

The height of a tree is the most significant param-
eter in terms of communication performance of any
tree-based communications. The theorem below ana-
lyzes the height of a BTM for a complete barrier that
occurs when all the nodes in a mesh are members in a
group. According to the theorem, the height of a BTM
with n member nodes is O(log, n), and thus the associ-
ated routing latency has an upper bound of O(log, n).
Even in the best case, the height cannot be lower than
[log, n] because the outgoing degree of every mem-
ber node is at most 4. Hence, the lower bound of
the height of BTM can be represented as Q(log, n),
and thus the associated synchronization latency has
a time complexity of ©(log, n). (See [11] for a com-
plete proof as well as characteristics of BTM such as
deadlock freedom.)

Theorem 1: For a k x k mesh network, the height,
hi, of a BTM is given by hy, < log, k? + 1, where
k = 2% for some positive integer i.

4 Performance Evaluation

In this section, the performance of the proposed
BTM scheme is evaluated and compared to the CS
scheme using simulation.

4.1 Simulation Environment

In our simulation study, the member nodes were
picked randomly and all the members are assumed to
arrive at a barrier at the same time. The synchroniza-
tion latency is the most important performance metric
of barrier synchronization, which is the interval from
the time when the barrier synchronization is invoked
until the time when all the member nodes finish the
distribution phase.

Since synchronization messages do not need any
data flits, the communication time of a message in
wormhole-routed systems can be approximated to ts+
d-tp+ (d+1)-t,, where t; is the startup time, ¢, is the
propagation delay per hop, ¢, is the average delay at
each router, and d is the distance between the source
and destination nodes in a communication. The rout-
ing delay, t,., at a member node can be quite different
from that at a nonmember node. On a barrier synchro-
nization message, the router of a member node has to



look up the content-addressable barrier registers us-
ing GID, mark (updates) its arrival at the correspond-
ing barrier register, find the next destination address,
merge or replicate the message, and inform the local
processor, if necessary. A router recognizes itself as
a nonmember node by matching the destination ad-
dress of the synchronization message. It then simply
forwards the message to the proper output channel.
Thus, to distinguish its cost, we denote the routing
delay at a member node as t,,, and that at a non-
member node as t,,. The synchronization latency, tp,
of the proposed BTM is then represented by

th=2-{ts+d-t,+(d—h) -trpn+ (h+1) trm},

where h is the height of BTM.

Since nonmember as well as member nodes partic-
ipate in barrier operations with the CS tree, the syn-
chronization latency, t., of the CS scheme can be rep-
resented by

te=2-{ts+d-t, +(d+1) trm}

The startup time, ¢, is assumed to be 1 ~ 10 usec,
and the link propagation delay, t,, is assumed to be
5 ~ 15 msec as others have done [3, 4]. For exam-
ple, the Cray T3D with PVM is quoted as having a
startup time of 3 psec, whereas an IBM SP-2 with
MPI has a startup time of 35 psec [13]. The startup
time, ¢, includes the software overheads for allocating
buffers, copying messages, and initializing the router
and DMA. Chien [12] analyzed the router delay for
various routing algorithms using a 0.8 micron gate ar-
ray technology. Based on that study and current VLSI
technology, the router delay at a nonmember node .,
is assumed to be 5 ~ 15 nsec. The router delay at
a member node t,.,,, which includes several steps of
operations described above, is assumed to be 30 ~ 60
nsec.

4.2 Simulation Results and Discussion

We present the simulation results for two differ-
ent system configurations of 32 x 32 and 64 x 64
meshes. Two important performance metrics, average
tree height and synchronization latency, are presented.
Here for each parameter set, 100 simulation runs were
executed, and the results were then averaged. In most
cases, a very small variance was observed.

Figure 4 shows the average tree height for BTM
and the CS tree. Nonmember nodes are not counted
in both cases. For the CS tree, average tree height
increases linearly with the group size. However, since
nonmember nodes have almost the same overhead as
member nodes, the corresponding synchronization la-
tency will be saturated with smaller group size as ev-
ident in Figure 5. For BTM, since the intermediate

nonmember nodes are not included in the parent-child
relationship, they do not influence the tree height. As
can be seen from Figure 4, the tree height of BTM is
almost independent of the group size except for very
small group sizes. In a 64 x 64 mesh, the group size
can be more than 1024 nodes. Although not shown in
the graph, when the group size is increased up to 4096
nodes, the tree height of a 64 x 64 mesh converges to
7 and 64 for BTM and the CS tree, respectively. It is
obvious that BTM is more scalable than the CS tree.

—a— BTM (32 x 327 —=— BT (64 x 64)
——CS tree (32 x 32) ——C3 tree (64 x 64)
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Figure 4: Average tree height.
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Figure 5: Synchronization latency.

Figure 5 shows the synchronization latency, where
ts, tp, trn, and t,p, are assumed to be 1 usec, 5 nsec, 5
nsec, and 30 nsec, respectively. The synchronization
latency of the BTM scheme is significantly lower than
that of the CS scheme, and again it is almost indepen-
dent on the group size. This is mainly due to the fact



that the tree height of BTM is bounded by log, k2 + 1
on a k x k mesh. The performance improvement is
more substantial as the size of network increases. For
instance, for the group size of 1024, the BTM scheme
is faster than the CS scheme by factors of 1.4 and 1.7
for 32 x 32 and 64 x 64 meshes, respectively. The pro-
posed BTM scheme is clearly more scalable than the
CS scheme. (See [11] for more simulation results such
as network traffic and the effect of router delay.)

5 Conclusions

In this paper, we proposed a fast tree-based barrier
synchronization scheme for 2-D meshes. The proposed
BTM scheme has two distinguishing characteristics
compared to other conventional schemes. First, the
synchronization tree constructed by the BTM setup
algorithm (see Section 2) is 4-ary. The complexity of
synchronization latency is ©(log, n) while that of the
fastest scheme (i.e., CS tree) reported in the literature
is bounded between Q(logs n) and O(n'/2), where n is
the number of member nodes. Second, the construc-
tion of a BTM and synchronization operations do not
interfere with nonmember nodes. The setup overhead
of constructing BTM is very low. At the tree creation
time, all the member processes run the setup algorithm
and construct the tree independently without any mes-
sage exchanges between them or between nonmember
nodes. During a barrier synchronization, the synchro-
nization messages pass through the nonmember nodes
without interference resulting in negligible delay.

We have simulated and evaluated the performance
of the proposed scheme. Performance effect of various
parameters such as tree height and synchronization
latency was studied. According to the simulation re-
sults, compared to the CS scheme, the BTM scheme
reduces synchronization latency by 40% and 70% for
32 x 32 and 64 x 64 meshes, respectively.

We are currently working on extending the BTM
approach to other interconnection topologies such as
k-ary n-cubes and more importantly, irregular and ar-
bitrary networks used in switch-based cluster systems.
Our preliminary simulation study shows that the bar-
rier tree method is a viable solution for irregular net-
works as well. Future works include the application
of BTM to other collective communications, such as
multicast or total exchange.
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