
This paper has been submitted for publication in the Proceedings of the 7th IEEE Symposium on Parallel and Distributed
Processing, 1995.

This is a draft

Analyzing the Benefits of a Separate Processor to

Handle Messages for Fine-grain Multithreading

David Metz and Ben Lee

Department of Electrical and Computer Engineering

Oregon State University

Corvallis, OR 97331

email: metzda, benl@ece.orst.edu

Abstract

This paper discusses the benefits of having a separate processor to handle messages in Massively Parallel

Architectures and proposes hardware solutions to provide atomicity between the main processor and the processor

dedicated to handle messages. The proposed design is aimed at improving the performance by relegating the

responsibility of handling messages to a separate processor. The hardware modifications are kept to a minimum in

order not to disturb the original functionality of a modern RISC processor.

1

1 . Introduction

Multithreading allows a processor to switch among multiple threads to tolerate unpredictable latencies due

to remote memory requests and synchronization. One model, called Threaded Abstract Machine (TAM), supports

interleaving of multiple threads by an appropriate compilation strategy and program representation rather than

through elaborate hardware [1]. Experiments on TAM have already shown that it is possible to implement the fine-

grain execution model on conventional architectures and obtain reasonable performance. This has been demonstrated

by compiling Id90 [5] programs to TL0, the TAM assembly language, and finally to the native machine code for a

variety of platforms, mainly CM-5 [10]. Yet these studies also show a basic mismatch between the requirements for

fine-grain parallelism and the underlying conventional architecture, and thus considerable improvement is possible

through hardware support. One such study shows that an improvement can be made to the execution of TAM

control instructions by simply incorporating a special instruction called conditional double branch and pop into ISA

of the SPARC processor [2].

Another source of this mismatch is the handling of messages. In the TAM execution model, messages are

handled by compiler generated codes that extract data from messages and dispatch them to appropriate threads.

However, in TAM, message handling constitutes as much as 22%-45% of total TL0 instructions executed and

therefore represents a significant portion of the overhead required to support the fine-grain execution model.

In light of the aforementioned discussions, this paper presents a design modification required to efficiently

support message handling for fine-grain parallelism on a stock processor. The use of a separate processor is

proposed to reduce the cost of handling messages. Atomicity is guaranteed without sacrificing performance, and the

hardware modifications are kept to a minimum so as not to disturb the functionality of a conventional RISC

processor. Although the discussion is based on the SPARC processor, the design issues apply to other RISC

processors as well.

2 . Threaded Abstract Machine

Although it grew out of work on dataflow, the TAM execution model exposes synchronization, thread

scheduling, and storage management to the compiler, and is explicit in the machine language. Unlike other dataflow

2

Ready
Queue

Activation Tree

Function Foo

Inlet 1

Thread 2

Thread 5

Thread 15

Continuation
vector

Ready frame link

Synchronization
counters

Local
variables

 Code-BlockActivation Frame

Figure 1: TAM activation tree.

proposals, TAM design aims to minimize the hardware overhead of multithreading and exploits locality even under

asynchronous execution.

Figure 1 illustrates a TAM activation tree. A TAM program consists of a collection of code-blocks where

each code-block typically represents a loop-body or a function. A code-block comprises of threads and inlets.

Invoking a code-block involves allocating an activation frame—which is analogous to the stack frame for

conventional subroutine calls—depositing argument values into the frame, and enabling threads for execution within

the context of the frame. Initialization also consists of setting the values for synchronization counters, or entry

counters, stored within the frame. Unsynchronizing threads require no counters. A frame can be in one of three

states: running, ready, or idle. An idle frame has no enabled threads. It becomes ready and is queued for scheduling

as soon as a thread is enabled. A scheduled frame is considered running or resident and is executed until it has no

enabled threads. A quantum is the set of threads executed during a single residency of the frame.

TAM supports FORK1 instructions that enable threads within the current activation. If the thread is an

unsynchronizing one, the pointer to the thread is pushed onto the local continuation vector (LCV), which contains

1 For clarity, all TAM TL0 instructions are written in capitalized COURIER font to distinguish them from SPARC assembly instructions or
pointer variables, which are written in non-capitalized courier font.

3

pointers to all enabled threads within the current quantum. If the frame is not active, threads are pushed onto the

frame’s remote continuation vector (RCV). Thus, the LCV can be viewed as a fast, short-lived extension of the

RCV. If the thread requires synchronization, the FORK instruction decrements the entry count for the thread. If the

decremented count is zero, the thread is enabled and pushed onto the LCV; otherwise, the count is stored back. A

SWITCH instruction forks one of two threads depending on a condition. A STOP instruction terminates the current

thread and causes some other enabled thread to begin execution. This is done by popping a thread from the LCV.

When the LCV is empty or the execution of the current code-block has completed, the processor executes the leave-

thread. The SWAP instruction within the leave-thread then transfers the control to a frame pointed to by the ready

frame link within the current frame. The following is a simple TL0 code for a TAM thread that adds two frame

memory slots, stores the result in a register, and forks another thread.

THREAD 1
ADD ireg0.i = islot0.i islot1.i1 % Add frame slots islot0 and islot1

and store the result in the TAM
temporary register ireg0

FORK 4.t % FORK the thread “4”
STOP % Pop the thread from LCV

TAM also supports inter-frame messages, which arise in passing arguments to an activation, returning

results, and global heap accesses. This is done by associating a set of inlets with each code-block. Inlets are

compiler generated message handlers that copy arguments into the frame and enable threads depending on the message

using POST instructions. POST instructions push threads onto the LCV, if the threads are for the current frame;

otherwise, the threads are pushed onto the RCV. For example, a SEND operation delivers a data value to an inlet

relative to the target frame. A sample inlet code is shown below:

INLET 1
RECEIVE islot4.i % Receive the value and store it in

the frame slot islot4
 POST 5.t % Pushes the thread “5” onto LCV or RCV

STOP % Pop a thread from LCV

Global data structures in TAM provide synchronization on per-element basis to support I-structure and M-

structure semantics [1]. If the I-structure element is empty, a read is deferred until the corresponding write takes

place. A remote I-structure operation generates a request for a particular heap location and the corresponding response

1 All registers and frame slots are statically typed. ‘i’ indicates that it is of integer type.

4

is received by an inlet. Meanwhile, the requesting processor continues with other enabled threads. In TAM, these

split-phase transactions are supported by specialized SEND instructions, in the form of IFETCH and ISTORE,

which are used to read and write to the data structures, respectively.

Note that both threads and inlets cooperate in determining the flow of computation. But they also compete

for shared resources such as synchronization counters and the LCV. Therefore, any implementation must guarantee

that thread and frame scheduling operations are atomic with respect to POST instructions from the inlets.

2 . 1 . Mapping TAM onto a Stock Processor

TAM is codified in a pseudo-machine language TL0. TL0 instructions are primarily three-address, where

the operands are constants, registers, or frame locations. No fixed limit is placed on the number of TAM registers;

however, the compiler tries to use them as efficiently as possible. TAM translator is responsible for mapping TAM

registers to physical registers or spill areas.

 TL0 registers are implemented on the SPARC processor using a single register window [1]. The single

register window is divided into three categories: special-function registers, thread registers, and inlet registers. The

special-function registers hold important variables and constants such as pointer to the top of the LCV (lcv), node

ID, frame pointer (fp), pointer to the base of current code-block, and a pointer to frame scheduling queue. The TL0

instruction pointer and the inlet instruction pointer are both mapped onto the SPARC program counter register.

There are sixteen thread registers that are under the control of the register allocator. The inlet registers hold message

related variables such as the inlet frame pointer (ifp) and function arguments.

3 . Message Handling

Message reception can be implemented using either polling or interrupts. For polling, messages are stored

into an on-chip queue. The network is polled and if there is a message, it dispatches to the code indicated by the first

word of the message at the head of the queue, i.e., the inlet. The inlet first loads the message data into registers and

then stores it into the frame memory. For interrupts, the network interface signals an interrupt on a message arrival

causing a trap to the kernel. The kernel forwards the interrupt to the user process by creating a stack frame for the

inlet and returning to it.

5

Due to the prohibitive cost of interrupts, TAM’s implementation on the CM-5 is to explicitly poll the

network once in every thread [1]. If the thread contains an instruction which might access the network, such as a

SEND, then the poll is combined with this instruction. All other threads have an explicit poll inserted at the end of

the thread. Each poll incurs a cost of 9 cycles, and the overhead of polling is between 4.98%-12.59% of TL0

instructions executed depending on the program. The advantage of polling is that the compiler decides when to poll

for messages. Hence, atomicity is not a problem because there is a tight coupling between computation and

communication.

It is clear that neither polling nor interrupts adequately provides a fast dispatch to user-level message

handlers. Even if the cost of polling or interrupts can be significantly reduced, the execution of inlets constitutes a

large portion overhead and thus an alternative choice is to dedicate a separate processor, i.e., an Inlet-processor, for

handling messages. The responsibility of this processor is to execute the inlet code. The primary advantage of this

is most of the overhead of handling messages can be off loaded to the Inlet-processor. For example, I-structure

fetches and stores can be handled by the Inlet-processor without disturbing the thread execution of the Main-

processor. The idea of having a separate processor to execute inlet code was proposed in the *T project by MIT [6].

However, the important issue of ensuring that FORK, STOP, and SWAP execute atomically relative to POST has not

been adequately addressed. Therefore, the following section proposes the use of a separate processor for executing

inlets and considers the issues of atomicity between the two processors.

4. A Design for Efficient Handling of Messages

In this section, a design is proposed to solve the problem of atomicity between the Main-processor and the

Inlet-processor in the context of TAM. The primary objective is to ensure atomicity between the operations of the

two processors without compromising performance. The Main-processor/Inlet-processor interface is shown in

Figure 2. The design consists of the MBus (a SPARC standard) that connects the Main Memory to the two caches.

The Common Cache holds thread instructions and frames. The Inlet Cache contains inlet instructions as well as

heap elements. The separation of the two caches allow message handling to be done independent of the thread

execution. The Main-processor dispatches all SENDs and heap operations to the Inlet-processor. A separate bus,

called MICBus (Mainprocessor-Inletprocessor-Cache Bus) connects the two processors to the Common Cache. The

6

Main-processor Inlet-processor

Common
Cache

Inlet
 Cache

Main Memory

Network
Interface

MICBus

To/From
Network

MBus

Bus
Arbiter

Control Lines

Compare
Logic

Figure 2: Main-processor/Inlet-processor interface.

Network Interface is directly integrated into the Inlet-processor freeing up the MICBus for thread execution. Since

the Inlet-processor operates completely independent of the Main-processor, a separate connection is provided to the

Inlet Instruction cache. Moreover, a Bus Arbiter is introduced that gives both processors the same priority. The set

of Control Lines and the Compare Logic provide the necessary means to ensure atomicity between threads and inlets.

Based on these assumptions, the following operations must be atomic: Access to synchronization counters,

and access to the LCV. The following subsections will discuss in detail each of these operations. A detailed

discussion of other essential problems, such as inter-processor communication and the SWAP operation, is beyond

the scope of this paper and can be found in [4].

7

4 . 1 Access to Synchronization Counters

The TL0 instructions that access synchronization counters are synchronizing FORKs and POSTs. The parts

of the SPARC assembly code for FORK and POST that access synchronization counters are shown below.

FORK (cycles) POST (cycles)
ldb sync[fp],tmp1 (2) ldb sync[ifp],tmp1 (2)
subcc tmp1,1,tmp1 (1) subcc tmp1,1,tmp1 (1)
bnz,a continue (1/2) bnz,a continue (1/2)
(or cdbp thr_addr) (2/3) stb tmp1,sync[ifp] (3)
stb tmp1,sync[fp] (3)

Both sequences basically start by loading the synchronization counter (ldb) from the frame and

decrementing it (subcc). If the decremented count is not zero, it is stored back using the delay slot (stb) and the

next instruction is executed (at continue). On the other hand, if the decremented count is zero, a FORK will either

branch to a thread1 or push a thread onto the LCV, while a POST will push a thread on the LCV (if fp=ifp) or

RCV (if fp≠ifp). The cdbp, which stands for conditional double branch and pop, is a special instruction that has

been proposed to reduce the cost of implementing TAM control instructions. The basic idea is to hold the next

thread pointer (ntp) from the top of the LCV in a special register called r_ntp. After the entry count has been

decremented, if the count is zero, the cdbp instruction jumps to the thread at the location thr_addr; otherwise, it

jumps to the address contained in r_ntp. If the control transfers to the location given by r_ntp, r_ntp is

updated by popping the next enabled thread pointer into it, and then the delay slot is used to store back the entry

count. This instruction eliminates the need to execute STOPs that pop threads from the LCV after branches to

unsuccessful synchronizing threads. For a detailed explanation of cdbp, see [2].

An atomicity problem due to the access of a synchronization counter will occur only, if both the Main-

processor and the Inlet-processor access the same synchronization counter, i.e., a problem exists if one processor

tries to load the counter that has just been loaded by the other processor, but has not yet been stored back.

Most modern processors provide some form of atomic access to shared variables to facilitate

multiprocessing [9]. Although these operations can be used to implement atomic accesses to synchronization

counters, the generality of these instructions is unnecessary in the proposed design for the following reasons: First,

unlike the UMA model, synchronization counters in the TAM model exist within the frame, i.e., they are local.

Therefore, access to synchronization counters has to be atomic only between the Main-processor and the Inlet-

1 The FORK sequence shown is for branch to a thread.

8

Set by stb

AND

L LEqual?

S

R

D S

R

D
SLOCK SLOCK

SYNC_OK SYNC_OK

Address Address

Main-processor Inlet-processor

Bus
Arbiter

CMP
OR

Zero bit
Set by lds

OR

Set by lds
Zero bit

Set by stb

Figure 3: A design for atomic access to synchronization counters.

processor, not among an arbitrary number of processors. Second, by relying on the particularities of how the two

processors interact, a specific hardware can be designed to minimize the overhead due to atomic accesses of

synchronization counters (e.g., busy-waiting).

The proposed design is shown in Figure 3 and it operates as follows: The Bus Arbiter allows only one of

the processors to access the MICBus. When this processor wants to access a synchronization counter it puts the

address of the synchronization counter on the address bus. It also sets the S(ync)LOCK signal that is slightly

delayed, so that the address can be held by the appropriate edge-triggered latch L. To ensure atomicity, the SLOCK

signal must remain set until the synchronization counter is loaded, decremented and is either zero or stored back. In

order to set SLOCK, a new instruction is proposed that uses the existing control logic for the common ‘load byte’

instruction (ldb). This instruction, lds - load synchronization counter, is similar to ldb but additionally clears

the zero bit and then sets SLOCK at the beginning of its bus access. SLOCK is then reset by generating a special

control line whenever the zero bit is set or the stb operation completes. The comparator basically detects if the

same synchronization counter is being accessed by both processors. If the addresses are not equal, the CMP signal

remains zero and thus SYNC_ OK remains zero. On the other hand, if SYNC_ OK is set, the processor that is just

beginning its bus access must stall until the other processor has reset SLOCK.

Except for the rare case when both processors access the same synchronization counter simultaneously, our

design basically reduces the problem of atomicity to a problem of bus contention. Thus, whenever one processor

9

accesses a synchronization counter, the bus penalty for the other processor is simply one cycle due to the data load of

the lds instruction plus, if the synchronization fails, another two cycles for the data store of the stb instruction.

4 . 2 Access to the LCV

Conceptually, having both processors simultaneously access the LCV creates two atomicity problems.

First, each push/pop on/from the LCV by the Main-processor potentially interferes with a push on the LCV by the

Inlet-processor (i.e., FORK-POST interference). Second, a SWAP can execute during a POST to the just terminating,

yet still running frame. This operation could cause the problem that the POST might push a thread on the just

emptied LCV (i.e., SWAP-POST interference).

Since the LCV and the RCV (i.e., the continuation vector that is about to become the LCV) are actually in

different memory locations, it is possible to alleviate the FORK-POST interference entirely and simplify the design

by having FORKs push threads only on the LCV and POSTs push threads only on the RCV. There are two possible

implementations of this scheme when inlets post threads that belong to the currently running frame (i.e., fp=ifp)

to the RCV. The first is to move these threads to the LCV so that the current quantum can continue. The second is

to schedule these threads during the next quantum. However, both methods will degrade the performance because

more than 50% of all threads posted are for the currently running activation and 14%-32% of all threads are enabled

by POSTs during a quantum [1]. Therefore, the side-effect is either a large overhead of moving the posted threads to

the LCV or shorter quanta and thus more frequent context switches that are expensive.

To eliminate the aforementioned overhead, the proposed method, which leads to a slightly more complex

design, allows the LCV to be shared between threads and inlets.

4 . 2 . 1 FORK-POST Interference

 The proposed design implements the LCV as a queue-stack. That is, the Inlet-processor always pushes

threads on the bottom of the stack whereas the Main-processor pushes/pops threads on/from the top of the stack.

This can be implemented by having the pointer to the top of the stack (lcv) in a Main-processor register and the

pointer to the bottom of the stack, called lcvend, in an Inlet-processor register. The advantage of the queue-stack

10

...

Next thread ptr. (ntp)

Thread Pointer 2

Thread Pointer 3

Thread Pointer n

ltp

lcvend

lcv

Mainprocessor Registers

r_ntp

r_ltp

lcv

Inletprocessor Registers

lcvend

Figure 4: Queue-stack representation of the LCV.

is the two processors do not have to share lcv in order to push/pop threads. Figure 4 illustrates the implementation

of the queue-stack.

One problem with the queue-stack is whenever a thread is pushed on the bottom of the stack, the thread

pointer must be inserted in between the leave-thread pointer, ltp, and the pointer to the last computational thread in

the stack (i.e., Thread Pointer n). This is because the leave-thread implements the switching to a new frame by

executing a SWAP and thus must be the last thread executed within the quantum. This can be accomplished by

having the Inlet-processor push a thread on the bottom of the stack and then exchange the bottom two thread

pointers. However, this exchange operation would require four additional cycles for each post compared to the

original stack used by TAM. To eliminate the additional cost, ltp is kept in a Main-processor register called

r_ltp rather than at the bottom of the stack. As soon as lcv from the Main-processor and lcvend from the

Inlet-processor are equal, ltp is moved to r_ntp, which can then be scheduled by the cdbp instruction.

The queue-stack representation of the LCV eliminates the FORK-POST interference; therefore, the only

overhead resulting from this implementation is the bus contention. For the Main-processor, this cost depends on

whether the Inlet-processor posts to an idle (7 cycles), a ready (5 cycles), or a running (2 cycles) frame. These costs

represent only the time actually spent on the MICBus to load and store data [4].

11

lcvend

lcv

Add

2 ==?

Pop Thread

Push Thread

INCLCV(+)

DECLCV(-)

Inlet-processorMain-processor

cmp fp,ifp (i.e., POST start)

next (i.e., POST done)

Condition code
for cbs inst.

STEM

WAIT

HOLDcbs

cdbp

Stall the Inlet-processor

lcv

S

R

D

S

R

D

Figure 5: The design for SWAP-POST interference.

4.2.2 SWAP -POST interference

SWAP occurs only in the execution of a leave-thread. Thus, it is initiated when the LCV becomes empty

(i.e., lcv=lcvend). To maintain atomicity between SWAP and POST, both processors must know the exact state

each other is in. This is accomplished by having a set of control lines between the two processors. Figure 5

illustrates the proposed scheme that minimizes the changes needed to the original SPARC.

In the proposed design, identical copies of lcv exist in both processors. This facilitates the testing of

whether the stack is empty without having a dedicated bus between the processors. In order to maintain coherence

between the two lcvs, both are controlled only by the Main-processor by means of two control lines—INCLCV

and DECLCV. This is done by having a 16-bit adder in the Inlet-processor with the sole purpose of incrementing or

decrementing lcv. Thus, whenever lcv in the Main-processor is incremented/decremented, lcv in the Inlet-

processor is also incremented/decremented during the same cycle. This allows both lcvs to appear identical.

INCLCV is set if the decoded instruction is cdbp (used to pop threads) and the decremented entry count is not zero

(see Section 4.1). DECLCV is set if std is decoded and it addresses lcv. The std instruction, which was

proposed in [2], has post-decrement capability that allows pushing of threads faster. Both control lines are asserted

during the execute cycle.

12

The STEM signal, which indicates whether or not the LCV is empty, must be available to the Main-

processor at the end of the execute cycle of a lcv update. This is because when the entry count is zero for the cdbp

instruction, the next stage of the pipeline must know if the stack has been emptied or not. If it is empty, ltp is

moved into r_ntp during this stage instead of popping a non-existing thread pointer from the empty stack. This

allows the leave-thread to be scheduled next whenever lcv=lcvend.

As long as the Inlet-processor is not posting a thread, the leave-thread executes a SWAP and begins the

process of switching to the next enabled activation. However, a problem occurs if an inlet posts a thread to the

currently running frame (fp=ifp) when lcv and lcvend are equal. The newly posted thread must be allowed to

continue since it may fork other threads. Even if POST is not for the currently running frame, it might be for the

next frame to which the Main-processor wants to swap. Thus, it is important that the Main-processor suspends the

SWAP operation until the Inlet-processor has terminated any POST operation. Both cases basically require the same

action to be taken, i.e., putting the Main-processor in a wait state. Therefore, a control signal WAIT is used to

inform the Main-processor whether or not the Inlet-processor is executing a POST.

The WAIT signal is only set during the part of the POST sequence which must execute without interfering

with SWAP. This part starts with a test to see if the message is for the currently running frame (i.e., cmp

fp,ifp), and ends after either a thread has been posted to the LCV or RCV or a new frame has been enqueued as a

result of posting to RCV. WAIT is reset by the next1 instruction. The HOLD signal on the other hand is used to

irreversibly terminate the current frame and to stall the Inlet-processor. Once SWAP has finished, the HOLD signal

is reset to allow the Inlet-processor to continue its normal execution.

In order to ensure atomicity between POST and SWAP, the first instruction in the leave-thread must check

both STEM and WAIT, and take different actions depending on conditions. Table 1 specifies the four cases. If the

stack is empty (STEM=1) and no inlet is trying to post a thread (WAIT=0), the HOLD signal is set and irreversibly

terminates the current activation by letting the leave-thread continue, which ends with a SWAP. Basically this

invalidates the fp, which resides on both processors, and prohibits the Inlet-processor from executing any inlets as

long as the Main-processor is actually in the process of swapping to the next frame. If the stack is empty

(STEM=1) but there is an inlet trying to post a thread (WAIT=1), the Main-processor is stalled until WAIT is reset.

1 In the Inlet-processor, the ‘next’ assmebly instruction is always the last instruction of an inlet code. It simply dispatches to the next inlet
or waits until a new message has arrived. For more details see [4].

13

Table 1: Condition codes for the cbs instruction on the Main-processor.
WAIT = 0 WAIT =1

STEM = 0 Case 1
The LCV is no longer empty and there is no
inlet trying to post a thread.

Action
Terminate the leave-thread and continue with
the current activation by moving the posted
thread into r_ntp and executing the cdbp
instruction.

Case 2
The LCV is no longer empty and there is an
inlet trying to post a thread.

Action
Same as in the case STEM=WAIT=0.

STEM = 1 Case 3
The LCV is empty and there is no inlet trying
to post a thread.

Action
Assert HOLD and continue with the leave-
thread.

Case 4
The LCV is empty but there is an inlet trying
to post a thread.

Action
Stall until WAIT is deasserted then go to either
Case 1 or Case 3.

If the stack is not empty (STEM=0), the newly posted thread pointer is loaded into r_ntp and then the execution

continues from the new thread. This simply means the fp stays valid and thread execution continues as usual.

A new TL0 instruction ‘CHECK’ is proposed to accomplish the aforementioned task. CHECK either pops

the newly posted thread or sets HOLD and lets the leave-thread continue with SWAP depending on STEM and

WAIT. In order to map CHECK onto the SPARC, a new conditional assembly instruction, cbs - conditional

branch and stall, is proposed. The two control lines STEM and WAIT are used as the condition code. Within

format2 of the SPARC8 instructions (op=0) op2=5 has not yet been implemented [9], so it can be used for this

purpose. The cbs instruction basically uses the existing logic for a conditional branch, except that it has the

additional capability to stall the Main-processor, and it takes its branch condition information from STEM and

WAIT. The mapping of CHECK on the SPARC is as follows:

CHECK
cbs,a stop ; Branch to stop1 or continue with the leave-thread, and thus SWAP (1 or 2)
lduh [lcv],r_ntp ; Use the delay slot to pop newly posted thread into r_ntp (2)

Therefore, CHECK takes either 2 cycles if the leave-thread continues, or 3 cycles (plus 4 cycles for STOP) if the

leave-thread is terminated.

1 The assembly code at ‘stop’ is the TL0 STOP.

14

As soon as the leave-thread terminates, HOLD must be reset. This can be easily accomplished by the

cdbp instruction, which will occur at the end of the SWAP. Although cdbp occurs at various points during

program execution, it is not harmful to reset HOLD at these times, since HOLD will be zero anyway.

5 . System Impact Analysis

This section presents an analysis of the overall performance improvement using an Inlet-processor to handle

messages. This is done by evaluating the impact the proposed design modifications have on the processor time.

The data used for this analysis was from the results of several experiments by the TAM-group at UC Berkeley1. Our

analysis estimates the improvement in the average clock cycles per TAM instruction (CPT) for the modified design

and compares it against the average CPT of an original 64-node CM-5 [1] for two benchmarks, Gamteb and

Paraffins. The overall results of the comparison is presented in Table 2.

Table 2: Distribution of processor time, original and modified.
Gamteb, % of original processor time Paraffins, % of original processor time

Original Modified Original Modified
Main-proc. Inlet-proc. Main-proc. Inlet-proc.

Overhead - 6.80% 1.10% - 7.21% 0.06%
Memory 13.97% 5.96% 8.01% 14.01% 4.67% 9.34%
Operands 8.09% 8.09% - 7.64% 7.64% -
ALU 5.15% 5.15% - 1.27% 1.27% -
Messages 5.88% - 3.89% 0.64% - 0.35%
Heap 33.82% - 24.12% 49.04% - 37.20%
Control 27.21% 17.75% 6.67% 20.38% 14.20% 3.43%
Atomicity 5.88% - - 7.01% - -
Total 100.00% 43.75% 43.79% 100.00% 34.99% 50.38%
Original CPT 13.6 5.95 5.96 15.7 5.49 7.91
Speedup 2.28 1.98
Workload 100.00% 49.98% 50.02% 100.00% 40.99% 59.01%

The table shows the TL0-instruction types and their respective percentages for both the original and the

modified design. For the modified design, the workload distribution for the two processors is also shown and it

includes all the effects resulting from the proposed design—efficient access of synchronization counters, access and

representation of the LCV, the elimination of polling, the introduction of cdbp and std instructions, as well as the

dispatch of SENDs and heap operations to the Inlet-processor.

1 The sources are: 1) TAM - A Compiler Controlled Threaded Abstract Machine[1] and 2) Instruction-mix for several benchmark programs
available at a UCBerkeley ftp-site (ftp.cs.berkeley.edu:/ucb/TAM/sethg/dists.tar.Z).

15

TL0 instructions are divided into various categories. Overhead describes the cost incurred due to MICBus-

contention and the time needed to dispatch all message and heap instructions to the Inlet-processor. Memory is a

result of the penalty cost from an assumed cache-miss rate of 5%. Operands also assumes a 5% cache-miss rate for

bringing operands into the ALU. ALU simply represents the time spent executing arithmetic and logic instructions.

Messages depict the cost of all explicit SEND and RECEIVE instructions. Heap combines all heap related costs,

such as allocation and heap accesses (such as fetching and storing heap-elements). Control reflects the time spent for

all thread scheduling instructions, such as FORK and POST. Finally, atomicity represents the cost of polling. In

the modified design, polling is no longer required since the network interface is integrated into the Inlet-processor1.

As can be seen, the largest improvement comes from heap, control and messages as well as from the elimination of

the overhead atomicity (polling). In the following subsections, the results for control, messages, heap, and

overhead are discussed in more detail.

5.1. Distribution of Control Instructions

Table 3 shows the distribution of control instructions between the two processors. The instructions are

divided into the ones executing only on the Main-processor and POST which executes only on the Inlet-processor.

The improvement in cycle costs for FORK, SWITCH, and STOP is due to cdbp and std assembly instructions [2].

The new CHECK instruction, which performs a conditional test on WAIT and STEM signals, adds to the cycle cost

for the proposed design. The modifications to the SWAP instruction, which were necessary due to the SWAP-POST

interference also add to the cycle cost.

To analyze the effect of these changes the metric, average clock cycles per TL0 instruction (CPT), is

considered, which is obtained by multiplying the instruction frequency of each instruction type by its cycle cost and

summing up these products. This is then used to compute how much the control instructions contribute to the CPT

on each processor as compared to the overall CPT of the original execution on CM-5. As can be seen, the proposed

modifications lead to 73/27 and 82/18 distributions of the workload due to control instructions for Gamteb and

Paraffins, respectively. The total control overhead has been reduced by 11%/15% (Gamteb/Paraffins).

1 It is assumed that the network interface simply sets an appropriate control signal when a message arrives. The Inlet-processor receives
the message as soon as the current inlet has completed [7].

16

Table 3: Distribution of processor time due to control instructions on Main-processor and on Inlet-processor
Main-processor

Cycle cost
Gamteb

in % of TL0-instr.
Paraffins

in % of TL0-instr.
Original Modified Original Modified Original Modified

FORK
 fall-through 0 0 1.11% 1.58%
 unsynchronizing branch 1 1 0.91% 3.86%
 synchr. branch - successful 4 5 2.34% 2.95%

- failed 13 9 6.14% 10.97%
 unsynchronizing push 5 4 0.04% 0.00%
 synchr. push - successful 10 9 4.70% 2.85%

- failed 7 7 3.73% 5.19%
SWITCH
 unsynchronizing branch 3 3 1.48% 2.87%
 synchr. branch - successful 6 7 1.28% 0.13%

- failed 15 11 2.26% 0.11%
 unsynchronizing push 7 6 1.54% 5.44%
 synchr. push - successful 12 11 0.54% 0.00%

- failed 9 9 2.20% 0.00%
SWAP

basic 26 31 0.39% 0.04%
per extra 4 threads 12 12 0.17% 0.00%

STOP 5 4 2.49% 2.85%
SINIT (Init. of entry counters) 4 4 1.74% 8.42%
CHECK

continued - 2 - 0.39% - 0.04%
terminated (plus STOP) - 7 - 0.05% - 0.01%

Computed contribution 2.78 2.42 3.21 2.69
Inlet-processor
POST (without cost for synchr.)

to idle frame 18 17 1.63% 0.13%
to ready frame 14 13 0.98% 0.04%
to running frame 7 7 2.61% 5.84%

POST (cost for synchronization)
failed 7 7 2.74% 1.13%
successful 5 5 2.52% 2.67%

Computed contribution 0.93 0.91 0.65 0.65
Total computed contribution due to control instructions 3.71 3.29 3.86 3.28
Original CPT 13.6 15.7
Original CPT due to control instructions 3.7 3.2
Normalized CPT on Main-processor due to control insts.† 3.7 2.41 3.2 2.23

% of total CPT 27.21% 17.75% 20.38% 14.20%
Normalized CPT on Inlet-processor due to control insts.† - 0.91 - 0.54

% of total CPT - 6.67% - 3.43%
† Due to a slight discrepancy in the two data sources, the computed results were normalized by the ratio of original CPT due to control

instructions and computed contribution to control instructions.

5.2. Messages and Heap

Messages consist of the cost due to two TL0-instructions: SEND and RECEIVE. Heap, on the other hand,

includes the times spent on allocation, control, and access of heap using IFETCH and ISTORE (which are special

forms of SEND). The savings achieved for messages and heap are a result of integrating the Network Interface into

17

the Inlet-processor. This eliminates the expensive uncached loads/stores, which are necessary for RECEIVE/SEND

in the CM-5 (the network interface is on the MBus which connects cache, main memory, and I/O devices) [1].

Moreover, having heap elements stored in the Inlet Cache allows the Inlet-processor to service heap requests without

disturbing the thread execution in the Main-processor. Since all SENDs and heap operations are dispatched from the

Main-processor to the Inlet-processor, their reduced cost is completely shifted to the Inlet-processor (see Table 2).

There is however some penalty incurred due to dispatching to the Inlet-processor, which is included in overhead (see

Section 5.3).

5.3. Overhead

Overhead contains all the costs incurred specifically due to the introduction of the Inlet-processor. These

costs include the extra dispatch time required for messages and heap operations by the Main-processor and stalls

caused by both processors due to MICBus contention and SWAP-POST interference. Table 4 shows the breakdown of

the overhead for both the Main-processor and the Inlet-processor.

Table 4: Overhead cost on Main-processor and on Inlet-processor
Main-processor Cycle cost Gamteb

in % of TL0-instr.
Paraffins

in % of TL0-instr.
Stalls due to MICBus-accesses of Inlet-proc.

POST (without cost for synchronization)
to idle frame 7 1.63% 0.13%
to ready frame 5 0.98% 0.04%
to running frame 2 2.61% 5.84%

POST (cost for synchronization)
successful 1 2.52% 2.67%
failed 3 2.74% 1.13%

RECEIVE (local and remote) 2 4.03% 0.28%
Stalls due to CHECK waiting for POST to finish 11.25/7.26 0.44% 0.05%
Contribution to CPT 0.53 0.34
 % of original CPT 3.90% 2.17%
Other overhead in % of original CPT
 message-dispatch cost 2.35% 4.97%
 heap-dispatch cost 0.55% 0.06%
Main-processor overhead in % of original CPT 6.80% 7.21%
Inlet-processor
Stalls due to CHECK

continued 2 0.39% 0.04%
Stalls due to SWAP

basic 31 0.39% 0.04%
per extra 4 threads 12 0.17% 0.00%

CPT due to overhead on Inlet-processor 0.15 0.01
Original CPT 13.6 15.7
Inlet-processor overhead in % of original CPT 1.10% 0.06%

18

The costs for POST and RECEIVE include only the cycles when the Inlet-processor is actually on the

MICBus. If POST has already started, CHECK always waits for it to finish. The penalty for this operation can be

computed by multiplying the frequency of CHECK (see Table 3) with the average number of cycles spent on POST

without the cost for synchronization when WAIT is set. This average number varies from benchmark to benchmark

depending on the number of POSTs to idle, ready, or running frames. There is also an overhead cost for the Inlet-

processor since it has to stall while the Main-processor is executing a SWAP. Thus, the Inlet-processor sees the full

penalty cost of CHECK (when continued) and SWAP instructions. CHECK, when terminated, never sets HOLD, thus

it does not stall the Inlet processor.

Notice that it is safe to assume no additional costs exist for the Inlet-processor when the Main-processor

accesses synchronization counters or the LCV. This is because the Inlet-processor fetches instructions from the Inlet

Cache. Thus, it needs to access the MICBus only for frame data (in the Common Cache), which does not occur very

often compared to the total processor time. In contrast, the Main-processor uses the MICBus not only to access the

frame, but also to fetch its instructions. Since the Bus Arbiter gives each processor equal priority, it is highly likely

that the Inlet-processor will always be granted the bus immediately.

The results show that the cost of swapping frames for the Inlet-processor varies depending on the

benchmark. For Gamteb, it takes more than 2% of the processor time on the Inlet-processor whereas in Paraffins

this overhead is almost zero due to the relatively low number of SWAPs.

6. Conclusion

This paper proposed architectural modifications required to solve the atomicity problem that occur as a

result of introducing a separate processor to handle messages in the context of TAM. The proposed design

maximizes the performance by balancing the load between the two processors and minimizes the overhead cost by

providing specific architectural support. This has been achieved without disturbing the original functionality of the

SPARC processor. Our analysis indicates a separate processor with integrated network interface compensates for a

major drawback of the implementation of fine-grain programs—the message overhead. The resulting speedup is very

encouraging, e.g., 2.3 for Gamteb on a 64-node CM-5.

19

Since the Inlet-processor is an independent processor purely custom designed to primarily support TAM, we

were free to design and modify it arbitrarily in a reasonable manner according to our needs. However, the design is

not restricted to the TAM execution model. The conceptual implications can be applied to any other fine-grain

execution models.

Acknowledgment

The authors are grateful to Ellen Spertus for her insightful comments on an earlier version of this paper.

References

[1] Culler, D. E. et al., “TAM—A Compiler-controlled Threaded Abstract Machine,” Journal of Parallel and

Distributed Computing, June 1993.

[2] Kotikalapoodi, S. V., Lee, B., Lu, S. L., and Hurson, A. R., “Architectural Support for Fine-grain

Multithreading on Stock Processors,” To appear in the Journal of Mini and Micro Computers.

[3] Lee, B. and Hurson, A. R., “Dataflow Architectures and Multithreading,” IEEE Computer, August, 1994,

pp. 27-39.

[4] Metz, D., “Analyzing the Benefits of a Separate Processor to Handle Messages for Fine-grain Multithreading,”

Technical Report TRECE95.03, Oregon State University, ECE Department.

[5] Nikhil, R. S., “ID Language Reference Manual Version 90.1,” Technical Report CSG Memo 284-2, MIT

Lab for Comp. Science, Cambridge, MA, 1991.

[6] Nikhil, R. S., Papadopoulas, G. M., and Arvind, “*T: A Multithreaded Massively Parallel Architecture,”

Proc. 19th Annual Int'l. Symposium on Computer Architecture, 1992, pp. 156-167.

[7] Papadopoulos, G. M. et al., “*T: Integrated Building Blocks for Parallel Computing,” Supercomputing 93,

Portland, Oregon, November 19, 1993.

[8] Schauser, K. E., Culler, D. E., and von Eicken, T., “Compiler-controlled Multithreading for Lenient Parallel

Languages,” Proceedings of the 1991 Conference on Functional Programming Languages and Computer

Architecture, Cambridge, MA, August 1991.

[9] Sparc International, Inc., Menlo Park, California, “The SPARC Architecture Manual, version 8,” Prentice

Hall, 1992.

[10] Spertus, E. et al., “Evaluation of Mechanisms for Fine-grained Parallel Programs in the J-Machine and the

CM-5,” Proceedings of the 20th Int'l Symposium On Computer Architecture, San Diego, CA, May 1993.

