
Mapping Strategies for Switch-Based Cluster Systems of Irregular

Topology�

Sangman Mohy{, Chansu Yuy, Hee Yong Younz, Ben Leex, and Dongsoo Hany

ySchool of Engineering, Information and Communications Univ.

58-4 Hwa-am, Yu-sung, Taejon, 305-348 KOREA

fsmmoh,cyu,dshang@icu.ac.kr

zDept. of Electrical and Computer Eng., Sungkyunkwan Univ., Suwon, KOREA

youn@ece.skku.ac.kr

xDept. of Electrical and Computer Eng., Oregon State Univ., Corvallis, OR 97331

benl@ece.orst.edu

{Electronics and Telecommunications Research Institute, Taejon, KOREA

smmoh@etri.re.kr

Abstract

Mapping virtual process topology to physical proces-

sor topology is one of the most important issues in par-

allel computing. The mapping problem for switch-based

cluster systems of irregular topology is very complicated

due to the connection irregularity and routing complex-

ity. This paper proposes two mapping schemes for ir-

regular cluster systems, which try to map the nearest

neighbors in the process topology to physically adja-

cent processors. In addition, an application-oriented

performance metric, weighted cardinality, is introduced

to represent the quality of mapping. Simulation study

shows that, for a virtual topology of a 16 � 16 mesh,

the proposed mapping schemes result in better mapping

quality and about 15 � 20% shorter communication

latency compared to random mapping. The proposed

algorithms should also be bene�cial when they are ap-

plied to metacomputing and cluster of cluster systems,

where the communication costs are an order of magni-

tude di�erent depending on the relative position of the

processor nodes.

Index terms: Cluster system, mapping strategy, vir-

tual topology, irregular network, MPI.

1 Introduction

Domain decomposition is one of the most impor-

�This research was supported in part by the Ministry of In-

formation and Communication under Grant No. 99-159-01.

tant issues in parallel computing. It involves divid-

ing a problem domain into nearly equal-sized parti-

tions and forming a computational graph, called a pro-

cess topology. In a process topology, each vertex rep-

resents the required computation or process, and an

edge represents the communication between two pro-

cesses. To execute a parallel program, processes in its

process topology are mapped onto processors, or pro-

cessor topology. The mapping is relatively easy when

both process and processor topologies are regular. Typ-

ically, the process topology is regular since many well-

known computation-intensive problems are parallelized

or decomposed into regular structures such as meshes

or rings. The processor topology is also regular in tra-

ditional parallel machines that employ regular inter-

connection networks.

This paper discusses the mapping problem in switch-

based cluster systems [1, 2], where the processor topol-

ogy is irregular, i.e., switches are interconnected in an

arbitrary manner1. The primary advantages of the ir-

regularity are higher interconnection exibility and in-

cremental system expandability, which are not attain-

able in traditional regular interconnection networks.

However, one important disadvantage of the irregular

topology is routing complexity to avoid deadlock among

1Some cluster systems (i.e., Beowulf and RWCP [1]) employ

a completely connected graph topology with redundant paths

to provide su�cient bisection bandwidth. Therefore, due to the

limited number of ports as well as the severe cable length restric-

tion, cascading of switches becomes imperative to build a large,

scalable cluster [3].

multiple packets traveling simultaneously [4, 5, 6, 7].

Therefore, the mapping problem in switch-based clus-

ter systems becomes very interesting and challenging.

In this paper, two new mapping schemes are pro-

posed for irregular cluster systems assuming that the

2-D mesh process topology2 is speci�ed as an interpro-

cess communication pattern. Key idea of the proposed

schemes is to map the nearest neighbors in the pro-

cess topology to physically adjacent processors, for ex-

ample, those connected to the same switch. The two

proposed mapping schemes are switch-based mapping

(SM) and binary mapping (BM), which have time com-

plexities of O(n log n) and O(n2 log2 n), respectively,

where n is the number of processes of a 2-D mesh to

be mapped onto the processor topology. For a pro-

cess topology of a 16� 16 mesh, our simulation study

shows the proposed mapping schemes result in about

15 � 20% shorter communication latency compared to

random mapping (RM).

The major contributions of this paper are three-

fold: First, this paper introduces and formulates the

mapping problem in the context of switch-based irreg-

ular networks. Second, a new variant of the proces-

sor topology, called routing topology, which properly

reects the deadlock-free routing requirement is intro-

duced. Third, the concept of weighted cardinality is

introduced as a metric for evaluating the quality of

mapping.

The rest of the paper is organized as follows. The

formal description of the mapping problem is presented

in the following section. The mapping problem for ir-

regular cluster systems is discussed in Section 3. In

Section 4, the proposed mapping schemes and the com-

plexity analysis in terms of cost-quality tradeo� are

presented. The proposed schemes are evaluated us-

ing simulation in Section 5. The conclusion and future

work are discussed in Section 6.

2 The Mapping Problem

Let the graph of the processor topology be denoted

as Gp(Np; Ep), where Np is the set of processors and

Ep represents the set of interconnection links among

the processors. Let the graph of the problem or virtual

topology3 to be mapped onto the processor topology be

denoted as Gv(Nv; Ev), where Nv corresponds to the

2One such example is MPI Cart create() in the MPI stan-

dard. See Subsection 3.2 for details.
3Throughout this paper, we use process topology and virtual

topology interchangeably. The latter is used to contrast with the

physical processor topology.

w4w2

w4

w2w3

w3w2+w3*

w2+w3*

w4

w2+w4*

w2+w4*

v2 v3

v4u1

u2 u4

p2

v1 p4

u3

or

p1

p2

p3

p4

(b)

wi : communication cost
pi : processor

w2

w3

ui : communication requirement

0

w1

0

vi : process

(a)

p1 p2p1

0

p3

p3 p4

w1

w1

0

(c)

Figure 1: Mapping problem: (a) a virtual topology Gv ,
(b) a processor topology Gp, and (c) a cost matrixMp

of Gp (
�Fp(p1; p2) = w2 + w3 or w1 + w4, Fp(p3; p4) =

w2 + w4 or w1 + w3).

set of processes or computations and Ev represents the

set of communication paths among the processes.

Weights on edges in Ep and Ev represent the com-

munication costs and the communication requirements,

respectively. The two topologies can alternatively be

de�ned by the functions Fp : Np � Np ! R and

Fv : Nv �Nv ! R. For example, Fp(s; t) = w means

that for a system architecture Gp, the cost to com-

municate between two processors s and t is w, where

s; t 2 Np. Similarly, Fv(x; y) = u denotes that for a

problem graph Gv , processes x and y require u amount

of communication to solve the problem. Figure 1 shows

an example of the virtual and processor topologies as

well as the Np�Np cost matrix, Mp, which is another

representation of Fp. For example, in Figure 1(b) and

(c), the communication cost between p1 and p3 is w3,

while the cost between p1 and p2 is either w2 + w3 or

w1 + w4 depending on the intermediate node(s) along

the communication path.

De�nition 1 Given two weighted graphs Gp(Np; Ep)

and Gv(Nv ; Ev), a mapping of Gv onto Gp is a function

fm : Nv ! Np.

The quality of mapping can be estimated by the

overall communication cost. In the past, bisection

bandwidth has been used to compare di�erent inter-

connection networks [8]. However, bisection bandwidth

is insu�cient to represent the communication require-

ment of an application mapped onto a speci�c system

architecture for two reasons. First, the bisection band-

width only considers the interprocess communication

of a parallel application on the links between two par-

titions. Second, bisection bandwidth is a machine-

speci�c characteristic, and thus it does not properly

represent the communication performance of a given

application when running on a speci�c system. There-

fore, a new metric, weighted cardinality, is introduced

to represent the quality of mapping. The weighted car-

dinality is an application-oriented performance metric

which accounts for the bandwidth along all network

links speci�ed in the communication pattern of an ap-

plication.

The weighted cardinality, jfmj, can be obtained by

adding the weights (i.e., communication costs) on the

corresponding edges in Ep for all edges in Ev . Note that

the addition must be a weighted sum because the edges

in Ev can have di�erent communication requirements.

This is given by

jfmj =
X

(x;y)2Ev

Fv(x; y) � Fp(fm(x); fm(y)):

If x and y are processes in Nv, then fm(x) and fm(y)

are corresponding processors in Np with the mapping

function fm. Fv(x; y) is the communication require-

ment between x and y on the virtual topology, while

Fp(fm(x); fm(y)) is the communication cost between

two corresponding processors on the processor topol-

ogy. The above equation is a generalized form of those

de�ned in [9, 10] in that it includes the communication

requirement as well as the communication cost.

De�nition 2 Given two weighted graphs Gp(Np; Ep)

and Gv(Nv ; Ev) with their cost functions Fp and Fv,

respectively, the mapping problem is to �nd a mapping

function fm which minimizes the weighted cardinality

jfmj.

Based on De�nition 2, the mapping problem is to

�nd one among the jNvj! possible cases. The general

formulation of this problem is known to be computa-

tionally equivalent to the graph isomorphism problem,

which has been shown to be NP-complete [9, 11]. How-

ever, under certain circumstances, Gv and Gp can be

reasonably simpli�ed and thus e�cient heuristic solu-

tions exist.

There are some software packages such as Chaos [12]

and SCOTCH [13] for graph partitioning. In apply-

ing to domain decomposition and mapping, however,

these packages were designed primarily for typical par-

allel systems such as hypercube and mesh architectures

rather than for switch-based irregular cluster systems.

3 Mapping for Irregular Cluster Sys-

tems

This section covers the mapping problem for switch-

based irregular cluster systems. Then, two objects in-

volved in the mapping, virtual topology and processor

topology, are discussed. The concept of routing topol-

ogy is also introduced.

(3, 0)

(3, 3)(0, 3)

(0, 0)

0 1 2

3 4 5

6 7 8

member processor

nonmember processor
switch

(b)(a)

Figure 2: Virtual and processor topologies: (a) a vir-
tual topology Gv and (b) a processor topology Gp.

3.1 Processor and Routing Topologies

We assume that Gv is a 2-D mesh (which is not a

perfectly connected graph) and not weighted. We also

assume that jNv j = jNpj, and there is one-to-one map-

ping between Nv and Np. Each edge (s; t) in Gp is

assumed to have a weight which represents the com-

munication cost between the nodes s and t. As an ex-

ample, consider the problem of mapping a 4� 4 mesh

type of virtual topology onto a processor topology con-

sisting 16 processors as shown in Figure 2. Each switch

has a set of ports and each port is connected to a com-

putational node or another switch. Some ports may be

left open and they can be used for future system ex-

pansion. The system in Figure 2 consists of nine 8-port

switches, 26 processors, and 12 inter-switch links. In

this example, the problem is to map the 4�4 mesh type
of virtual topology onto the 16 processors (the dark

circles in Figure 2(b)) selected for running a parallel

application. The set of processors S selected are called

member processors, and the number of member proces-

sors connected to a switch is referred as the switch size.

For example, the switch size of switch 0 is four (i.e.,

jS0j = 4).

However, the processor topology Gp does not prop-

erly reect the routing complexity and deadlock-free re-

quirement. Therefore, a variant of the processor topol-

ogy, called routing topology G0

p
, will be used. A rout-

ing topology shows how the communication must occur

between the switches for deadlock-free routing (shown

later in this section). A routing topology is con�gured

at the startup of a cluster system. Each switch com-

putes its own breadth-�rst spanning (BFS) tree and all

switches eventually agree on a unique spanning tree.

The BFS tree chosen is the one that minimizes the

height of the tree. Deadlock-free routing is achieved

member processor

nonmember processor
switch

(3, 3)

(3, 0)(0, 0)

(0, 3)

0

1

3 4 5

876 2

up direction between siblings

(b)(a)

Figure 3: Virtual and routing topologies: (a) a virtual
topology Gv and (b) a routing topology G0

p
.

using a variant of the turn model [14], called up/down

routing [4], with the following rule: \A legal route tra-

verses zero or more links in the upward direction until

a node with a direct downward path is reached. This is

followed by traversing zero or more links in the down-

ward direction."

For the processor topology of Figure 2(b), the corre-

sponding routing topology G0

p
is shown in Figure 3(b).

The set of processors N 0

p
of G0

p
is the same as Np, but

E0

p
is di�erent from Ep. Thus, the routing topology

is denoted as G0

p
(Np; E

0

p
). For example, switches 4

and 7 are immediate neighbors in Gp, as shown in Fig-

ure 2(b), but they are three links (hops) away in G0

p
,

as shown in Figure 3(b). This is due to the deadlock-

free requirement of the routing algorithm and it implies

that some communication links in the processor topol-

ogy may not actually be utilized.

3.2 MPI Virtual Topology Model

There has been extensive research as well as ac-

tual implementations of message passing libraries for

distributed memory multicomputers. Among them,

MPI [15] has gained a wide acceptance in the indus-

try mainly due to its simple interface. When multi-

ple processes are created by MPI Init() routine, they

form a communicator among the process group to ex-

change messages. Depending on the communication

pattern of an application, a node may exchange more

messages with one particular node than it does with

others. In order to exploit the application-speci�c char-

acteristics, there must be a way to inform the com-

munication pattern of a parallel application. As with

other message-passing libraries4, MPI provides the con-

4In PARMACS [16] and p4 [17] libraries developed at the ANL

(Argonne National Laboratory) and GMD (German National Re-

cept of virtual topology, on which applications can be

implemented [9]. Using the MPI Cart create() and

MPI Graph create() routines, a virtual topology can

be speci�ed.

In many parallel programming interfaces, a very lit-

tle consideration is given to the mapping of processes

to processors. Usually the mapping is either random or

left to the user to be done manually. In case of MPI, the

mapping between the virtual topology and the proces-

sor topology is implementation-dependent and beyond

the scope of MPI. Therefore, our main e�ort in this

paper is to propose e�cient mapping algorithms that

place the adjacent processes on adjacent processors as

much as possible.

4 The Proposed Mapping Schemes

In this section, two mapping schemes, switch-based

mapping (SM) and binary mapping (BM), are pro-

posed. As mentioned before, simple naive approach is

to randomly map a group of processes to processors,

which is referred to as random mapping (RM) in this

paper. Even though this approach does not allow an

e�cient mapping, it is used as a reference for compar-

ing di�erent mapping strategies. Time complexity of

RM is O(n), where n is the number of processors, i.e.,

n = jNpj.

4.1 Switch-Based Mapping (SM)

SM is based on the assumption that the communica-

tion cost between two processors connected to di�erent

switches are high. Therefore, adjacent processes in the

virtual topology are mapped to processors connected

to the same switch.

For the sake of illustration, consider the virtual

topology Gv and the routing topology (and its asso-

ciated cost matrix M0

p
) shown in Figure 4. As can be

seen in M0

p
, inter-switch communication cost is high

(as indicated by a 1), while intra-switch communica-

tion cost is negligible (as indicated by a 0). The SM

algorithm tries to partition the virtual topology of 2-D

mesh so that the adjacent processes are placed to the

set of processors connected to the same switch. This

mapping problem is similar to the 2-dimensional bin

packing or the processor allocation problem, which is

known to be NP-hard. Therefore, we adopt the buddy

heuristic [18], where the virtual topology Gv is recur-

sively divided into a partition with two buddies until

search Center for Computer Science), the virtual topology can

either be a Cartesian structure with up to three dimensions or a

general graph [16].

0

0

1

1

0

0

1

1 1 1

1

1

1

1

1

1

1

0 0 0 1 1 1 11

11111000

0 0 0 0 1 11

0 0 0 1

110001111

1 1 1 0 0 0 1 1

1000111

1 1

11

1

1

1

1

1

1 0

0 0

...

...

(b)

s7s0

s7

s0

00(0, 0) (3, 0)

(3, 3)(0, 3) 6

(a)

s2

s2

0 0

7

7

7

22

4 4

8 8

31

Figure 4: An example of the switch-based mapping:
(a) a virtual topology Gv and (b) a cost matrix M0

p
.

the member processors of the largest switch can �t into

a buddy.

In Figure 4, when the SM algorithm �rst maps the

set of four processors S0, Nv is �rst divided into two

buddies with eight processes. One of the buddies in

the left is divided again into two subsets, each subset

having four processes. A set of processes in the lower

left quadrant are then mapped to S0. Next, the set

of processors connected to the second largest switch,

in this case S7, are assigned to the virtual topology

after a proper partition is obtained. This procedure

is repeated until no processors remain in the routing

topology.

The following summarizes the SM algorithm, which

has a time complexity of O(n logn). For each of the

switches, the buddy partitioning in the third step takes

O(logn).

||||||||||||||||||||

SM Algorithm (G0

p(Np; E
0

p), Gv(Nv ; Ev))

1. Start with the set of processes Nv and the set of pro-

cessors Np.

2. From Np, �nd the set of processors S connected to the

(next) largest switch size jSj.

3. Find a subset of processes Qi from Nv such that
jQij = 2dlog2 jSje. If necessary, this is done by repeat-

edly dividing Nv into two buddies until a subset Qi

with 2dlog2 jSje processes is obtained.

4. Map jSj processes in Qi to the set of processors S.

5. Remove the set of processes Qi from Nv and the set of

processors S from Np.

6. Repeat Steps 2 � 5 until there are no unmapped pro-

cesses in Nv.

||||||||||||||||||||

0 0 0

00

0

0

0 0

0 0

0

0

s7

s7

s6

s6

2 2 2

2

2

2

...

......

...
... ...

......

s4

s2

s2s4

0

0 0

00

3 3

33

3

3 3

3

3 3

3

3

3

3

3

3

3

3 3 3

4 4 4

444

44

4

4 4

4

3

3

33 4

4

4

4

(b)

0 0

7 7

8

6

0

8

1 3

2 2

4 4

0

7

(3, 3)

(3, 0)(0, 0)

(0, 3)

(2, 1)

1st partition
(a)

Figure 5: An example of the binary mapping: (a) a
virtual topology Gv and (b) a cost matrix M0

p
.

4.2 Binary Mapping (BM)

In SM, the strategy is to exploit the modularity of

the switches by mapping adjacent processes to proces-

sors within the same switch, which reduces the com-

plexity of mapping problem. However, the cost ma-

trix used is overly simpli�ed resulting in limited per-

formance improvement. Moreover, in situations where

such modularity is not clearly de�ned, SM may not be

directly applicable. Binary mapping (BM) is a more

general solution, where the routing topology as well as

the virtual topology is recursively partitioned. This

divide-and-conquer approach is acceptable only when

the conquered solutions can be properly merged. In

BM, the topologies are carefully subdivided so that the

merging process is not required as explained below.

Formally, a partition of a graphG(N;E) is a division

of its vertices N into disjoint subsets (N0; N1; � � � ; Nk).

For a partition of G with two subsets (N0; N1), an edge

cut is de�ned as the set of edges connected between

vertices in N0 and N1. The basic idea is to partition

both topologies so that the edge cut ofGv has minimum

cost (little communication requirement) while the edge

cut of G0

p
has maximum cost (expensive links). If Nv is

mapped to Np, the edge cut of Gv is e�ectively mapped

to that of G0

p
. Therefore, the mapping is translated into

\little communication requirement on expensive links."

Figure 5 is the same as Figure 4, except the cost ma-

trix M0

p
. Note that the numbers in M0

p
are obtained

from the routing topology. Binary partitioning of the

2-D mesh Gv with the minimum edge cost is shown in

Figure 5(a). BM algorithm partitions G0

p
so that its

edge cut has maximum cost. The resultant mapping is

shown in Figure 5(b). In this example, the partition of

G0

p
is given by fS0[S6[S7g and fS1[S2[S3[S4[S8g.

The submatrix in the upper left quadrant of M0

p
rep-

resents the former set while the lower right quadrant

represents the latter set. Communication cost along

the edge cut is explained by the numbers in the rest of

M0

p
, i.e., those in the upper right and lower left quad-

rants. Maximizing the sum of those numbers would

result in the optimal binary partitioning of G0

p
.

This procedure is known as graph partitioning prob-

lem, which is known to be NP-hard. Therefore,

we use the Kernighan-Lin heuristic [19] that requires

O(n2 logn) time. It begins with an initial partition

with two sets, and at each iteration, the algorithm

swaps subsets of nodes if this produces an improve-

ment. It is noted that the quality of a partitioning de-

pends strongly on the initial partition [19]. One possi-

ble initial partition can be having processors connected

to a switch to be in the same set. Time complexity of

the binary mapping strategy is O(n2 log2 n) since the

Kernighan-Lin algorithm in Step 3 is repeated logn

times.

||||||||||||||||||||

BM Algorithm (G0

p(Np; E
0

p), Gv(Nv; Ev))

1. Perform a binary partitioning on Nv to generate two
sets of processes, i.e., Nv = (Q0; Q1).

2. Let the initial partition of Np to be (R0; R1). This

is done by starting with the largest switch, and then

forming a set R0 by merging the member proces-

sors connected to the switch with those of the next
largest switch(es) until the number of processors be-

comes
jNpj

2

2
. Include the rest of the processors in R1.

3. Use the Kernighan-Lin Heuristic to obtain an im-

proved partition, Np = (R0

0; R
0

1) which minimizes the
edge cost.

4. If there remains only one node in a partition, mapping

between partitions can be trivially performed. Other-

wise,
call BM Algorithm (G0

p0(R
0

0; E
0

p), Gv0(Q0; Ev)), and

call BM Algorithm (G0

p1(R
0

1; E
0

p), Gv1(Q1; Ev)).

||||||||||||||||||||

5 Performance Evaluation

In this section, the performance of the proposed

mapping strategies is evaluated using extensive sim-

ulation.

5.1 Experiment Environment

It is important to pay more attention to the com-

munication patterns between adjacent processes rather

than between distant processes. Therefore, three di�er-

ent cases of inter-process communication patterns are

Figure 6: Weighted cardinality on the network of 256
nodes and 75 switches having 75% connectivity.

considered to evaluate the performance of the proposed

mapping strategies: i.e., each process communicates (i)

only with its adjacent processes, (ii) 90% of the mes-

sages with its adjacent processes and 10% of the mes-

sages with processes random distance away, and (iii)

80% of the messages with its adjacent processes and

20% of the messages with processes random distance

away.

Cray T3D with PVM is quoted as having a startup

time of 3 �sec whereas IBM SP-2 with MPI has a

startup time of 35 �sec [21], where the startup time

includes the software overheads for allocating bu�ers,

copying messages, and initializing the router and DMA.

Chien analyzed the router delay for various routing

algorithms using a 0.8 micron gate array technology

[22]. Based on that study and contemporary VLSI

technology, the following default performance parame-

ters are assumed: communication startup time (ts) of 2

�sec, link propagation delay (tp) of 20 nsec, and switch

(router) delay (tr) of 300 nsec. In addition, the net-

work interface delay is assumed to be almost the same

as the switch delay for our evaluation.

For all experiments, unless otherwise stated, the

cluster system is assumed to consist of 256 nodes (pro-

cessors) and 75 switches, and the network is inter-

connected with 8-port switches having 75% connectiv-

ity. The connectivity, or connection ratio, r of k-port

switches is de�ned as the ratio of the average number

of connected ports over k [20].

5.2 Results and Discussion

In this subsection, the simulation results of the pro-

posed schemes are presented for the three di�erent

Figure 7: Communication latency with no distant com-
munication, case-(i).

communication patterns in the virtual topology. The

weighted cardinality is shown in Figure 6 for the three

di�erent mapping strategies. Notice from the �gure

that the two proposed mapping schemes show improve-

ment over RM, while the improvement becomes larger

as the size of mesh increases. This is intuitively obvi-

ous since the e�ect of mapping becomes more signi�-

cant as the size of virtual topology increases. Also, as

expected, BM signi�cantly outperforms other mapping

schemes.

The communication latency is evaluated for the

three di�erent communication patterns in terms of the

average latency between communicating nodes. Fig-

ure 7 shows the simulation results of the case when

each node communicates only with its adjacent nodes,

i.e., case(i). Figure 8 and Figure 9 are for the cases

(ii) and (iii), respectively.

It can be seen in Figure 7 that for a virtual topol-

ogy of a 16� 16 mesh, SM and BM result in 15% and

20% shorter communication latency compared to RM,

respectively. Interestingly, the three plots display al-

most the same trends as the plot for the comparison

of weighted cardinality. This is because the weighted

cardinality represents the degree of closeness between

the routing topology and virtual topology after map-

ping. Less weighted cardinality implies that the av-

erage routing distance between adjacent processes is

small, while the communication latency between them

is linearly proportional to this value. Also notice that

the improvement e�ect of BM will be more signi�cant

as communication between nonadjacent processes pre-

vails.

Figure 8: Communication latency with 10% distant
communication, case-(ii).

Figure 9: Communication latency with 20% distant
communication, case-(iii).

6 Conclusion

In this paper, the mapping problem for switch-based

cluster systems with irregular networks was addressed.

Since the mapping problem is computationally NP-

complete in nature, two di�erent heuristic mapping al-

gorithms, having di�erent cost-performance tradeo�,

were proposed. The simulation results show that for a

virtual topology of a 16 � 16 mesh, the two proposed

mapping schemes result in about 15 � 20% shorter

communication latency compared to random mapping.

The e�ciency of the mapping schemes becomes more

signi�cant as the size of the virtual topology increases.

Based on the observed results, we believe that the pro-

posed algorithms may be more bene�cial when they

are applied to metacomputing and cluster of cluster

systems, where communication costs are an order of

magnitude di�erent depending on the relative position

of the processor nodes.

We are currently investigating heuristic algorithms

that tackle the mapping problem for di�erent virtual

and processor topologies. We also plan to implement

the proposed schemes in an MPI environment to study

its cost-performance tradeo�.

References

[1] R. Buyya, High Performance Cluster Computing: Ar-

chitectures and Systems, Prentice-Hall Inc., NJ, 1999.

[2] G. F. P�ster, In Search of Clusters, 2nd Edition, Chap-

ter 5, Prentce-Hall, Inc., NJ, 1998.

[3] H. Chen and P. Wycko�, \Simulation Studies of Gi-

gabit Ethernet versus Myrinet Using Real Application

Cores," Proc. of the 4th Workshop on Communication,

Architecture, and Applications for Network-Based Par-

allel Computing, Jan. 2000.

[4] M. D. Schroeder, et.al., \Autonet: a High-speed, Self-

con�guring Local Area Network Using Point-to-point

Links," SRC Research Report, No.59, Digital Equip-

ment Corporation, April 1990.

[5] A. M. Mainwaring, B. N. Chun, S. Schleimer, and D.

S. Wilkerson, \System Area Network Mapping," Proc.

of the Annual Symposium on Parallel Algorithms and

Architectures, 1997.

[6] W. Qiao and L. M. Ni, \Adaptive Routing in Irregular

Networks Using Cut-Through Switches," Proc. of the

International Conference on Parallel Processing, 1996.

[7] F. Silla, J. Duato, A. Sivasubramaniam and C. R. Das,

\Virtual Channel Multiplexing in Networks of Work-

stations with Irregular Topology," Proc. of the Inter-

national Conference on High Performance Computing,

pp. 147-154, December 1998.

[8] J. Duato, S. Yalamanchile, and L. Ni, Interconnec-

tion Networks: An Engineering Approach, pp. 175-226,

IEEE Computer Society, Los Alamitos, CA, 1997.

[9] T. Hatazaki, \Rank Reordering Strategies for MPI

Topology Creation Functions," Lecture Notes in Com-

puter Science, Vol. 1497, pp. 188-195, 1998.

[10] S. H. Bokhari, \On the Mapping Problem," IEEE

Transactions on Computers, Vol. C-30, No. 3, pp. 207-

214, March 1981.

[11] O. Kr�amer and H. M�uhlenbein, \Mapping Strategies

in Message-Based Multiprocessor Systems," Parallel

Computing, Vol. 9, pp. 213-225, 1989.

[12] Sandia National Laboratories, Chaos, http://www.

cs.sandia.gov/HPCCIT/chaos.html, Dec. 2000.

[13] Universit�e Bordeaux, SCOTCH, http://www.labri.u-

bordeaux.fr/Equipe/ALiENor/membre/pelegrin/

scotch/, Dec. 2000.

[14] C. Glass and L. Ni, \The Turn Model for Adaptive

Routing," Journal of the ACM, Vol. 41 No. 4, Septem-

ber 1994.

[15] Message Passing Interface Forum, MPI: A Message-

Passing Interface Standard, Version 1.1, June 12, 1995.

[16] R. Calkin, R. Hempel, H.-C. Hoppe, and P. Wypior,

\Portable programming with the PARMACS message-

passing library," Parallel Computing, Vol. 20, pp. 614-

632, 1994.

[17] R. M. Butler and E. L. Lusk, \Monitors, Messages,

and Clusters: the p4 Parallel Programming System,"

Parallel Computing, 1994.

[18] K. Li and K.-H. Cheng, \Job Scheduling in a Partition-

able Mesh Using a Two-Dimensional Buddy System

Partitioning Scheme," IEEE Transactions on Parallel

and Distributed Systems, Vol. 2, No. 4, pp. 413-422,

Oct. 1991.

[19] A. Pothen, \Graph partitioning Algorithms with Ap-

plications to Scienti�c Computing," Technical Report,

TR-97-03, Old Dominion University, 1997.

[20] R. Kesavan, K. Bondalapati, and D. K. Panda, \Multi-

cast on Irregular Switch-Based Networks with Worm-

hole Routing," Proc. of the International Symposium

on High Performance Computer Architecture, 1997.

[21] P. Pacheco, Parallel Programming with MPI, Morgan

Kaufmann, San Francisco, CA, 1997.

[22] A. A. Chien, \A Cost and Speed Model for k-ary n-

Cube Wormhole Routers," IEEE Transactions on Par-

allel and Distributed Systems, Vol. 9, No. 2, pp. 150-

162, Feb. 1998.

