
45

Security Issues and Challenges for Virtualization

Technologies

FEDERICO SIERRA-ARRIAGA, Intel Corporation and Universidad Autónoma de Guadalajara, México

RODRIGO BRANCO, Intel Corporation and Oregon State University, School of Electrical Engineering

and Computer Science, USA

BEN LEE, Oregon State University, School of Electrical Engineering and Computer Science, USA

Virtualization-based technologies have become ubiquitous in computing. While they provide an easy-to-

implement platform for scalable, high-availability services, they also introduce new security issues. Tradi-

tionally, discussions on security vulnerabilities in server platforms have been focused on stand-alone (i.e.,

non-virtualized) environments. For cloud and virtualized platforms, the discussion focuses on the shared us-

age of resources and the lack of control over the infrastructure. However, the impact virtualization technolo-

gies can have on exploit mitigation mechanisms of host machines is often neglected. Therefore, this survey

discusses the following issues: first, the security issues and challenges that are introduced by the migration

from stand-alone solutions to virtualized environments—special attention is given to the Virtual Machine

Monitor, since it is a core component in a virtualized solution; second, the impact (sometimes negative) that

these new technologies have on existing security strategies for hosts; third, how virtualization technologies

can be leveraged to provide new security mechanisms not previously available.; and, finally, how virtualiza-

tion technologies can be used for malicious purposes.

CCS Concepts: • Security and privacy → Virtualization and security;

Additional Key Words and Phrases: Virtual machine monitor, cloud computing, security vulnerabilities, vir-

tualization survey, hypervisor

ACM Reference format:

Federico Sierra-Arriaga, Rodrigo Branco, and Ben Lee. 2020. Security Issues and Challenges for Virtualization

Technologies. ACM Comput. Surv. 53, 2, Article 45 (May 2020), 37 pages.

https://doi.org/10.1145/3382190

1 INTRODUCTION

Virtualization technologies have their origins from the 1960s [40]. However, they only became
available to the general public during the late 1990s and early 2000s when the first commercial
virtualization solutions for the x86 architecture started gaining popularity and Internet speeds
allowed for the launch of cloud computing platforms, such as Salesforce.com in 1999 and Amazon
Web Services in 2002 and public virtualization services such as Amazon EC2 in 2006 [92]. The cloud

Authors’ addresses: F. Sierra-Arriaga, Avenida del Bosque #1001, El Bajío, 45017, Zapopan, Jalisco, México; email:

federico.sierra.arriaga@intel.com; R. Branco and B. Lee, School of Electrical Engineering and Computer Science,

1048 Kelley Engineering Center, Oregon State University, Corvallis, OR 97331; emails: rodrigo@kernelhacking.com,

benl@engr.orst.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0360-0300/2020/05-ART45 $15.00

https://doi.org/10.1145/3382190

ACM Computing Surveys, Vol. 53, No. 2, Article 45. Publication date: May 2020.

https://doi.org/10.1145/3382190
mailto:permissions@acm.org
https://doi.org/10.1145/3382190

45:2 F. Sierra-Arriaga et al.

computing market has experienced continuous growth without any indication of slowing down
[22] and virtualization technologies are critical for cloud service models such as Infrastructure as
a Service (IaaS).

The adoption of virtualization has created a new set of security considerations:

• In the case of cloud platforms, different customers may end up sharing a single physical
host, increasing the importance of isolation. That is, data confidentiality of a guest Virtual
Machine (VM) needs to be protected against attacks initiated by another guest in the same
physical machine. Likewise, a Denial of Service (DoS) attack initiated by a VM against the
physical host must be properly mitigated, since such an attack might impact all the VMs in
the server.

• Most virtualization solutions have at least one important software component—the Virtual
Machine Monitor (VMM), which can be affected by software bugs that lead to security vul-
nerabilities.

• New forms of malware that target virtualization have appeared and, since they operate
with a higher level of privilege than the operating system (OS) [129, 167], they cannot be
suppressed by traditional techniques like antivirus software.

• Some of the traditional security strategies for stand-alone systems are weakened or ren-
dered useless when virtualization is introduced. Traditional security strategies may work
under assumptions that are not necessarily true for virtualized systems (i.e., a VM can share
a physical host with another VM, which can be malicious).

Motivated by these issues, this article surveys security issues in virtualization technologies, in-
cluding new hardware capabilities to mitigate threats. Since the term virtualization is used in dif-
ferent contexts, we want to be specific on the use of the term as applied to this work: System-level
virtualization that partitions and isolates a hardware system for running commodity operating
systems. The objective of the survey is to provide the state-of-the-art on security issues related to
virtualization by giving some real examples of security problems unveiled in the past, defining the
technologies developed to overcome those problems, and how/where they are applied. The focus
is on defining the problems (past mistakes) and challenges (on mitigating systemic issues, but not
necessarily on mitigating simple case scenarios in which a simple patch would fix a code error).

Section 2 gives a quick review of the most common VMM architectures and discusses their
differences with alternative approaches to resource partition and isolation. Section 3 uses a clas-
sification of the most common attacks to a VMM platform. Section 4 gives concrete examples of
such attacks.

Since virtualization adds a new layer of complexity to existing platforms, Section 5 discusses
how pre-existing security mechanisms are affected by the introduction of this technology.
Section 6 discusses how virtualization can be used to improve security of existing systems in the
context of the security triad (Confidentiality, Integrity, and Availability), and Section 7 discusses
how malicious actors can take advantage of virtualization technologies to design and implement
new types of attacks. Before the survey concludes in Section 9, it also discusses (in Section 8) the
future trends and gaps related in security research related to virtualization.

2 BACKGROUND

A VMM, also called hypervisor, is a dedicated component typically implemented in software that
manages the host resources and makes them available to a set of VMs. A VM is a logical partition
of the resources of the host system and has the capability of executing an OS in isolation from
the other VMs (although resources like I/O devices and some memory areas may be shared) [147].
Figure 1 shows the two basic architectures on which a VMM can interact with the resources of

ACM Computing Surveys, Vol. 53, No. 2, Article 45. Publication date: May 2020.

Security Issues and Challenges for Virtualization Technologies 45:3

Fig. 1. VMM architectures. A Type I VMM runs directly on top of the physical hardware. A Type II VMM

runs on top of an existing OS.

the host. The following definitions are taken from Robert P. Goldberg’s seminal work on VMM
architecture [56]:

• Type I or bare metal: The VMM runs on a bare machine.
• Type II or hosted: The VMM runs on an extended host, under the host operating system.

Both types of VMMs handle the creation of a VM, but Type I VMMs are additionally directly
in charge of allocating and scheduling the physical host resources. Examples of Type I VMMs are
VMware ESXi [151] and The Xen Project [111].

A Type II VMM, however, runs as part of an extended host and the OS performs its usual al-
locating and scheduling of resources. Examples of Type II VMMs include Oracle VM VirtualBox
[101], VMware Workstation [152], and KVM (which is packaged as a Linux kernel module and
“uses Linux scheduler and memory management”) [16, 108].

The following two subsections discuss the functionalities provided by VMM and other means
of providing isolation as alternatives to using virtualization.

2.1 VMM Functionalities

To perform any security analysis on VMMs, the scope of their functions must be well defined and
understood. Based on the NIST definition [18], the following VMM functions are identified:

• Execution isolation of the VMs: The VMM must be able to handle simultaneous execution of
one or more guest VMs (or at least make their execution appear simultaneous). These VMs
will be using the same set of resources (i.e., memory, CPU, I/O devices, etc.). Therefore, the
VMM needs to provide each VM with an isolated execution environment to prevent one
VM’s behavior from affecting the others.

• Devices emulation and access control: The VMM is responsible for presenting the guest VMs
with an abstraction for each device “decoupled from its physical implementation” [153].
Each VM must be able to use a device as if it had exclusive ownership without interfer-
ing with the other VMs. Some existing approaches allow a specific VM to have complete
control over a device without a virtualization layer in between, which is referred to as hard-
ware pass-through, but this introduces new security considerations that will be discussed in
Section 4.2.

• Execution of privileged operations by the VMM for Guest VMs: Some operations that are avail-
able to the OS (privileged mode) in a stand-alone architecture, e.g., the LGDT (Load Global

ACM Computing Surveys, Vol. 53, No. 2, Article 45. Publication date: May 2020.

45:4 F. Sierra-Arriaga et al.

Descriptor Table register) instruction, are not allowed to be performed by guest VMs in a
virtualized environment due to security concerns. These operations are instead executed
by the VMM on behalf of guest VMs.

• Management of VMs: The VMM must provide a mechanism for management of guest VMs.
This includes guest creation, assignment of host resources, monitoring, relocation, and
maintenance. Most VMMs provide an interface to perform these tasks. Some advanced fea-
tures such as snapshots and backups are also provided.

• Administration of VMM platform and software: The VMM controls the interaction between
its software and the host, usually through a web interface or a virtual console.

Modern hardware provides extensions to facilitate the implementation of the different function-
alities of a VMM. On Intel platforms, those extensions are called Virtualization Technology for IA-32
and Intel 64 Processors (VT-x), and on AMD, they are simply called Virtualization (AMD-V). Solu-
tions that rely on hardware extensions are often called Hardware-assisted Virtual Machine (HVM).
Many platforms (and hypervisors) also support the concept of nested virtualization. In those sys-
tems, it is possible to have multiple layers of virtualization, which means that a hypervisor would
run on top of another hypervisor, instead of directly on top of the hardware.

2.2 Alternative Ways to Provide Isolation

VMMs are not the only technology that can provide isolation and partitioning of the resources of
a host. Traditional OS-level sandboxes provide similar features, which are based on implementing
or enhancing protections at the OS level instead of adding another layer to the platform. Although
this survey focuses on VMMs, some implementations of this approach will be discussed in this
subsection for completeness.

2.2.1 Chroot/Jails. In UNIX systems, the chroot operation changes the root directory of a pro-
cess. This affects the directory resolution and prevents the process from writing to elements of the
file system outside the directory tree passed as a parameter to the call. Although chroot provides
a certain level of isolation, it was not designed as a security mechanism and it is not difficult to
break [43]. FreeBSD jails adds to this mechanism by providing a separate partition and IP address
for each jail. This mechanism is flexible enough to allow for partitions that behave like a complete
system (“complete jails”) or used only to run a service or a particular application (“service jails”)
[122]. Thus, FreeBSD jails are essentially security containers as explained next.

2.2.2 Containers. In a container-based solution, a single OS partitions the resources of a host
and provides isolation among those partitions. This is shown in Figure 2. Implementations of this
technology include Linux Containers (LXC) [63] and Microsoft Server Containers [106, 126].1 Note
that containers isolate more than just the filesystem, as opposed to chroot/jails.

Container-based solutions have certain advantages over VMMs. Since they work at the OS-
level, no additional layer is needed to manage the host resources. This results in less complexity
and overhead than VMMs. However, sharing the OS kernel means that the provided isolation
is not as strong as in virtualization-based environments. Therefore, solutions exist to limit the
exposed/common areas per-container to minimize the impact of OS-level vulnerabilities [44].

2.2.3 Trusted Execution Environments. Trusted Execution Environments (TEEs) can be used in
application domains where assets (such as hard-drive encryption keys and payment processor
applications) need to be protected from a potentially malicious OS. The concept of an isolated pro-
cessing area where sensitive information can be stored and trusted programs can be executed has

1Microsoft also offers Hyper-V containers, which are virtualization based.

ACM Computing Surveys, Vol. 53, No. 2, Article 45. Publication date: May 2020.

Security Issues and Challenges for Virtualization Technologies 45:5

Fig. 2. Container-based isolation. An OS is shared among partitions and provides isolation between them.

Fig. 3. Trusted Execution Environments. The resources of a system are not partitioned, but a processing area

is isolated from the rest of the system. This area is used to store sensitive resources like data and code for

execution. Access from outside to the sensitive assets can be controlled by a dedicated interface.

been implemented independently by different vendors using software, hardware, or both. Figure 3
shows a simplified picture of a TEE, where the controlled interface provided by the OS allows a
TEE to access resources outside its boundary. To facilitate adoption and interoperability, standards
must be defined. GlobalPlatform is an association that is working toward standardization of TEEs
[107]. Two examples of hardware architectures that support TEEs are ARM TrustZone [9], which
implements the model described above, and Intel SGX (discussed below).

Intel Software Guard Extensions (SGX). This is a TEE that allows developers to create applica-
tions with the ability to protect specific data and code portions from high privilege software in
the system (OS or VMM). This is especially relevant in cloud environments where the owner of
the data is not necessarily the owner of the platform hardware and software. Secrets protection
is accomplished by creating dedicated regions of memory called enclaves (where the secrets will
reside) and setting up trusted channels to provision these secrets into them. It also provides with
a hardware-based attestation mechanism so applications can confirm that the enclaves used are
legitimate. To use this technology, the system must have a CPU with SGX support and it also must
be supported in the BIOS. An SDK is distributed by Intel to build SGX-extended applications using
common compilers and tools [24].

Some TEE architectures are designed to suplement virtualization technologies to enhance
their security: Secure Encrypted Virtualization (SEV) is a technology developed by AMD [3]. It

ACM Computing Surveys, Vol. 53, No. 2, Article 45. Publication date: May 2020.

45:6 F. Sierra-Arriaga et al.

implements cryptographic protections for the data associated to the guest VMs. For each guest, a
tag is generated and an AES-128 key is created based on the tag. The key is generated using the
AMD secure processor (AMD-SP) integrated into the SoC and it is never exposed. This key is used
to encrypt the guests data in main memory. This prevents external entities (including the host
administrator) from accessing data in plaintext form. The guest is allowed to decide whether all of
its memory is protected or only a subset [77].

TEEs are a viable alternative to VMMs to provide isolation for security purposes, but the tech-
nology can also be prone to security vulnerabilities: The implementation of a complete Trusted
Operating System (as described in the model) can be a source of bugs [124]. And the complete
security model collapses if the secure boot chain is compromised [114].

3 CLASSIFICATION OF VMM SECURITY PROBLEMS

This section discusses a classification scheme for virtualization vulnerabilities from the perspective
of their impact on the overall platform security. The security problems discussed in this survey are
mostly specific to virtualized technologies although some are also present in stand-alone solutions,
e.g., side-channels. Pék et al. proposed this classification based on source and target for the attacks
[104].

3.1 Classification Based on Source and Target for the Attack

This classification is based on the attack path (i.e., its origin and destination) and it is very help-
ful in understanding the boundaries introduced by virtualization and how these boundaries are
susceptible to security attacks.

• Guest to VMM – An attacker in control of a guest VM can launch an attack against the
VMM. This attack is the most serious, because the VMM is in charge of providing isolation
for the whole environment. This type of attacks will become more common as virtualization
becomes pervasive, and thus protecting against it will be crucial.

• Guest to Host – The host is the underlying OS that runs a VMM in a Type II hypervisor (see
Figure 1). Some hypervisors also have a special, highly privileged guest VM (e.g., Dom0 in
the Xen hypervisor). This type of attack involves a guest VM escaping the hypervisor and
executing code in the host OS or as a highly privileged guest. The consequences of this
attack are comparable to Guest to VMM attacks.

• Host to VMM – An attack on the host (not necessarily by a privileged user) may be used
to gain control of the VMM. An example of attack vector can be a vunerable application
running in the host and being exploited.

• Guest to Guest – An attack (from a guest VM) breaks the isolation provided by the VMM
and is able to influence the behavior or has access to the assets of another guest VM under
the control of the same VMM.

• Guest to Self and Host to Self – This is a vulnerability that permits the elevation of privileges
in the same context (either as guest VM or host OS). These attacks predate virtualization
technologies and they have been discussed at large in works related to stand-alone systems.
However, they must also be taken into account in the context of virtualization because of
the specific cases where they exploit vulnerabilities in the VMM.

A commonly used term for vulnerabilities that break guest VM isolation is guest escape vulner-
abilities, which can be considered as another classification option. This classification groups the
Guest to VMM, Guest to Host, and Guest to Guest categories from the list above.

ACM Computing Surveys, Vol. 53, No. 2, Article 45. Publication date: May 2020.

Security Issues and Challenges for Virtualization Technologies 45:7

3.2 Threat Model

Threat modeling is the process of enumerating threats that a given system (software, hardware,
or the entire computing environment) is expected to protect against. Threat models can be as
big as involving an entire company data (including partner relations, customers and others) or
as specific as looking at a single component. This survey discusses different vulnerabilities that
exist on different threat models. For instance, a guest operating system attacking a host operating
system is only a security problem if the virtualization is considered to be providing a security
boundary for that overall platform.

With a threat model so diverse (given the multitude of potential uses of virtualization), the
survey tries to enumerate different classes of issues (instead of listing all cases of a given class).
The intention behind that choice is to provide an entry point for each of the classes to be considered
(which makes finding additional instances of a given class much easier).

For each of the security issues analyzed, the survey also includes the primitive obtained by
the attacker (a primitive is a capability that an attacker exploiting a given issue gets access to—
and that she did not have before—and is what is leveraged to cause the impact). An example of
a primitive is an attacker exploiting a side-channel vulnerability to read memory areas that were
protected otherwise. The same primitive (memory read) could be obtained by a code error in which
a privileged entity (like a hypervisor) receives an un-trusted (i.e., a value coming from the guest)
pointer and does not properly check it before dumping the values in memory this pointer refers
to. While the underlying security issue is completely different, the exposed primitive is essentially
the same. With a primitive, the attacker has many creative ways to increase the impact on the
system’s security (i.e., with the same memory read an attacker could try to target the passwords
in memory and with that elevate her privileges on the system).

In a threat model, assets (i.e., what needs to be protected) and security objectives (i.e., what se-
curity policies the system enforces to its assets) must be defined. For a general purpose computing
platform, in which different use-cases exist, it gets much harder. That is why for each of the issues
discussed, the survey also explicitly mentions a scenario in which the issue is a security prob-
lem/concern. Notice that in different scenario/use-cases, that same issue might not be a problem
at all.

During the threat modeling, a trusted computing base (TCB) is also defined, which lists the set
of all elements that are trusted (i.e., they are not considered attack sources) by the system under
analysis to meet its security objectives. By definition, anything that is considered part of the TCB
must also meet the security objectives, because if compromised, it would have the same effect as
compromising the elements that trust it.

The composition of the different components (and threat models) is the challenge in securing
a system (or environment). Threats (also known as adversaries) must be identified as they are the
source of potential attacks. Adversaries could be anything that is un-trusted for that specific system
and need to be mitigated in order for it to achieve its security objectives, i.e., other devices in the
platform, software running with high privileges, and so on.

As a technology that is commonly used to share platform resources, hypervisors are often ex-
pected to provide security boundaries between different guest operating systems. Supporting infra-
structure to manage multiple guest systems (and automate the creation of virtual-machines and the
management of resources) add to complexity of analyzing security for virtualized environments.

4 EXAMPLES OF VMM SECURITY ISSUES AND ATTACKS

This section provides examples of virtualization related vulnerabilities that have occurred in the
past. The discussion is based on the source and target for the attack categorization presented in

ACM Computing Surveys, Vol. 53, No. 2, Article 45. Publication date: May 2020.

45:8 F. Sierra-Arriaga et al.

Section 3.1. The examples for categories Guest to Host and Guest to VMM are presented together,
since there can be some overlap among them.

As explained before, instead of trying to be comprehensive (which is an unfeasible task), this
work lists examples in each category to facilitate the understanding of the security boundaries
that are provided by a hypervisor (and how the boundaries fail in the presence of bugs). Modern
secure software development practices minimize the existence of such issues, and modern software
mitigations might help prevent the exploitation of specific cases, but overall the examples discussed
do not have a single general mitigation. To facilitate the understanding of each of the cases listed,
the exposed primitive is also explained (so it is possible to compare the cases with others that were
not covered).

4.1 Guest to Host and Guest to VMM

These two categories cover vulnerabilities that allow guest VMs to compromise the host machine
thereby escaping the hypervisor policies. Usually the primitive the attacker is after provides in the
end an arbitrary code execution (in which she is able to execute anything with the privileges of
the attacked component). Notice that the relation between a read primitive, a write primitive and
an arbitrary code execution is many times transitional (i.e., a write primitive might lead to the full
control over the execution flow of a program). The intention on listing different examples is to
show the extent of the complexity of a modern hypervisor implementation, and to list usual code
issues that could culminate in a security violation. The mitigation for the issues listed in this sub-
section are all simple software patches (general mitigations like those to prevent the exploitation
of buffer overflows are not discussed in this survey, since they are not specific to virtualization,
but would commonly reduce the impact from arbitrary code execution to a denial of service and
not much else).

A hypervisor intercepts certain instructions from guest VMs to emulate their functionalities.
In Parallels Desktop,2 some assembly instructions erroneously cause a VMM abort, which can be
used to perform DoS attacks (thus giving an attacker the ability to disrupt services that otherwise
she would not be able to disrupt). While DoS is not a primitive per-se, the mishandling of the event
caused an undesired impact. These include the INT 0xAA instruction that generates the software
interrupt 0xAA, the IRET instruction that returns from an interrupt, the MOVNTI instruction that
moves a double word from register to memory, and reading from or writing to SEGR 6 and 7
(segment registers). A malicious guest can use any of the previously mentioned instructions to
cause a VMM abort and bring down all the guests in the system [102].

Project QEMU (Quick EMUlator) is an open source VMM and CPU emulator. It can be used as
stand-alone or with other solutions such as Xen. When used in conjunction with the Xen hyper-
visor, only the device emulation functionality of QEMU (called the Device Model) is used and the
CPU virtualization part is handled by Xen [109].

QEMU version 0.8.2 used in Xen provided a Cirrus VGA extension that was vulnerable to vari-
ous heap-based buffer overflows [102]. This functionality provides a graphics update command to
change a console display geometry (using the cirrus_invalidate_region() function to mark
regions as dirty during video-to-video copy operations). Since the supporting code runs on the
Device Model process with VMM privileges, a successful exploitation of this vulnerability leads to
a guest VM escape (i.e., achieving arbitrary code execution from the Guest to VMM).

In 2004, an emulated Floppy Disk Controller support was added to QEMU [53]. This controller
supports a series of commands to be received through a queue, which is initialized to a size of

2In the original article, software vendor was not named, since they did not respond on time for publication. In Reference

[99], the product name is included as Parallels Desktop.

ACM Computing Surveys, Vol. 53, No. 2, Article 45. Publication date: May 2020.

Security Issues and Challenges for Virtualization Technologies 45:9

512 bytes. Since the commands can have different number and types of parameters, a variable
data_pos is used to keep track of the next position in the queue to be written. Most of the com-
mands correctly reset this variable to 0 after processing, but in two of them, the reset operation
is delayed due to the usage of callbacks with specific timers. This allowed the guest to continue
writing to the queue before the delay ends overflowing the FIFO queue [54]. Note that hypervi-
sors still support floppy disk emulation and VMs configured with this feature enabled likely still
exist (even if the hypervisor and guest VMs have been updated). Although this feature supports
something quite old, the vulnerability was only discovered in 2015 and many environments are
still potentially affected due to the legacy configuration of guest VMs. It is common that structure
overflows like this lead to arbitrary code execution primitives.

A more notorious case was caused by an insufficient boundary check in the VMware SVGA II
emulated video device code, which allowed a guest VM to take control of the vmware-vmx host
process [82]. This vulnerability was also confirmed in VMware ESX Server 4.0.0, which is a bare
metal VMM and is another example of an attacker obtaining arbitrary code execution.

Another example of an I/O related vulnerability is the heap-based buffer overflow in the
bx_ne2k_c::rx_frame() function in iodev/ne2k.cc of the emulated NE2000 network interface
card in Bochs 2.3, which allows a root user of the guest VM to write to memory locations belonging
to the Bochs process [102]. This leads to a Guest to VMM or Guest to Host escape (once again, an
example of arbitrary code execution).

Undocumented instructions can also introduce vulnerabilities when executed in virtualized en-
vironments: The aam instruction (ASCII Adjust after Multiplication) in QEMU 0.8.2, which is un-
documented but is supported by the divisor hardware and is not privileged. Thus, this instruction
can cause divide by zero errors, which can be used by a guest VM to perform possible DoS attacks
against the host [102] (disrupting services that it should not).

4.2 Guest to Guest

This category involves one guest VM attacking (or somehow impacting) other guest VMs. This
may be due to vulnerabilities in the hypervisor, services provided by the host machine, or services
executed in other guests.

When a guest VM using a GPU in the pass-through mode is shutdown, there is a possibility that
another guest VM is started and assigned to the same GPU afterward. In certain situations, the
GPU memory will not be completely erased and the new guest VM is able to read the information
left by a previous guest. This vulnerability was confirmed on NVIDIA GPUs [91]. Given the pass-
through of devices is supported for many different classes, this issue might exist in other devices
as well. The primitive exposed (reading data from other VMs) is interesting and the impact highly
vary depending on the data available to the attacker. The mitigation for this requires the devices
to fully erase their memories (or the hypervisor software ensuring that).

A commonly discussed class of problems in virtualized environment is related to side-channels.
An example is an extension of the Bernstein’s attack [13], which relies on the dependency of the
Advanced Encryption Standard (AES) algorithm on fetching values from tables in memory. An
attacker can take advantage of being in the same physical system as the target. During the first
phase, the attacker encrypts known plain-texts using a known key and profiles the performance
for each key bit in a copy of the target server, called a profiling server (this is plausible, since cloud
implementations usually create equal instances of popular configurations when deploying new
guests) and stores this information in a table. Then, the attacker sends the known plain-texts to
the target server while profiling the timing for the encryption this time using an unknown key. This
information is also registered in a table. Then, the correlation between both profiles are analyzed
resulting in a table with the most probable key candidates. This reduces the key space to only a few

ACM Computing Surveys, Vol. 53, No. 2, Article 45. Publication date: May 2020.

45:10 F. Sierra-Arriaga et al.

entries, which can then be brute-forced to obtain the secret AES key [8]. While this attack is based
on the underlying hardware characteristics, in many cases it is possible to mitigate these risks using
software-based techniques. Some techniques will be discussed in Section 5.4, which discusses side-
channel attacks. The primitive obtained by a side-channels is the ability to read otherwise protected
data (and the context, configuration and usage patterns of the system) highly influence on the
impact. Usual side-channel mitigation recommendations apply also to virtualized environment
(i.e., protecting from un-trusted elements running in another hyper-threading, scheduling trusted
entities, avoiding unintentional speculation).

While the previous case is an example of an attack on confidentiality (i.e., disclosure of encryp-
tion keys), it has been shown that a Guest to Guest attack can also be performed from a malicious
VM to bypass security measures of a co-resident target. Using a read primitive chained together
with another vulnerability can lead to mitigation bypasses and is highly discussed in overall soft-
ware security research [138].

Kim et al. presented a hardware problem in DRAM memory modules [79] where commodity
DRAM modules (especially, modules that were manufactured after 2012) were vulnerable to dis-
turbance errors. They showed that disturbance errors can be induced into a DRAM using a simple
user mode program to repeatedly perform read operations on specific rows inside a memory bank.
This resulted in adjacent rows being modified (i.e., bit flips, which is a form of write primitive).
Attacks exploiting this problem are known as rowhammer attacks, and while not specific to virtu-
alization, also impact virtualized environments. The mitigation for the rowhammer attacks came
in the form of firmware patches to change the update frequency of DRAMs.

In Reference [141], this vulnerability is used by a malicious guest to modify the state of a loaded
executable file in a target guest. The attack, a variation of the Flip Feng Shui work presented in Ref-
erence [119], takes advantage of memory deduplication, which is a mechanism that scans memory
and merges pages that share the same content. An executable file is loaded into the attacker as well
as the target. Since the file will contain pages that share the same content, they are merged by the
deduplication mechanism. Once they are merged, a rowhammer attack from the malicious guest
will modify the loaded file in the target. Talbi demonstrated that specific bits in authentication
modules (Linux-PAM was used as example) could be flipped to bypass the authentication process.
While this is an example of a rowhammer attack, it is listed in this survey to demonstrate the
creativity of attackers on leveraging/chaining functionalities to increase the impact of their prim-
itives (even if initially apparently highly limited). Deduplication mechanisms have been abused
in side-channel attacks [46] as well, and the mitigation has been simply disabling the feature for
platforms that uses a shared infra-structure between un-trusted entities and see the virtualization
as a security boundary.

A different approach on exploiting rowhammer for a cross-VM attack (demonstrating the cre-
ativeness of attackers to abuse primitives) is presented in One Bit Flips, One Cloud Flops [161].

4.3 Guest to Self

This is perhaps the least intuitive category in which an unprivileged process running in a guest
VM is able to elevate its privileges because of a vulnerability in the hypervisor (or due to changes
made to the guest VM to support paravirtualization).

One such an example occurred in QEMU 0.8.2 that allowed local users to halt the guest VM
by executing the undocumented instruction icebp (ICE Breakpoint) [21, 102]. This can be used
to perform DoS attacks against the guest VM itself. A very similar issue impacting instruction
emulation affected Microsoft Hyper-V in many Windows versions (Microsoft Windows Server
2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8.1, Windows Server 2012 Gold and R2, Windows
RT 8.1, Windows 10 Gold, 1511, 1607, 1703, and Windows Server 2016) but had as a consequence,

ACM Computing Surveys, Vol. 53, No. 2, Article 45. Publication date: May 2020.

Security Issues and Challenges for Virtualization Technologies 45:11

the elevation of the privileges (which in essence gives arbitrary code execution capabilities) of a
program inside the guest itself [38]. While there are no systemic mitigations for this kind of issues,
usual code security practices help detect/prevent a considerable part.

4.4 Host to Self

This category is similar to the Guest to Self case, but instead of an unprivileged guest process
elevating its privileges, a process running in the host is able to elevate privileges by exploiting a
vulnerability present in the hypervisor. While similar problems can exist in non-virtualized plat-
forms, the difference is that the vulnerabilities in this case are present in the hypervisor code.

An example of such a case occurred in Oracle VM VirtualBox. The data structure struct VM
mapped as read/write in vboxsdl.exe and in VMMR0.sys contains pointers to code in kernel mode.
An unprivileged process in the host can overwrite these pointers (a write primitive) and achieve
kernel code execution. This specific instance of the vulnerability applies only to Windows hosts
[159]. The attack vector is the shared folders between the host and the guest. As with the Guest
to Self category, there are no general mitigations against similar issues.

5 IMPACT OF VIRTUALIZATION TECHNOLOGIES ON HOST SECURITY

Virtualization is not inherently secure or insecure (although early VMMs such as VM/370 included
security in their design goals [40]). During his Black Hat USA 2012 presentation, Kostya Kortchin-
sky said, “VMware isn’t a security layer. It’s just another layer to find bugs in” [82].

Adding virtualization to a platform can make the task of securing it more challenging. Virtu-
alization of the I/O functions and device redirection (for example) add to the existing complexity
of the system and increase its attack surface. Virtualization also breaks previous assumptions held
in traditional systems: We can no longer assume that our system has exclusive ownership of a
physical host and side-channels are introduced. New attack points are created (some instructions
can be intercepted by the VMM). The following subsections discuss these new challenges.

5.1 New Requirements Introduced by I/O Virtualization

In a traditional computer system, devices are configured in a privileged mode (e.g., ring0/kernel-
mode) and are trusted by all applications. However, virtualization changes this model, because
devices might be configured by an entity that is not trusted by the whole system including the guest
VMs themselves. To address this trust issue, devices must somehow be virtualized as well. The
virtualization of I/O operations also improves utilization and eases management, but it introduces
a new layer of complexity due to the isolation required between the VMM/host and the guest VMs.
Early implementations of I/O virtualization added a performance penalty, which can be larger than
a factor of two in systems with a heavy workload [125]. Moreover, since these early mechanisms
depended exclusively on software, they also potentially introduced a new source of vulnerabilities
[117]. Especially problematic was PCI devices performing Direct Memory Access (DMA), which
could be used to access arbitrary locations in memory including memory of current processes. An
entire class of attacks, known as DMA attacks, exploits this kind of vulnerability [158].

CPU manufacturers address this issue by providing hardware support for I/O Virtualization.
For example, Intel Virtualization Technology for Directed I/O (VT-d) and AMD I/O Virtualization
Technology (Vi) incorporate an Input/Output Memory Management Unit (IOMMU), which allows
the I/O bus to be connected to the main memory of the system and performs the translation of I/O
addresses to addresses in main memory.

Figure 4 (right) shows how a DMA re-mapping feature can be used to assign specific memory
domains to a device preventing it from generating requests out of its assigned domains. This is

ACM Computing Surveys, Vol. 53, No. 2, Article 45. Publication date: May 2020.

45:12 F. Sierra-Arriaga et al.

Fig. 4. The IOMMU DMA remapping engine (right) allows for separation of memory domains between de-

vices. DMA requests by the devices are handled by the engine and redirected only to the assigned domain.

achieved by having the IOMMU intercept DMA requests and reading the physical address asso-
ciated to them. It then translates the domain physical address to a host physical address. This
translation prevents a device from accessing host addresses that it has not been assigned.

Intel VT-d has been the subject of discussion for potential vulnerabilities. Sang et al. discussed
the possibility of corrupting the mapping structures that assign I/O devices to memory regions
[133]. However, since these structures reside in memory areas that are non-accessible to user ap-
plications, this approach would require the attacker to be able to execute code in the host with
high privileges. Some other possible attack vectors have also been identified. For example, the
configuration registers in the DMA re-mapping unit could be modified to make it point to dif-
ferent configuration tables. Sang et al. suggest mitigating this by using mechanisms that require
higher levels of privilege than the kernel [134]. Newer versions of the Intel platforms have the
capability to prevent these registers from being modified after initial configuration. There is also
an attack that causes a malicious I/O device to generate a malformed request using the source-id
from a different device, which would allow an attacker to access the other device’s memory region.
This attack can be mitigated by PCIe Access Control Services (ACS), which perform validations to
detect Transaction Layer Packets (TLPs) with invalid source-id [103, 134].

Even with the protections mentioned previously, new attacks are being discovered. Pék et al.
developed a tool called PTFuzz to fuzz the Message Signaled Interrupt (MSI) generation process
[104]. In some instances, an MSI can be configured to trigger a legacy Non-Maskable Interrupt
(NMI), which is normally generated as a result of a hardware error that must be immediately
handled by the CPU. This interrupt cannot be re-mapped by the IOMMU and therefore cause a
software fault. This leads to serious potential vulnerabilities such as a DoS or code execution in
the host.

Although technologies such as Intel VT-d and AMD-Vi play an important part in protecting
memory from attacks in virtualized environments, there are also other measures that are used to
protect data from corruption. A couple of examples are mentioned below:

5.1.1 DMA Protected Range (DPR). Intel Trusted Execution Technology (TXT) can be used to
verify the integrity of the code elements that will be executed on a system at launch time [72].
Intel TXT defines a DMA Protected Range (DPR), which is a protected area (from DMA accesses)
used to store structures and information relevant to the TXT launch process. The size of this region
is determined by the BIOS [66, 71, 72].

ACM Computing Surveys, Vol. 53, No. 2, Article 45. Publication date: May 2020.

Security Issues and Challenges for Virtualization Technologies 45:13

5.1.2 Protected Memory Regions. While DPR is specific to Intel TXT, Protected Memory Regions
(PMRs) are defined in the Intel VT-d specification and can be used to initialize VT-d specific struc-
tures. They are also protected from DMA accesses. Optionally, one of these regions can be used to
store Intel TXT structures [70, 72].

5.2 Increase of the Attack Surface: Bugs in the VMM Code

Adding a complexity layer to an existing system will increase its attack surface. VMMs are software
products and as such they are prone to security bugs. Although it is desirable for any software
to have a code size as small as possible, the functions that have to be performed by a production-
ready VMM are complex: The interface to the virtualization hardware (including I/O virtualization,
discussed in the previous section), VM Exits and Hypercalls (to return control to the VMM), VM
management software (for creation and administration of guest VMs) and VMM add-ons (which
extend the functionality of the VMM) are all areas that can be used by a malicious agent as attack
vectors [105].

To reduce the possibility of exploitable bugs, VMM vendors must be looking for ways to keep
the size of the attack surface in check, specially in present times, where more security problems in
VMMs are being reported [55]. As some basic aspects of the virtualization support are implemented
in hardware (with the advent of technologies already discussed), the VMM code can be relieved of
some of this complexity.

5.3 Increase of the Attack Surface: IOMMU Support Bugs in the OS Code

A hardware protection such as the IOMMU cannot operate on its own: It needs support from
the Firmware and the Operating System. If the protections provided are not correctly enabled
or configured, then new vulnerabilities will emerge. Project Thunderclap [90] created an open
source FPGA platform capable of producing a software model for a wide range of DMA-enabled
peripherals, allowing it to test from simple DMA requests to complex interactions with the OS.
The platform was able to detect issues such as the ability of devices to inspect memory intended
for a different device, VPN cleartext data exposure and even kernel code injection when modeling
a NIC device. Common Operating Systems such as Windows, MacOS, Linux, and FreeBSD were
all affected by vulnerabilities.

5.4 Vulnerability to Side-channels

Side-channel attacks are based on the general concept of obtaining specific data (e.g., cryptographic
keys) by monitoring activity in a target system to look for information disclosed unintentionally.
This information is related to the data the attacker wants to obtain. There is a vast amount of work
in the literature on this subject. Zhou and Feng proposed a classification scheme for these attacks
according to the following criteria [166]:

• Control of the computation process: Whether an attacker can influence the computation
process in the target.

• Ways of accessing the [cryptographic hardware] module: This classification is not in the
context of virtualization and will not be discussed here.

• Method used in the analysis process: The attacks discussed below are classified in this cate-
gory. Some of these methods, such as electromagnetic, acoustic, power analysis, and visible
light, require at least some degree of physical proximity to the target. However, timing and
cache-based attacks can be performed remotely.

At first, it may seem easy to dismiss the threats posed by side-channels in virtualization-based
environments, since a prerequisite for many of these threats is co-residency of an attacker with its

ACM Computing Surveys, Vol. 53, No. 2, Article 45. Publication date: May 2020.

45:14 F. Sierra-Arriaga et al.

target (i.e., both attacker and target residing on the same physical host). Since an attacker does
not have control over the location of a guest VM instance, this would seem to be no more than
a theoretical risk. However, Ristenpart et al. and Varadarajan et al. demonstrated using popular
cloud providers that it is possible to achieve co-residency with a specific guest VM [123, 146].

The following discusses vulnerabilities that arise from different side-channels available in vir-
tualized environments. The discussion starts with a well-known class of issues that affect crypto-
graphic operations and then moves to more recent discoveries.

5.4.1 Extraction of Cryptographic Keys Using Cache Access Timing. Zhang et al. made a distinc-
tion between fine-grained and coarse-grained attacks [164]. Fine-grained attacks allow the retrieval
of specific information, such as cryptographic keys from a target system. However, coarse-grained
attacks cannot reveal that level of detail, but they can give information such as which OS is run-
ning on the target. Their work demonstrated that it is possible to mount a fine-grained attack even
in a virtualized environment running on a SMP system, where the attacker and target systems are
assigned to different cores. In their attack, they managed to obtain information about cache ac-
cesses with enough frequency and removed noise to retrieve a decryption key from an application
using the popular library libgcrypt. It is important to note that coarse-grained attacks are also rel-
evant in a virtualized environment, because reliable exploitation oftentimes depends on knowing
the OS running on the host and this may allow exploitation of other vulnerabilities, such as buffer
overflows that lead to guest VM escapes.

5.4.2 Controlled Channel Attack. This is a recently introduced type of attack, which assumes
an adversarial OS (although this can be performed also by a VMM given its level of privilege)
trying to break isolation from a trusted environment to extract confidential information (e.g., Dig-
ital Rights Management (DRM) protected content) from a legacy application executing within a
protected area. Since the application is legacy, it is also assumed that the attacker has access to
its code (in source or binary form). This code is analyzed to identify control flows that are input
dependent. Since the attacker has control over resource management in the platform, it can ma-
nipulate memory mappings in the system to cause page faults when the protected application tries
to access specific pages. The OS can keep track of the accessed pages during page fault handling,
and extract the information that was being processed by the application by analyzing the access
patterns [162].

5.4.3 Information Leakage Using Memory De-duplication Timing. Memory Deduplication (or ker-
nel same-page merging) is a strategy that allows virtualized platforms to make a more efficient use
of the memory by scanning for identical pages in the physical memory and share them among
the guest VMs. However, this also introduces a channel for information disclosure. The “copy-on-
write” mechanism separates the page again when a guest VM attempts to overwrite it. This sepa-
ration process causes a difference in access time, which can be measured allowing an attacker to
know whether a specific page was deduplicated prior to access. This allows an attacker to discover
the presence of specific applications or files in the targeted guest, thereby breaking the isolation
requirement of virtualization [140].

Barresi et al. discussed another problem where the memory de-duplication mechanism can also
be abused to correctly guess the random base address for important libraries (e.g., ntdll.dll on Win-
dows) in a target system essentially making ASLR ineffective [11]. This is achieved by setting up
an attack server to generate several candidate copies of the first page of a .dll library. In Windows
Portable Executable format, the ImageBase field contains the base address of the .dll in a process
address space. Each candidate copy can contain a different guess for this address. If one of these
candidates contains a match, then the VMM de-duplication process will merge this page with the

ACM Computing Surveys, Vol. 53, No. 2, Article 45. Publication date: May 2020.

Security Issues and Challenges for Virtualization Technologies 45:15

copy in the target. As a result, a write operation to this page by the attack server will experience a
delay compared to a write operation to a non-merged page. By comparing the write access times
of the candidates, it is possible to find the merged page, and thus the base address of the library.
The discovered base address can be used to bypass defense mechanisms, such as ASLR.

While unrelated to side-channels, the de-duplication mechanism was also demonstrated to be
useful to improve the reliability of rowhammer attacks [46].

5.4.4 Breaking ASLR Using Branch Target Buffer Collisions. Evtyushkin et al. presented a tech-
nique to create a side-channel based on branch prediction [47]. The Branch Target Buffer (BTB) is a
cache used to enhance performance by storing the target addresses of conditional branch and jump
instructions. Since BTB is shared among applications, the performance of a given application can
be affected by another application due to collision. This performance difference can be measured
by the CPU timing mechanisms (using instructions RDTSC and RDTSCP) inside a specially crafted
malicious process. They also showed that this side-channel can be used to undermine ASLR for
user processes and also for kernel code (KASLR). Later, Wilhelm published a Proof of Concept
(PoC), where this side-channel was used by a guest VM to find the address of a Hypervisor Kernel
Module [157].

5.4.5 Speculative Execution Attacks. Speculative Execution is a technique designed to improve
the performance of a CPU by allowing microarchitectural execution of instructions even in the
presence of incomplete data (data pending to be read from memory). The processor executes the
instruction sequence without commiting the results or performing any security checks on them. If
the results are found to be incorrect, then they are not committed [65]. It used to be believed that
this form of operation did not have any security implications, because the processor is reverted to
its original architectural state and the final results are not influenced, however, the uncommited
microarchitectural changes are not reverted. This can leave traces that can be probed with archi-
tectural mechanisms. In January 2018, a technically feasible attack was published that made use
of these techniques to induce a victim process to leak information from its own address space to
an attacker: Spectre3 is a blanket name for a series of attacks where a malicious process sets up
a victim process to trick it into executing speculative instructions (e.g., removing data from the
cache), then triggers the execution of these instructions by explicitly requesting action from the
victim. After the execution, the attacker retrieves the leaked information. The published attack
uses Flush+Reload and Evict+Reload techniques as a covert channel to cross the boundary between
the microarchitectural and architectural state. A variant of it was used by a guest VM to retrieve
memory from a KVM host [81].

Another related attack: L1TF (also named Foreshadow) was published in August 2018. It also
uses speculative execution as attack mechanism. Two versions have been identified: The original
published version attacks Intel SGX enclaves [144], and the second (subsequently discovered by
Intel) can be used by a guest VM to read memory from coresident VMs or the VMM itself [156].

At this point, the list of new attacks based on the initial findings related to speculative behavior
is fairly large [25–37].

An obvious measure against side-channel attacks among VMs is to prevent co-residency. How-
ever, this beats the purpose of efficiently using the host resources, since one of the main reasons for
using virtualization in cloud environments is to consolidate a number of machines. In the follow-
ing subsections, some mitigation approaches that can be implemented against cache-based timing
attacks are discussed. The reason to discuss the mitigations against side-channels are because they

3A related attack: Meltdown, was disclosed at the same time, but it has been determined that it cannot be used to cross the

boundaries set by virtualized systems. So it will not be discussed here.

ACM Computing Surveys, Vol. 53, No. 2, Article 45. Publication date: May 2020.

45:16 F. Sierra-Arriaga et al.

have specific implementation challenges/characteristics in virtualized environment (while mitiga-
tions for overall software issues do not).

5.4.6 Cache Isolation. In an attempt to provide cache isolation without specialized hardware
support, the StealthMem project aims to protect VMs against cache-based side-channel attacks
by assigning a set of cache lines to each core and making sure that the pages of a given VM only
use the assigned cache lines (by using the associativity principle of the corresponding physical
addresses). This allows the VM to keep a memory area as if it was private, since the assigned cache
lines are safe from inspection by other VMs. This isolated memory area is called Stealth memory.
Applications can use APIs sm_alloc() and sm_free() to allocate and deallocate stealth memory, and
then store sensitive information in these areas [78].

While the software approach does provide isolation, any application (or VM) that makes ex-
cessive use of a shared resource such as the Last Level Cache (LLC) can affect the performance of
others, which in essence can cause a DoS or relevant slow-down. This is referred to as the Noisy
Neighbor Problem and the VMM by itself does not have a way to find out which application is the
culprit. Therefore, there are hardware-supported features, such as Intel Cache Monitoring Tech-
nology (CMT) [62], that monitor LLC utilization by applications that coexist inside a platform. A
related technology called Intel Cache Allocation Technology (CAT) [98] exposes a Class of Service
(CLOS) interface to software, allowing it to define cache utilization tags that can be used to group
threads, applications, virtual machines or containers under a common usage model. The CLOS is
flexible enough via Capacity Bit-Masks (CBMs), which are bitmasks defined per CLOS to control
overlap and allocation of different cache areas, to specify which applications have higher priority
and the level of cache overlapping with other applications. Intel Cache Allocation Technology (CAT)
was effectively leveraged in Reference [48] to implement side-channel mitigation.

5.4.7 Performance Counters and Side-Channel Detection. The Performance Monitor Unit (PMU)
is a mechanism created by Intel to help software diagnostic the system behavior. In Reference
[142], the authors demonstrate that side-channel attacks can be detected by using the technology.
When the speculative side-channels became public, the company Endgame [45] also proposed a
similar approach.

5.4.8 Scheduler-based Defenses. To track the activity of a target system, the frequency of re-
scheduling between the attacker and the target must be sufficiently high so the attacker can inspect
the channel enough times to retrieve information. Varadarajan et al. introduced the concept of soft
isolation to explore how this frequency can be reduced without having a major impact on the
system performance [145]. In the Xen hypervisor, the Minimum Run Time (MRT) for each virtual
CPU can be manipulated with the ratelimit parameter. Using this mechanism, attacks like the
Cross-VM attack explained in Reference [164] can be stopped, since their observations of the target
will fail to render enough useful data. It was also shown that this mechanism can be combined with
cleansing the state of the CPU for additional protection in cases where control of the physical CPU
is relinquished by the guest VM. Another important example of scheduler-based defense is Nomad
[93].

5.4.9 Obfuscation of Timing Information from the Guest. Project Düppel is designed to pro-
tect guest VMs from time-shared cache attacks [165]. It is intended as a measure against the
Prime+Probe attack technique in which a malicious guest executing in a given physical CPU fills
the shared cache sets with its own data (called the Prime phase), then relinquishes the CPU. When
the target acquires the CPU and performs its own activity, some data belonging to the attacker
will be evicted from the cache. After the target relinquishes the CPU, the malicious guest can
obtain information about the target activity by trying to fill again the cache sets and measuring

ACM Computing Surveys, Vol. 53, No. 2, Article 45. Publication date: May 2020.

Security Issues and Challenges for Virtualization Technologies 45:17

the time this process takes (called the Probe phase). Düppel provides a mitigation by cleansing
the caches between the attacker’s Probe phases introducing noise to the information that the at-
tacker can obtain. This approach does not require modifications to the hypervisor (as is the case
for Scheduler-based defenses), but change is required to the guest OS kernel.

5.4.10 Limiting Access to CPU Timing Resources. A possible mitigation for attacks such as the
one described in Section 5.4.4 is to limit guest access to high-precision CPU timers, which are
essential for computing timing differences. However, this does not completely eliminate the prob-
lem, since a good-enough timing can be obtained by having threads cooperate to measure the time
of an attacker process [58].

5.4.11 Mitigations against Speculative Execution Attacks. The Spectre attacks described in Sec-
tion 5.4.5 are of such importance that they are motivating an effort from the CPU industry to
deliver appropriate mitigations and make their new designs more resistant to them [4, 83]. Some
mitigations are software based and involve inserting specific instructions in selected parts of the
code to limit speculative execution, while others involve preventing a malicious process to con-
trol the indirect branch predictions of a potential victim. These last mitigations require microcode
updates as well as software support [5, 65].

6 LEVERAGING VIRTUALIZATION TECHNOLOGIES FOR SECURITY PURPOSES

In this section, we discuss how virtualization can be used to help securing a platform. The solu-
tions presented are associated to the components of the classic information security triad4: Section
6.1 gives an example of VMs designed to protect Confidentiality of data at rest and in transit (in-
side the platform). Section 6.2 discusses how the Integrity of certain components of the system
can be protected (examples are given for filesystem and OS kernel). Section 6.3 discusses how
virtualization-based fault tolerant architectures can be implemented in support of Availability. In
the remaining subsections, some additional applications and techniques that are useful for security
will be discussed.

6.1 Confidentiality

A general-purpose computing system processes a multitude of data. Different organizations (and
users) have different requirements in regards to who is allowed to access information generated by
their systems. Confidentiality is the security objective of protecting data from unauthorized access,
where the authorized entity is defined by the information owner or an authorized administrator.
This subsection explains the potential impact on confidentiality of using virtualization.

6.1.1 Privacy-preserving Virtual Machines. Mechanisms such as VM snapshots, which creates
a complete copy of the guest state, can put confidential data (e.g., passwords in plain text form,
encryption keys, credit card numbers, etc.) stored inside the memory of a guest VM at risk. An at-
tacker can have access to this data by simply copying the snapshot. Li et al. addressed this problem
using a second VM, called Privacy-Preserving Virtual Machine (PPVM), spawned from the original
[86]. PPVM allows the confidential data to be excluded from the snapshot process or processed
independently to include security features like encryption. This solution has the additional ad-
vantages of being transparent to the confidential applications and having low overhead. Another
example of privacy-preserving use of virtualization is project Overshadow: It takes advantage of
the extra level of memory indirection offered by VMMs to separate applications data and offer

4The CIA security triad (Confidentiality, Integrity, and Availability) is a well-known concept in information security. While

the three properties considered separately have been understood since before the computer era, the exact origin of their

use as part of a security model has not been identified.

ACM Computing Surveys, Vol. 53, No. 2, Article 45. Publication date: May 2020.

45:18 F. Sierra-Arriaga et al.

an encrypted view of it to a guest OS, while offering a plaintext view to the application itself,
protecting its contents from a compromised OS [19].

6.1.2 Protection from Data Flow Analysis. Applications that are not designed with the user’s
privacy in mind usually leave behind traces of their activity. Dunn et al. have shown how even
“secured” systems cannot erase these traces completely due to the complexity of their software
stacks [42]. In their work, they provided the example of a Linux system where memory that is
allocated and used as a cache by the X server remains allocated even after an X client application
terminates, which can be inspected to reveal the screen output of applications that are no longer
being executed. Similar exposures were found in audio applications, memory caches, and network
buffers.

The project Lacuna goes beyond the traditional approaches of secure file deleting and clearing
deallocated memory [42], which is based on the following two key concepts:

(1) A private session – A user can create a session within which usual activities such as brows-
ing the web, reading email, and so on, can be performed. This session is confined to a VM.

(2) One or more ephemeral channels – Although a VM prevents data leakage from inter-
process communications, data generated from the interaction between the VM and ex-
ternal devices are still at risk of exposure. Ephemeral channels provide a mechanism to
protect data as it flows through the host OS, and allow only the endpoints (i.e., the de-
vice and the guest VM) to see it in its unencrypted form. Because of the encryption, data
allocated within the host OS is unreadable. At session termination, the encryption key is
erased from the system to make sensitive data unrecoverable.

The data privacy protection that can be offered by virtualization can benefit enormously by
working in tandem with encryption technologies. Solutions like AMD SEV (discussed in subsection
2.2.3) Can provide additional protection for data residing in main memory.

6.2 Integrity

Any data generated or stored in a general-purpose computing system should be modified only
by authorized users. Data modification by unauthorized users (or due to bugs) affect a security
objective known as integrity. The VMM is capable of intercepting and monitoring many parts of
a guest VM (and under different events) that would be very difficult or impossible to monitor in
a stand-alone system. Most research in this area is focused on protecting a guest VM from being
exploited. The integrity of components in a guest VM, such as the file system or the OS kernel,
can be constantly monitored by the VMM. The following subsections describe some examples of
this approach.

6.2.1 File System Integrity. FSGuard was designed to monitor the integrity of a file system and
implemented on a Xen platform [155]. The system to be monitored is located under an unprivileged
guest (DomU), which has no access to the hardware, and Xen is modified to intercept system
calls. When a system call is intercepted, its information is stored in the processor’s registers. The
registers are then examined to ignore system calls that are not related to read/write operations
on files. Other important information, such as a file path, is also accessible in this way. The user
can configure in advance the files that need to be protected (via the UI). If the user is allowed to
perform the operation based on the analysis of the system call and the defined protection policies,
then FSGuard allows the normal flow of the call to continue. If the operation is prohibited, then
the flow is interrupted and the operation is rolled back.

ACM Computing Surveys, Vol. 53, No. 2, Article 45. Publication date: May 2020.

Security Issues and Challenges for Virtualization Technologies 45:19

6.2.2 Kernel Integrity. The OS kernel has unrestricted access to all the resources in the system.
This makes the kernel code a common target for attacks. Seshadri et al. identified the following
three basic kinds of kernel attacks [139]:

• Acquiring root privileges and loading an arbitrary kernel module.
• Compromising the running kernel by exploiting a vulnerability.
• Utilizing DMA-capable peripherals to corrupt the kernel memory.

The following enumerates the recent efforts to tackle this problem using virtualization tech-
nologies:

SecVisor SecVisor is implemented as a very small hypervisor that preserves the integrity of
kernel code by virtualizing the MMU and the IOMMU [139], where the former allows
for intercepting and checking of any change attempts to the addresses mapped to the
protected system kernel while the latter allows for protecting the kernel memory from
write operations by DMA-capable devices. SecVisor relies on the built-in CPU protections
provided by Intel VT-x (see Section 2.1) and uses the notion of approved code, i.e., only
codes that have been approved by SecVisor can be executed. Kernel mode entry and exit
are monitored so that the appropriate execution permissions are set. Thus, it checks that
kernel mode entries are made only to addresses belonging to approved code, and kernel
mode exits will set the CPU privilege back to user mode. The dynamic changes in the
permissions is functionally equivalent to enforcing the W ⊕ X property in the kernel
code [87]. One downside of this solution is that slight modifications to the kernel source
code are required making it unsuitable for closed source products. Also, it is unable to
handle memory pages with mixed code and data due to the enforcement of W ⊕ X, i.e.,
data mixed with code cannot be modified.

No Instruction Creeping into Kernel Level Executed (NICKLE) This solution takes ad-
vantage of the isolation property of VMM. When a guest VM starts, the hypervisor allo-
cates a memory space to maintain a shadow copy of the kernel code. This shadow copy
is verified after decompression using a cryptographic hash. Instruction fetches are inter-
cepted and if the current privilege level (CPL) indicates that the code being fetched is
kernel code, both copies are compared. If they match, then the code is executed. Other-
wise, the code is assumed to have been modified without authorization and an appropriate
action can be taken to mitigate the threat, which can be either aborting the execution or
rewriting the instructions (essentially, recovering the original code) to allow the guest
VM to handle the error. This guarantees that the kernel code cannot be modified even if a
rootkit 5 manages to fully control the system memory permissions and modify them. This
approach overcomes the limitation of SecVisor—the need for modifications to the source
code to avoid pages with mixed code and data. Moreover, it is able to run transparently
to the guest VM. Another advantage is the ability to handle pages where code and data
are mixed [121].

hvmHarvard Systems based on x86 are an example of a von Neumann architecture, where
code and data share a single address space. This leads to the possibility of modifying
code at runtime if no other protection measures exist. However, a system based on a
Harvard architecture will allocate separate address spaces for code and data (see Figure 5).
This mitigates the risk of code injection attacks, which involves injecting a code stream to

5Rootkit is a code that is injected in a compromised system to subvert normal operation usually by giving unauthorized

access to an attacker as administrator or root.).

ACM Computing Surveys, Vol. 53, No. 2, Article 45. Publication date: May 2020.

45:20 F. Sierra-Arriaga et al.

Fig. 5. Harvard and Von Neumann architectures. In a Harvard architecture, since code and data are stored

in different address spaces, data manipulated by an attacker cannot be injected for execution by the CPU.

some program input and redirecting the flow of execution to make the system execute the
injected code [120]. hvmHarvard utilizes virtualization to create separate memory areas
for code and data. NICKLE also emulates a Harvard architecture using virtualization, but
it traps all instruction fetches impacting performance. hvmHarvard gets around this by
taking advantage of the fact that Translation Lookaside Buffers (TLBs) for instructions
and data can be desynchronized, which means that the same virtual/logical address points
to their respective entries in the two TLBs, and the physical addresses in the two entries
are then made to point to different frames effectively separating code and data memory
areas [57].

Intel Kernel Guard Technology Intel Kernel Guard Technology (iKGT) takes advantage of
Intel VT-x technology to protect critical platform assets such as kernel code pages and
data structures. It includes a software component: Xmon, which is a thin VMX-root layer
module that executes at the VMM level and deprivileges the operating system. Since this
component has higher privilege than a guest VM, it can intercept calls to read or write the
protected assets and enforce a predefined policy. The policy specifies the assets to protect
and the actions to be taken when these assets are accessed. iKGT has been released as
open source and its current version supports Linux guests [84].

6.3 Availability

Data must be available to the authorized users when needed. This security objective is called avail-
ability. This section discusses how virtualization can be used to support availability requirements
by facilitating implementation of fault-tolerant solutions.

6.3.1 Hypervisor-based Persistence. Data availability and integrity can be negatively impacted
by power outages. Information stored in volatile memory is especially vulnerable and a number
of strategies have been developed to mitigate the risk of data loss. One solution that has been
proposed is to take advantage of Non-Volatile Dual In-line Memory Modules (NVDIMMs), which
are DRAM modules with flash memories, in commodity servers by adding an extension to VMM.
Since the software modification takes place at the virtualization layer, the changes are transparent
to guest VMs. Some elements of the state of a VM, such as the state of the CPU and the states
of virtual devices, need to be explicitly written to the NVRAM, since they are not automatically

ACM Computing Surveys, Vol. 53, No. 2, Article 45. Publication date: May 2020.

Security Issues and Challenges for Virtualization Technologies 45:21

backed up. Moreover, the underlying hardware must include a Power Outage Detector device that
detects sudden voltage drops and generates an interrupt to save the CPU state to the NVRAM.
This approach has been tested in commercially available hardware with promising results [135].

6.3.2 Fault-Tolerant Virtual Machines. Deployment of fault-tolerant systems using redundancy
can be done conveniently using VMs. This feature is available for several virtualization platforms
(like VMware vSphere, XenServer, Red Hat Enterprise Virtualization among others). Scales et al.
presented a complete implementation using commercial tools [136]. The problem of synchronizing
information between the primary system and the backup is addressed by modelling it as a state
machine: Instead of syncing the complete state of the primary server (including CPU, memory, and
I/O devices), both systems are started in the same state and the inputs to the primary are duplicated
for the backup using a logging channel. When a failure is detected in the primary system, the
backup can be used to pick up from the point in time where the primary failed with no interruption
of service.

6.3.3 VM Snapshots. Some virtualization solutions today provide the ability to generate a copy
of the state of a VM at a given time and then resume execution from it [20, 149]. This copy is called
a VM snapshot and can be used for several purposes (quick deployment of several identical VMs,
as a migration mechanism, etc.) but it can also be used as a protection measure in case the original
VM becomes unavailable due to a failure or a crash. This is the VMM equivalent of the traditional
solution of Checkpoint-Restart strategy that exists in other domains in computing [23].

6.4 Network Security

Network Functions Virtualization (NFV) is a technology that takes advantage of virtualization to
implement network services that traditionally are deployed in physical, vendor-specific hardware.
Virtualized Network Functions can work along with Software Defined Networks (SDN) to provide
flexibility and ease of management: The VNFs are easily deployed on commodity hardware using
VMM management facilities. Examples of network functions that can be virtualized are security
functions like Firewalls and Intrusion Detection Systems [160].

6.5 Malware Analysis

With malware attacks steadily on the rise [85], the arms race between security professionals and
malware creators does not seem to be slowing down. Dynamic malware analysis is usually per-
formed in a controlled environment to protect the system from malicious activity on the sample
under study. Virtualization can work alone or in combination with other technologies to provide
this controlled environment.

6.5.1 Virtual Machine Introspection. Since high privilege software such as the VMM has access
to the resources of its managed guests, it can be used to inspect the state of a VM from the out-
side. This technique is called Virtual Machine Introspection (VMI). The concept was introduced in
Reference [52] applied to intrusion detection systems (IDS), but its usefulness has been extended
to several other applications, including malware analysis.

Project VMwatcher makes use of VMI to obtain the current low level state of a VM (registers,
memory contents and persistent storage). It performs this in a non-intrusive manner by observing
and not interferring with its functioning. This ability to watch the activity inside the VM from the
outside comes at the cost of losing the abstractions available to mechanisms operating in the inside
(processes running in memory, files, network connections, etc.). This is known as the semantic gap.
To narrow this gap, VMWatcher utilizes a technique called Guest View Casting to reconstruct these

ACM Computing Surveys, Vol. 53, No. 2, Article 45. Publication date: May 2020.

45:22 F. Sierra-Arriaga et al.

abstractions and make them available to the malware detection system, which operates outside the
VM under analysis [73].

6.5.2 Combination of Virtualization and Emulation Techniques. An emulated system (which, as
opposed to virtualization, is just a software representation of hardware) provides a suitable plat-
form for malware analysis. It can be tailored to facilitate the analysis. However, malware devel-
opers are improving their techniques to detect when they are being executed in an emulated en-
vironment and block the task of the security analyst. An emulated environment can mimic the
behavior of a real system, but it cannot be done in a transparent manner because of the amount
of legacy hardware behavior that must be supported and the timing differences in emulation ver-
sus real execution. The detection of an emulated environment is easy in stand-alone systems [76,
163]. However, detecting virtualized platforms is harder (although there are techniques to do it as
discussed in Section 7.2.1), but they do not offer the flexibility of emulated systems.

Yan et al. proposed a combined approach where a malware sample is first executed in a vir-
tualized platform to record its activity [163]. This is called the reference platform. Afterward, its
execution is replayed in an emulated platform, which has been tailored using dynamic binary trans-
lation to provide instrumentation support. The emulated platform is then modified (i.e., adapted)
based on the observed deviations of the malware behavior from the reference platform. The emu-
lation platform will now execute the malware code as if it was running in the reference platform
and suppress the possible anti-emulation techniques used by the malware code. This approach
allows the analyst to leverage both the transparency offered by virtualized environments and the
flexibility of emulated systems.

6.6 Trusted VMMs

Trusted Computing is a set of specifications proposed by the Trusted Computing Group [61]. The
technologies described in these specifications aim to provide security to computing platforms
through a cooperation between software and hardware specifically designed for this purpose.

Project Terra is an example of the use of a VMM as a trusted element of the platform. This
Trusted VMM extends the usual functions of traditional hypervisors and provides capabilities for
deploying VMs with specific security requirements that aim to provide the functionality of closed
platforms. These VMs are called closed box systems. In addition, it can deploy open box systems:
Standard VMs that allow the execution of commodity operating systems and applications.

The Trusted VMM also has the capacity to authenticate the software running in a closed box
to external entities. This process is called attestation and it is an important element of trusted
platforms. The Trusted VMM becomes an element of a certificate chain: The hardware certifies
the firmware, the firmware certifies the bootloader, and then the bootloader certifies the Trusted
VMM. The Trusted VMM is capable of certifying the closed VMs [51].

6.7 Domain Isolation

The capacity of virtualized environments to provide isolation can be used to protect security sensi-
tive elements in the system by separating functions and assign dedicated domains (VMs) to them.
This technique is known as domain isolation. Some examples of this technique follow.

6.7.1 Qubes. Project Qubes is a security-oriented OS based on Xen. It intends to enhance plat-
form security by using a compartmentalization approach. Separate VMs (or domains) are created
and assigned for security-sensitive functions in the system: The networking functions, storage,
and administration are each confined to their separate lightweight VMs. Also, user applications
run in their own domain. The isolation property prevents the compromise of the entire platform
if one of the domains falls victim of an attack [132].

ACM Computing Surveys, Vol. 53, No. 2, Article 45. Publication date: May 2020.

Security Issues and Challenges for Virtualization Technologies 45:23

6.7.2 Driver Domains. Driver Domains are an optional feature of the Xen hypervisor. The sys-
tem administrator can setup unprivileged domains whose only function is to handle specific hard-
ware devices. If one of the drivers fails, then the integrity of the privileged domain (Dom0) is
preserved. Also, if the driver is compromised, only its specific domain is left vulnerable [110].

6.8 Privilege Separation

Privilege separation is an approach where an application is divided into privileged and unprivi-
leged parts to reduce the amount of code with high privilege executing at any given time [112].

6.8.1 Proxos. Proxos is an architecture based on VMM isolation and makes a distinction be-
tween applications that are security sensitive and applications that are not [88]. Security-sensitive
applications are executed in their own private VM, while non-security-sensitive applications are
executed in the commodity OS. This reduces the size of the TCB for the sensitive application to
the bare functionality that it needs from the OS. This isolation prevents an attacker who has com-
promised an application running in the commodity OS to have access to the sensitive information
of the application running in the private VM.

6.9 Virtualization-based Security

Virtualization features originally conceived for server environments are now being used to im-
prove the security of desktop systems as well. Microsoft Windows 10 includes exploit mitigation
features, which prevent certain vulnerabilities from being exploited. One such feature is based on
virtualization technology called Virtual Secure Mode (VSM), which uses Microsoft Hyper-V to par-
tition the resources of a system. One of the partitions, or Virtual Trust Levels (VTL per Microsoft
nomenclature), is assigned to the OS (named VTL0 by Microsoft), while the other (VTL1) is used
as a separate environment protected from the OS to store secret information like user credentials
[75]. Microsoft implements this feature under the name Credential Guard [41]. Another security
feature based on VSM is the capability to enforce code integrity controls outside of the protection
domain of the OS. This feature is implemented by Microsoft under the name VSM Protected Code
Integrity [41].

Any integrity-monitoring system must consider the techniques (and limitations in the defense)
demonstrated in Reference [118], as well as the capabilities discussed in Reference [89] and Ref-
erence [12], that demonstrate a lot of operations that can be securely arbitrated by leveraging
virtualization.

7 MALICIOUS USE OF VIRTUALIZATION TECHNOLOGIES

A VMM is inherently more privileged than the guest VMs it supports. Thus, if the capabilities
provided by virtualization are used for malicious purposes, traditional approaches to OS security
(e.g., antivirus programs and malware detectors) that operate at the OS-level must be reevaluated.
The following subsections discuss some research results in this area and their implications. Section
7.1 describes malware modules that take advantage of virtualization to achieve high level privileges
in the target system. Their feasibility for real world attacks is also discussed. Since these malware
modules are highly privileged, special techniques must be devised for their detection. Section 7.2
shows different approaches to this problem.

7.1 Malicious VMMs

King et al. introduced the concept of Virtual Machine Based Rootkit (VMBR) [80], which is based on
the principle of achieving control of the lower layers (i.e., more privileged layers) of the system to
implicitly gain control of the upper layers (i.e., less privileged layers, such as Ring3). Two successful
attempts to implement this concept are described below.

ACM Computing Surveys, Vol. 53, No. 2, Article 45. Publication date: May 2020.

45:24 F. Sierra-Arriaga et al.

7.1.1 SubVirt. SubVirt was implemented as a proof-of-concept using Microsoft Virtual PC and
VMware Workstation, which are host-based VMMs [80]. SubVirt modifies the boot sequence of
the host so that the VMBR is loaded first, and then the target (i.e., the guest VM) in a deprivileged
state is loaded on top of it. Afterward, the rootkit is executed without the target being aware of
its existence. In addition to the VMBR module, SubVirt installs a malicious VM by leveraging the
existing host OS. This means that the target cannot detect the execution of the malicious VM, and
so it can attack, extract information or disrupt the activity of the target system.

Although SubVirt demonstrated the potential of VMM as a malicious attacker, it was released
only as a proof-of-concept due to some limitations mentioned below:

• Requires changes to the host OS kernel, and in some cases to the hypervisor code, which
limits portability.

• Requires privileges in the host system to modify the boot sequence so that VMBR can be
loaded before the target system. Moreover, the OS kernel in modern platforms does not
necessarily have the ability to modify boot sectors due to Secure Boot [143, 64], which verifies
each phase of the initialization with a cryptographic key.

These limitations can be mitigated, but not completely removed, by taking advantage of
hardware-assisted virtualization (see Section 2.1). The nested virtualization support on the hard-
ware makes it possible for a code that executes on the host OS (or a hypervisor) to virtualize such
running OS/hypervisor itself thereby transforming it to a guest. The next two examples accomplish
just that.

7.1.2 The Blue Pill. Hardware-assisted virtualization introduced a fundamental change in the
x86 protection model by adding one privilege level below Ring 0 (often called “Ring -1”) to be
used by the VMM. The Blue Pill is a proof-of-concept rootkit created by Joanna Rutkowska [129]
[130] and presented at the Black Hat conference in 2006 [14]. It is one of the first VMBRs that
successfully achieved this privilege level. The Blue Pill is able to start from a running system and
transform the host OS into a guest under its control, and was originally implemented using AMD64
Secure Virtual Machine (SVM) extensions. These extensions include a new set of instructions to
support execution in a virtualized environment [2]. The rootkit can be installed on a running
system and takes advantage of the new instructions to prepare the necessary control structures for
the virtualized instance of the target. For example, the VMRUN instruction can be used to transition
the target OS to execute in guest mode.

7.1.3 Vitriol. Vitriol was presented at the same conference as the Blue Pill [167]. It was im-
plemented to target Mac OS X as a Loadable Kernel Extension to detect and enable hardware
virtualization support, and then to de-privilege the target system to run as a guest. It also installs
a handler for VM Exit events (i.e., the on_vm_exit() function). This handler can be designed to
perform malicious activities, such as escalating privileges for a specific process or monitoring I/O
operations. As opposed to the Blue Pill, which is based on AMD SVM extensions, Vitriol is based
on the Intel VT-x technology.

These examples pose a recurrent challenge, which is the need for VMBR detection as a counter-
measure. This is an important issue and will be discussed in the next subsection.

7.2 The Issue of VMBR Detection

After Blue Pill and Vitriol were made public, it was clear that VMBRs were not just a theoretical
risk. In addition, statements made by Rutkowska when introducing the Blue Pill6 and amplified

6“Over the past few months I have been working on a technology code-named Blue Pill, which is just about that—creating

100% undetectable malware, which is not based on an obscure concept...” [129].

ACM Computing Surveys, Vol. 53, No. 2, Article 45. Publication date: May 2020.

Security Issues and Challenges for Virtualization Technologies 45:25

by the media7 started a debate in the security community. On one side, Rutkowska expressed
that, although the Blue Pill was only a proof-of-concept, it would be possible to develop 100%
undetectable VMBRs [128]. On the other side, more skeptical researchers believed that the effort
needed to develop such a VMBR was too large compared to the effort needed to develop a reliable
detection tool.8

Early discussions about detection of VMBRs were brought up by some of the creators them-
selves. Rutkowska noted that a distinction should be made between detecting when a system is
running under the control of a VMM, which includes any legitimate use of virtualization (mal-
ware authors can be interested in finding out to prevent any further analysis, or to fingerprint
a target system), and detecting a malicious VMBR. The following subsections discuss these two
issues separately.

7.2.1 Detecting Virtualized Environments. Transparency in virtual environments was not con-
sidered as a top priority in the early days of x86 virtualization (and it is not considered a security
objective of the VT extensions by Intel). As security of VMMs started to catch the interest from
researchers, hiding the fact that a system is running under a hypervisor grew in importance [50].
Some of the possible ways to detect VMMs are discussed below:

Explicit communication from the VMM. There are a number of ways that an x86-based VMM can
communicate information to guest VMs. Some of these are provided by the architecture itself or
defined in standards, such as Desktop Management Interface (DMI) or System Management BIOS
(SMBIOS):

• The CPUID instruction can be used by the VMM to communicate to a guest VM. In addition,
the CPUID range 0x40000000-0x400000FF (options that can be configured by software) is
sometimes used to pass information about the hypervisor to guest VMs. Although this is a
feature used by the hypervisor, it also provides an easy way to detect virtualization usage
[67].

• Linux guests can use tools like dmidecode to obtain information exposed in the DMI table.
This approach is vendor agnostic [39].

• VMware provides a specific purpose I/O port 0x5658 to perform various tasks. If this port
is read (using the IN instruction) after assigning some values to EAX, EBX, ECX and EDX
registers, then the EBX register will be assigned the “magic” value 0x564D5868 to indicate
the presence of a VMM [148].

Differences in results from specific CPU instructions. Omella described a number of instructions
that give different results when they are executed in a non-virtualized environment versus a vir-
tualized environment [100]. Those instructions provide information on internal structures of the
system under test and can even be executed from a user (Ring3) application. For example, the in-
structions SIDT, SGDT, and SLDT store the contents of the Interrupt Descriptor Table Register, the

7“A security researcher with expertise in rootkits has built a working prototype of new technology that is capable of

creating malware that remains “100 percent undetectable,” even on Windows Vista x64 systems” [95].
8A high point of the debate was reached when Thomas Ptacek from Matasano Security, Nate Lawson from Root Labs, and

Peter Ferrie from Symantec issued a public challenge to Rutkowska: She would be provided with two laptops, infect one

of them, and then allow the challengers to execute their detection software on both of them to try to identify the infected

system. If no infection was detected, then it would be considered a win for Rutkowska and she would be able to keep the

equipment [97, 113]. In the end, the challenge was not pursued further due to disagreements on the conditions (Rutkowska

set as one of the conditions that her development team be paid a fee for the resources involved in refining the rootkit code

to be ready for the challenge, which Ptacek and the rest of the challengers deemed unreasonable [96]). Still, the VMBR

detection debate remains open and research in the area is still being carried out.

ACM Computing Surveys, Vol. 53, No. 2, Article 45. Publication date: May 2020.

45:26 F. Sierra-Arriaga et al.

Global Descriptor Table Register, and the Local Descriptor Table Register, respectively, in memory.
It has been observed that the resulting values written to memory can be examined to distinguish a
virtualized environment. This distinction is possible, because non-virtualized OSs initialize those
values much earlier in the boot sequence, and therefore they use lower addresses than the ones
used by a hypervisor. Prior to publication of her work on The Blue Pill, Rutkowska had imple-
mented a small tool (appropriately named “The Red Pill”), which uses the SIDT instruction for
this purpose [127]. However, Quist demonstrated that this method led to a lot of false positives
when used on multiprocessor systems due to each processor having its own Interrupt Descriptor
Table [115]. Instead of using SIDT, Quist proposed using the SLDT instruction having observed in
experiments that the Local Descriptor Table (LDT) does not vary between single processor and
multiprocessor systems.

Timing differences. The use of virtualization introduces overhead in a system, thus operations
such as CPU transition between execution of VMM, guests, interrupt handling, memory man-
agement, and so forth, require some extra processing compared to native (i.e., non virtualized)
execution. Although technologies such as hardware-assisted virtualization are narrowing this per-
formance gap, a measurable difference still exists. Intel x86 processors include a timestamp counter
that can be used for benchmarking purposes. This counter starts at zero with each reset and incre-
ments every clock cycle. The RDTSC instruction (introduced with the Pentium processors) copies
the contents of the timestamp counter into the EDX:EAX registers [68]. A detection mechanism
could be devised to measure the number of clock cycles needed to execute an interceptable instruc-
tion on a native system, and then compare this value against the execution on a virtualized system.
The virtualization overhead will be reflected by an increased number of cycles. There are other time
information, such as Real Time Clock, Network Time Protocol, and so on, to which similar princi-
ples could be applied [7]. However, many researchers are quick to point out that without a trusted
baseline for comparison, applying these techniques to develop a reliable detection tool is difficult.

Translation Lookaside Buffers (TLB) Profiling. The TLB profiling technique was first discussed by
Peter Ferrie from Symantec [49], which relies on mechanisms not under the direct control of the
VMM. The technique described in Ferrie’s work is as follows:

(1) A set of memory pages is loaded so that the TLB is filled with information on these pages.
(2) The time to access these pages is measured (now that they have corresponding entries in

the TLB).
(3) Generate a hypervisor event using an interceptable instruction (Ferrie suggests CPUID,

since it is non-destructive to memory). This should cause some TLB entries to be flushed
as a side effect.

(4) These pages are reloaded and the time is measured again. If there is a noticeable difference
in the access time for some of the pages, then this would likely mean that they were evicted
from the TLB revealing the presence of a VMM.

Barbosa presented an update to the above research [10], and stated that this attack does not al-
ways work in AMD-based VMMs, since they provide a way to control whether the TLB entries are
flushed upon execution of a VMM interception. However, since there is only a limited number of
entries, the processor still flushes TLB entries as needed as part of the replacement algorithm [10].
Therefore, although detection is possible depending on implementation-specific characteristics, it
is not as general as first thought.

TLB Profiling without timing. Garfinkel et al. described another TLB profiling technique that does
not use any timing information [50]. Their technique is based on computing the size of available

ACM Computing Surveys, Vol. 53, No. 2, Article 45. Publication date: May 2020.

Security Issues and Challenges for Virtualization Technologies 45:27

TLB entries before and after intervention of a VMM. The reported size of the TLB will be smaller
due to some entries taken by the VMM [1].

Barbosa’s Counter-based technique. Barbosa described a technique where a multi-core system is
set up with two threads [10]. The first thread increments a counter and executes an instruction
that causes a VM Exit, e.g., reading the Extended Feature Enable Register (EFER), while the second
thread simply increments a counter. Note that the threads are synchronized, meaning that they
start counting at the same time. The difference in counter values serves as a timing measure that
can be use to detect the existence of a VMM. In a virtualized scenario, the first thread causes a
VM exit that must be handled before the thread continues and increments its own counter. In
a non-virtualized scenario, the first threads executes much faster, since there is no hypervisor
intervention, and therefore the count difference between the first and the second thread will be
much smaller.

Presence of emulated devices. Physical systems (i.e., printers, scanners, video hardware, etc.) can
be configured in many different ways. A commercial VMM is not able to support every possible
guest configurations, and thus only a limited number of emulated peripherals is presented to the
guests. These peripherals can be detected indicating that the system is being executed in a virtu-
alized environment. For example, malware programs look for known emulated devices provided
by major VMMs to detect that they are running in a virtualized environment. The presence of
a hypervisor serves as a good indicator that malware programs are being analyzed, and thus a
common reaction by these malware is to not perform malicious activities once it detects that it is
running in a guest OS.

Memory dump analysis techniques. This approach is different from the previous ones in the sense
that it is executed from the system that hosts the VMM rather than from a guest VM. Intel VT-x and
AMD-V technologies provide support for hardware-assisted virtualization through programming
interfaces. Both interfaces include data structures used to store state information for each virtual
processor running under control of a VMM. These structures are called Virtual Machine Control
Structure for Intel VT-x [69] and Virtual Machine Control Block for AMD-V [6]). Actaeon is a tool
developed at EURECOM France, which can perform forensic analysis of memory dumps from a
system and detect these structures indicating the presence of a VMM [60]. The tool can detect
parallel and nested guests (see Section 2.1) and has been implemented as an open source Volatility
plugin [59].

The practicality and accuracy of the techniques above varies among them. If the VMM commu-
nicates this information on purpose through a documented API, then these mechanisms would be
the first choice, but as we will discuss in the following subsection, a VMM can have motivation to
hide this information from the guest VMs, so speculative techniques like TLB profiling and timing-
based techniques could be used. These techniques can produce inaccurate results and require more
technical skills. Detection of emulated devices will give false positives if the system actually uses
matching physical devices. Techniques based on memory dump analysis are of practical interest
only if the user has access to a memory dump file. This would place the technique more in the
domain of forensic investigations.

Leveraging speculative execution. The recent draw of attention toward speculative execution cul-
minated on researchers identifying different behaviors of speculation under a hypervisor (versus
a bare-metal system) [137].

7.2.2 VMBR Techniques to Avoid Detection. As with malware in general, VMBRs have an ob-
vious motivation to avoid detection: Once they are detected, the target can perform actions to

ACM Computing Surveys, Vol. 53, No. 2, Article 45. Publication date: May 2020.

45:28 F. Sierra-Arriaga et al.

Fig. 6. Thick Hypervisors can include functions such as emulated devices, drivers, and management tools.

These additional functionalities make it easier to detect the existence of a hypervisor. Thin Hypervisors

include only the basic support to virtualize an OS.

remove them from the system. This subsection discusses techniques that VMBRs can implement
to thwart detection attempts.

Use of thin hypervisors. A hypervisor that implements only the basic/mandatory requirements
to virtualize guest VMs is called a Thin Hypervisor. Many of the features that can be used to de-
tect commercial VMMs are not needed in a VMBR. For example, SubVirt is based on commercial
VMMs (e.g., VMware) but Vitriol and Blue Pill are basically developed as thin hypervisors. Figure 6
compares thick versus thin hypervisors. VMBRs based on thin hypervisors do not have to explic-
itly communicate to guest VMs that they are controlled by a VMM (e.g., using CPUID). Moreover,
emulated devices that could be used for detection do not have to be presented to guest VMs. In the
AMD-V technology, Extended Feature Enable Register (EFER), which is a Model-Specific Register
(MSR), includes a bit for enabling SVM support. A guest VM can detect if virtualization is enabled
by reading the register, but the instruction to read MSRs can be intercepted and manipulated by a
VMBR [131]. Intel architecture also includes MSR EFER, but it does not include the virtualization
enabling bit [69].

TimeStamp Counter (TSC) offset manipulation. As mentioned in Section 7.2.1, the RDTSC instruc-
tion can be used to detect timing differences on a virtualized system. However, this instruction
can be intercepted by the VMM and the value that is reported to guest VMs can be manipulated.
The Intel VT-x technology provides a simple way to intercept RDTSC instructions by setting a
TSC_Offset field in the Virtual Machine Control Structure (VMCS) [69]. AMD also provides an
equivalent mechanism [6]. Intel refers to this feature as Timestamp-counter offsetting (TSC off-
setting for short), which allows a VMM software to specify a value (the TSC offset) to be added to
the TSC when it is read by a guest VM. Although obtaining an appropriate offset is straightfor-
ward, some techniques such as instruction tracing [131] can be used to facilitate guest migration.9

Migrating from a physical system to another do not impact guest operations that depend on the
TSC value, because the hypervisor is able to offset the time differences between the machines and
hide it from the guest.

9A common case in datacenters is to have virtual machines move from a physical platform to another, due to performance

or high-availability needs.

ACM Computing Surveys, Vol. 53, No. 2, Article 45. Publication date: May 2020.

Security Issues and Challenges for Virtualization Technologies 45:29

The “Blue Chicken” Technique. During Black Hat 2007, Rutkowska also presented a possible ap-
proach for VMBR to avoid timing-based detection called “Blue Chicken.” This technique temporar-
ily uninstalls the malicious hypervisor when an attempt to uncover its presence is detected. The
VMBR then waits a specified amount of time and then reinstalls itself [131].

Although the techniques to detect malicious hypervisors are not perfect, it seems like the prob-
lem of creating a truly 100% undetectable VMBR is still open, as it seemed to be evidenced by the
outcome of the Blue Pill challenge mentioned at the beginning of this section.

7.2.3 Techniques to Differentiate between VMBR and Legitimate Uses of Virtualization. The tech-
niques mentioned in the previous subsections only detect the presence of a VMM. They are unable
to distinguish a legitimate VMM from a malicious one. Therefore, it is important to consider de-
tection of VMM versus VMBR separately. A false positive detection of VMBR can cause the system
to take actions against a legitimate VMM, while a false negative will allow a VMBR to continue
attacking the system.

A VMBR can manipulate elements such as CPUID output, BIOS reported serial number, and
output from the RDTSC instruction. Therefore, detection must be based on elements that the VMM
cannot control. The following techniques rely on low-level elements of the system that can only
be controlled by a VMBR.

Chipset-based detection. The DeepWatch project was presented as a proof-of-concept by Intel at
Black Hat USA 2008 [17], which is based on an embedded microcontroller included as a part of the
Memory Controller Hub (i.e., North Bridge) in the Intel Hub Architecture. This microcontroller
executes Intel signed firmware (stored in SPI Flash) and has DMA capabilities, which can be pro-
grammed to directly access the system memory bypassing protection and privilege mechanisms.
Once it gains access to the system memory, it is able to scan for signatures and potentially remove
malicious code as well as verify the integrity of VMMs it finds.

SMM-based detection. System Management Mode (SMM) was introduced with the Intel 80386SL
processor in 2001 [94], and it is now available in all Intel x86 processors. SMM allows the CPU
to execute special-purpose code for platform specific functions, such as power management or
Original Equipment Manufacturer (OEM) code. This is transparent to the OS, which is suspended
during SMM execution. A System Management Interrupt (SMI) needs to be generated to switch
the processor to this execution mode (more details on SMM can be found in Reference [15]). After-
ward, the current state of the CPU is saved and an SMI handler is invoked. The SMM code resides
in a separate memory address space (SMRAM) that cannot be accessed in real or protected mode.
It is also unavailable to the OS and VMMs. Although the example discussed in the following sub-
section is slightly dated (its implementation is based on earlier versions of the SMRAM protection
mechanisms and it does not take into account the restrictions that can be imposed by an IOMMU),
it is a good example of how SMM can be leveraged for security purposes.

The HyperCheck project proposed an SMM-based mechanism to monitor the integrity of an
installed VMM [154]. A remote system will monitor a target system and communication between
the monitor and the target will be achieved via Ethernet. The solution adds the following elements
to the platform:

• A Network Interface Card (NIC) that will be used to transmit the collected information
about the system to an outside monitoring system.

• An SMM code module that will read the system memory using DMA, and will drive the
data transmit through the NIC.

• An SMM code module to read the CPU state (stored in SMRAM).
• An analysis module to be installed on the monitoring system.

ACM Computing Surveys, Vol. 53, No. 2, Article 45. Publication date: May 2020.

45:30 F. Sierra-Arriaga et al.

When the target system is initialized, a copy of the system memory is sent to the monitor to serve
as a reference. Subsequent snapshots will be compared to this reference copy and discrepancies
are reported. In addition, the CPU registers are verified for integrity, since a rootkit could modify
these registers, e.g., IDTR that points to the Interrupt Descriptor Table, and make it point to a
malicious copy.

8 FUTURE: RESEARCH TRENDS AND GAPS

While it is very hard to predict the future, the amount of new side-channels vulnerabilities recently
uncovered [25–37] is a good indication that the impacts on the virtualized environments are still
to be fully understood (issues [31] and [28] are specifically against virtualization). There is a slight
gap between demonstrations in the academia and the leverage by real attacks, but that gap is
expected to shorten as more researchers jump into the topic of exploring the issues in different
environments.

Additionally, competitions like Pwn2Own [150] are offering (money) prizes for hypervisor es-
cape issues (and researchers have been fairly successful in finding and exploiting vulnerabilities
with that end).

Microsoft openness in discussing security internals of Hyper-V [116, 74] (and how their own
teams are bypassing mitigations) is also setting a trend in the industry, and hopefully the academics
will leverage the learnings to once again move the needle on the state-of-the-art in mitigations in
this area.

9 CONCLUSIONS

Virtualization technologies have brought immense benefits in terms of resource utilization and
ease of management. However, these benefits have come at the cost of more complexity from the
security standpoint. This is of increasing relevance now that cloud computing is easily available to
the general public and more and more sensitive information is stored in cloud infrastructures. Even
though virtualization intends to provide isolation, as long as the VMM and guest VMs reside in the
same physical host, some sharing of resources among them will take place and solutions designed
without taking into account their potential use in virtualized environments are at higher risk of
introducing security vulnerabilities. At the same time, more work is needed on the the challenges
that apply to both stand-alone and virtualized worlds (e.g., side-channels, timing vulnerabilities,
code bugs, etc.). As such, security should not be ignored when designing and implementing new
approaches to virtualization. As more support for security technologies is implemented at the hard-
ware level (encryption, key management, isolation of resources, etc.) virtualization technologies
will benefit from this, and as a result, the final users.

REFERENCES

[1] Keith Adams. 2007. BluePill detection in two easy steps. Retrieved May 10, 2016 from http://x86vmm.blogspot.mx/

2007/07/bluepill-detection-in-two-easy-steps.html

[2] AMD. 2005. AMD64 Virtualization Codenamed “Pacifica” Technology Secure Virtual Machine Architec-

ture Reference Manual. Retrieved May 10, 2016 from http://www.mimuw.edu.pl/ vincent/lecture6/sources/

amd-pacifica-specification.pdf.

[3] AMD. 2016. AMD Secure Encrypted Virtualization (SEV). Retrieved November 18, 2018 from https://developer.amd.

com/sev/.

[4] AMD. 2018. AMD Processor Security Updates. Retrieved November 21, 2018 from https://www.amd.com/en/

corporate/security-updates.

[5] AMD. 2018. White Paper: Sofware Techniques for Managing Speculation on AMD Processors.

[6] AMD Inc.2015. AMD64 Architecture Programmer’s Manual Volume 2: System Programming. Number 24593-3.25.

[7] Zachary Amsden. 2010. Timekeeping Virtualization for X86-Based Architectures. Retrieved May 10, 2016 from https:

//www.kernel.org/doc/Documentation/virtual/kvm/timekeeping.txt.

ACM Computing Surveys, Vol. 53, No. 2, Article 45. Publication date: May 2020.

http://x86vmm.blogspot.mx/2007/07/bluepill-detection-in-two-easy-steps.html
http://x86vmm.blogspot.mx/2007/07/bluepill-detection-in-two-easy-steps.html
http://www.mimuw.edu.pl/ vincent/lecture6/sources/amd-pacifica-specification.pdf
http://www.mimuw.edu.pl/ vincent/lecture6/sources/amd-pacifica-specification.pdf
https://developer.amd.com/sev/
https://developer.amd.com/sev/
PLX-HTTPS://www.amd.com/en/corporate/security-updates
PLX-HTTPS://www.amd.com/en/corporate/security-updates
PLX-HTTPS://www.kernel.org/doc/Documentation/virtual/kvm/timekeeping.txt
PLX-HTTPS://www.kernel.org/doc/Documentation/virtual/kvm/timekeeping.txt

Security Issues and Challenges for Virtualization Technologies 45:31

[8] Gorka Irazoqui Apecechea, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk Sunar. 2014. Fine grain cross-VM

attacks on xen and VMware are possible!IACR Cryptology ePrint Archive (2014).

[9] ARM. 2017. TrustZone—Arm. Retrieved from https://www.arm.com/products/security-on-arm/trustzone.

[10] Edgar Barbosa. 2007. Detection of hardware virtualization rootkits. Retrieved May 10, 2016 from https://www.

coseinc.com/en/index.php?rt=download&act=publication&file=Detecting_virtualized_hardware_rootkits.ppt.pdf.

[11] Antonio Barresi, Kaveh Razavi, Mathias Payer, and Thomas R. Gross. 2015. CAIN: Silently breaking ASLR in the

cloud. In Proceedings of the 9th USENIX Conference on Offensive Technologies (WOOT’15). USENIX Association, Berke-

ley, CA, 13–13.

[12] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David Mazières, and Christos Kozyrakis. 2012. Dune:

Safe user-level access to privileged CPU features. In Presented as part of the 10th USENIX Symposium on Operating

Systems Design and Implementation (’12). USENIX, 335–348.

[13] Daniel J. Bernstein. 2005. Cache-timing attacks on AES.

[14] blackhat.com. 2006. Black Hat USA 2006 Speakers. Retrieved May 10, 2016 from https://www.blackhat.com/html/

bh-usa-06/bh-usa-06-speakers.html#Rutkowska.

[15] d0nand0n BSDaemon, coideloko. 2008. System Management Mode Hacks. Retrieved October 16, 2018 from http:

//phrack.org/issues/65/7.html#article.

[16] Edouard Bugnion, Jason Nieh, and Dan Tsafrir. 2017. Hardware and Software Support for Virtualization. Morgan &

Claypool Publishers.

[17] Yuriy Bulygin and David Samyde. 2008. Chipset based approach to detect virtualization malware. Black Hat Briefings

USA (2008).

[18] Ramaswami Chandramouli. 2014. DRAFT NIST Special Publication 800-125-A. Security Recommendations for Hyper-

visor deployment. National Institute of Standards and Technology, Gaithersburg, MD.

[19] Xiaoxin Chen, Tal Garfinkel, E. Christopher Lewis, Pratap Subrahmanyam, Carl A. Waldspurger, Dan Boneh, Jeffrey

Dwoskin, and Dan R. K. Ports. 2008. Overshadow: A virtualization-based approach to retrofitting protection in

commodity operating systems. SIGPLAN Not. 43, 3 (Mar. 2008), 2–13. DOI:https://doi.org/10.1145/1353536.1346284

[20] CITRIX. 2018. VM snapshots. Retrieved November 18, 2018 from https://docs.citrix.com/en-us/xenserver/

current-release/dr/snapshots.html.

[21] Robert R. Collins. 1997. Intel’s System Management Mode. Retrieved September 18, 2016 from http://www.drdobbs.

com/embedded-systems/undocumented-corner/184410120.

[22] Louis Columbus. 2015. Roundup Of Cloud Computing Forecasts And Market Estimates Q3 Update, 2015. Re-

trieved Sep 27, 2015 from http://www.forbes.com/sites/louiscolumbus/2015/09/27/roundup-of-cloud-computing-

forecasts-and-market-estimates-q3-update-2015/.

[23] Lee Copeland. 2002. Checkpoint and Restart. Retrieved Nov 18, 2018 from https://www.computerworld.com/article/

2588055/disaster-recovery/checkpoint-and-restart.html.

[24] Intel Corp.2018. Intel Software Guard Extensionsl. Retrieved Oct 18, 2018 from https://software.intel.com/en-us/sgx.

[25] Intel Corporation. 2018. Intel Bounds Check Bypass Store (CVE-2018-3693). Retrieved August 20, 2019 from https:

//01.org/security/advisories/intel-oss-10002.

[26] Intel Corporation. 2018. Intel CPU Speculative Side-channel L1 Terminal Fault: OS/SMM (CVE-2018-3620). Retrieved

August 20, 2019 from https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00161.html.

[27] Intel Corporation. 2018. Intel CPU Speculative Side-channel L1 Terminal Fault: SGX (CVE-2018-3615). Retrieved

August 20, 2019 from https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00161.html.

[28] Intel Corporation. 2018. Intel CPU Speculative Side-channel L1 Terminal Fault: VMM (CVE-2018-3646). Retrieved

August 20, 2019 from https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00161.html.

[29] Intel Corporation. 2018. Intel Lazy FP State Restore (CVE-2018-3665). Retrieved August 20, 2019 from https://www.

intel.com/content/www/us/en/security-center/advisory/intel-sa-00145.html.

[30] Intel Corporation. 2018. Rogue System Register Read (RSRE) CVE-2018-3640). Retrieved August 20, 2019 from https:

//www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00115.html.

[31] Intel Corporation. 2018. Speculative Execution and Indirect Branch Prediction Side Channel (CVE-2017-5753,

CVE-2017-5754, CVE-2017-5715). Retrieved August 20, 2019 from https://www.intel.com/content/www/us/en/

security-center/advisory/intel-sa-00088.html.

[32] Intel Corporation. 2018. Speculative Store Bypass (SSB) (CVE-2018-3639). Retrieved August 20, 2019 from https:

//www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00115.html.

[33] Intel Corporation. 2019. Intel Microarchitectural Data Sampling Uncacheable Memory (MDSUM) (CVE-2019-

11091). Retrieved August 20, 2019 from https://www.intel.com/content/www/us/en/security-center/advisory/

intel-sa-00233.html.

[34] Intel Corporation. 2019. Intel Microarchitectural Fill Buffer Data Sampling (MFBDS) (CVE-2018-12130). Retrieved

August 20, 2019 from https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00233.html.

ACM Computing Surveys, Vol. 53, No. 2, Article 45. Publication date: May 2020.

PLX-HTTPS://www.arm.com/products/security-on-arm/trustzone
PLX-HTTPS://www.coseinc.com/en/index.php?rt$=$download&act$=$publication&file$=$Detecting_virtualized_hardware_rootkits.ppt.pdf
PLX-HTTPS://www.coseinc.com/en/index.php?rt$=$download&act$=$publication&file$=$Detecting_virtualized_hardware_rootkits.ppt.pdf
PLX-HTTPS://www.blackhat.com/html/bh-usa-06/bh-usa-06-speakers.html#Rutkowska
PLX-HTTPS://www.blackhat.com/html/bh-usa-06/bh-usa-06-speakers.html#Rutkowska
http://phrack.org/issues/65/7.html#article
http://phrack.org/issues/65/7.html#article
https://doi.org/10.1145/1353536.1346284
https://docs.citrix.com/en-us/xenserver/current-release/dr/snapshots.html
https://docs.citrix.com/en-us/xenserver/current-release/dr/snapshots.html
http://www.drdobbs.com/embedded-systems/undocumented-corner/184410120
http://www.drdobbs.com/embedded-systems/undocumented-corner/184410120
http://www.forbes.com/sites/louiscolumbus/2015/09/27/roundup-of-cloud-computing-forecasts-and-market-estimates-q3-update-2015/
http://www.forbes.com/sites/louiscolumbus/2015/09/27/roundup-of-cloud-computing-forecasts-and-market-estimates-q3-update-2015/
PLX-HTTPS://www.computerworld.com/article/2588055/disaster-recovery/checkpoint-and-restart.html
PLX-HTTPS://www.computerworld.com/article/2588055/disaster-recovery/checkpoint-and-restart.html
https://software.intel.com/en-us/sgx
https://01.org/security/advisories/intel-oss-10002
https://01.org/security/advisories/intel-oss-10002
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00161.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00161.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00161.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00145.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00145.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00115.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00115.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00088.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00088.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00115.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00115.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00233.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00233.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00233.html

45:32 F. Sierra-Arriaga et al.

[35] Intel Corporation. 2019. Intel Microarchitectural Load Port Data Sampling (MLPDS) (CVE-2018-12127). Retrieved

August 20, 2019 from https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00233.html.

[36] Intel Corporation. 2019. Intel Microarchitectural Store Buffer Data Sampling (MSBDS) (CVE-2018-12126). Retrieved

August 20, 2019 from https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00233.html.

[37] Intel Corporation. 2019. Intel Microprocessor Memory Mapping Advisory (CVE-2019-0162). Retrieved August 20,

2019 from https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00238.html.

[38] Microsoft Corporation. 2017. Hypervisor Code Integrity Elevation of Privilege Vulnerability. Retrieved August 20,

2019 from https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2017-0193.

[39] Alan Cox and Jean Delvare. 2018. dmidecode(8)-Linux man page. Retrieved October 18, 2018 from https://linux.die.

net/man/8/dmidecode.

[40] R. J. Creasy. 1981. The origin of the VM/370 time-sharing system. IBM J. Res. Dev. 25, 5 (Sept. 1981), 483–490.

[41] Ash de Zylva. 2016. Windows 10 Device Guard and Credential Guard Demystified. Retrieved January 22,

2017 from https://blogs.technet.microsoft.com/ash/2016/03/02/windows-10-device-guard-and-credential-guard-

demystified/.

[42] Alan M. Dunn, Michael Z. Lee, Suman Jana, Sangman Kim, Mark Silberstein, Yuanzhong Xu, Vitaly Shmatikov,

and Emmett Witchel. 2012. Eternal sunshine of the spotless machine: Protecting privacy with ephemeral channels.

In Proceedings of the 10th USENIX Conference on Operating Systems Design and Implementation (OSDI’12). USENIX

Association, Berkeley, CA, 61–75.

[43] Drew Eckhardt. 1992. chroot(2) Linux Programmer’s Manual. Retrieved May 10, 2016 from http://man7.org/linux/

man-pages/man2/chroot.2.html.

[44] Jake Edge. 2015. A seccomp overview. Retrieved August 20, 2017 from https://lwn.net/Articles/656307/.

[45] Endgame. 2018. Detecting Spectre And Meltdown Using Hardware Performance Counters. Retrieved August

20, 2019 from https://www.endgame.com/blog/technical-blog/detecting-spectre-and-meltdown-using-hardware-

performance-counters.

[46] Herbert Bos, Erik Bosman, Kaveh Razavi and Cristiano Giuffrida. 2016. Dedup Est machina: Memory deduplication

as an advanced exploitation vector. (2016).

[47] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2016. Jump over ASLR: Attacking branch predic-

tors to bypass ASLR. In Proceedings of the 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO’16). IEEE, 1–13.

[48] Yuval Yarom, Fangfei Liu, Qian Ge et al. 2016. CATalyst: Defeating last-level cache side channel attacks in cloud

computing. (2016).

[49] Peter Ferrie. 2007. Attacks on Virtual Machine Emulators. Retrieved May 10, 2016 from http://www.symantec.com/

avcenter/reference/Virtual_Machine_Threats.pdf.

[50] Tal Garfinkel, Keith Adams, Andrew Warfield, and Jason Franklin. 2007. Compatibility is not transparency: VMM

detection myths and realities. In Proceedings of the 11th USENIX Workshop on Hot Topics in Operating Systems (HO-

TOS’07). USENIX Association, Berkeley, CA, Article 6, 6 pages.

[51] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and Dan Boneh. 2003. Terra: A virtual machine-based plat-

form for trusted computing. SIGOPS Oper. Syst. Rev. 37, 5 (Oct. 2003), 193–206. DOI:https://doi.org/10.1145/1165389.

945464

[52] Tal Garfinkel and Mendel Rosenblum. 2003. A virtual machine introspection based architecture for intrusion detec-

tion. In Proceedings of the Network and Distributed Systems Security Symposium. 191–206.

[53] Jason Geffner. 2015. VENOM: Virtualized Environment Neglected Operations Manipulation. Retrieved May 10, 2016

from http://venom.crowdstrike.com/.

[54] Jason Geffner. 2015. VENOM Vulnerability Details. Retrieved May 10, 2016 from http://blog.crowdstrike.com/

venom-vulnerability-details/.

[55] Antonios Gkortzis, Stamatia Rizou, and Diomidis Spinellis. 2016. An empirical analysis of vulnerabilities in virtu-

alization technologies. In Proceedings of the 2016 IEEE International Conference on Cloud Computing Technology and

Science (CloudCom’16). IEEE, 533–538.

[56] Robert P. Goldberg. 1973. Architectural principles for virtual computer systems. Harvard University, Cambridge

MA. Division of engineering and applied physics, 22–27.

[57] Michael Grace, Zhi Wang, Deepa Srinivasan, Jinku Li, Xuxian Jiang, Zhenkai Liang, and Siarhei Liakh. 2010. Trans-

parent protection of commodity os kernels using hardware virtualization. In Security and Privacy in Communication

Networks. Springer, 162–180.

[58] Ben Gras, Kaveh Razavi, Erik Bosman, Cristiano Giuffrida, and Herbert Bos. 2017. ASLR and cache: Practical cache

attacks on MMU from javascript. In Proceedings of the Network and Distributed System Security Symposium (NDSS’17).

[59] Mariano Graziano. 2013. Actaeon. Retrieved May 10, 2016 from http://www.s3.eurecom.fr/tools/actaeon/.

ACM Computing Surveys, Vol. 53, No. 2, Article 45. Publication date: May 2020.

https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00233.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00233.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00238.html
https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2017-0193
https://linux.die.net/man/8/dmidecode
https://linux.die.net/man/8/dmidecode
https://blogs.technet.microsoft.com/ash/2016/03/02/windows-10-device-guard-and-credential-guard-demystified/
https://blogs.technet.microsoft.com/ash/2016/03/02/windows-10-device-guard-and-credential-guard-demystified/
http://man7.org/linux/man-pages/man2/chroot.2.html
http://man7.org/linux/man-pages/man2/chroot.2.html
https://lwn.net/Articles/656307/
PLX-HTTPS://www.endgame.com/blog/technical-blog/detecting-spectre-and-meltdown-using-hardware-performance-counters
PLX-HTTPS://www.endgame.com/blog/technical-blog/detecting-spectre-and-meltdown-using-hardware-performance-counters
http://www.symantec.com/avcenter/reference/Virtual_Machine_Threats.pdf
http://www.symantec.com/avcenter/reference/Virtual_Machine_Threats.pdf
https://doi.org/10.1145/1165389.945464
https://doi.org/10.1145/1165389.945464
http://venom.crowdstrike.com/
http://blog.crowdstrike.com/venom-vulnerability-details/
http://blog.crowdstrike.com/venom-vulnerability-details/
http://www.s3.eurecom.fr/tools/actaeon/

Security Issues and Challenges for Virtualization Technologies 45:33

[60] Mariano Graziano, Andrea Lanzi, and Davide Balzarotti. 2013. Hypervisor memory forensics. In Proceedings of the

Symposium on Research in Attacks, Intrusion, and Defenses (RAID’13). Springer.

[61] Trusted Computing Group. 2018. Trusted Computing Group. Retrieved October 18, 2018 from https://

trustedcomputinggroup.org/.

[62] William Hayles. 2015. New Technology From Intel Will Help Solve The Cloud’s Noisy Neighbor Problem. Re-

trieved January 8, 2017 from https://blog.outscale.com/us/new-technology-from-intel-will-help-solve-the-clouds-

noisy-neighbor-problem/.

[63] Matt Helsley. 2009. LXC: Linux container tools: Tour and set up the new container tools called linux containers. IBM

Developerworks (2009).

[64] Intel. 2013. Intel Hardware-based Security Technologies for Intelligent Retail Devices. Retrieved November 18, 2018

from https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/security-technologies-4th-

gen-core-retail-paper.pdf.

[65] Intel. 2018. White Paper: Intel Analysis of Speculative Execution Side Channels. Number 326983-001.

[66] Intel Corporation. 2013. Mobile 3rd Generation Intel Core Processor Family, Mobile Intel Pentium Processor Family, and

Mobile Intel Celeron Processor Family: Datasheet—Volume 2 of 2. Number 326769-004.

[67] Intel Corporation. 2014. Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 1: Basic Architecture.

Number 253665-051US.

[68] Intel Corporation. 2014. Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 2: Instruction Set Refer-

ence. Number 325383-051US.

[69] Intel Corporation. 2014. Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 3: System Programming

Guide. Number 325384-051US.

[70] Intel Corporation. 2014. Intel Virtualization Technology for Directed I/O: Architecture Specification. Number D51397-

007.

[71] Intel Corporation. 2015. 5th Generation Intel Core Processor Family, Intel Core M Processor Family, Mobile Intel Pentium

Processor Family, and Mobile Intel Celeron Processor Family: Datasheet—Volume 2 of 2. Number 330835-003.

[72] Intel Corporation. 2015. Intel Trusted Execution Technology: Software Development Guide. Number 315168-012.

[73] Xuxian Jiang, Xinyuan Wang, and Dongyan Xu. 2010. Stealthy malware detection and monitoring through VMM-

based Out-of-the-box semantic view reconstruction. ACM Trans. Inf. Syst. Secur. 13, 2, Article 12 (Mar. 2010), 28

pages. DOI:https://doi.org/10.1145/1698750.1698752

[74] Nicolas Joly and Joe Bialek. 2019. A Dive in to Hyper-V Architecture & Vulnerabilities. Retrieved August

20, 2019 from http://i.blackhat.com/us-18/Wed-August-8/us-18-Joly-Bialek-A-Dive-in-to-Hyper-V-Architecture-

and-Vulnerabilities.pdf.

[75] Seth Juarez. 2015. Windows 10 Virtual Secure Mode with David Hepkin. Retrieved January 21, 2017 from https:

//channel9.msdn.com/Blogs/Seth-Juarez/Windows-10-Virtual-Secure-Mode-with-David-Hepkin.

[76] Min Gyung Kang, Heng Yin, Steve Hanna, Stephen McCamant, and Dawn Song. 2009. Emulating emulation-resistant

malware. In Proceedings of the 1st ACM Workshop on Virtual Machine Security (VMSec ’09). ACM, New York, NY, 11–

22. DOI:https://doi.org/10.1145/1655148.1655151

[77] David Kaplan, Jeremy Powell, and Tom Woller. 2016. AMD Memory Encryption.

[78] Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz. 2012. STEALTHMEM: System-level protection against cache-

based side channel attacks in the cloud. In Presented as Part of the 21st USENIX Security Symposium (USENIX Security

12). USENIX, , 189–204.

[79] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and O. Mutlu. 2014. Flipping bits in memory

without accessing them: An experimental study of DRAM disturbance errors. In Proceedings of the 2014 ACM/IEEE

41st International Symposium on Computer Architecture (ISCA’14). 361–372. DOI:https://doi.org/10.1109/ISCA.2014.

6853210

[80] Samuel T. King, Peter M. Chen, Yi-Min Wang, Chad Verbowski, Helen J. Wang, and Jacob R. Lorch. 2006. SubVirt:

Implementing malware with virtual machines. In Proceedings of the 2006 IEEE Symposium on Security and Privacy.

Institute of Electrical and Electronics Engineers, Inc., Oakland, CA, 314–327.

[81] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp,

Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. 2019. Spectre attacks: Exploiting speculative

execution. In Proceedings of the 40th IEEE Symposium on Security and Privacy (S&P’19).

[82] Kostya Kortchinsky. 2009. Cloudburst: A VMware guest to host escape story.Retrieved May 10, 2016 from https:

//www.blackhat.com/presentations/bh-usa-09/KORTCHINSKY/BHUSA09-Kortchinsky-Cloudburst-SLIDES.pdf.

[83] Brian Krzanich. 2018. Advancing Security at the Silicon Level. Retrieved November 21, 2018 from https://newsroom.

intel.com/editorials/advancing-security-silicon-level/.

[84] kuo Lang Tseng. 2015. Intel Kernel Guard Technology. Retrieved May 10, 2016 from https://01.org/intel-kgt.

ACM Computing Surveys, Vol. 53, No. 2, Article 45. Publication date: May 2020.

https://trustedcomputinggroup.org/
https://trustedcomputinggroup.org/
https://blog.outscale.com/us/new-technology-from-intel-will-help-solve-the-clouds-noisy-neighbor-problem/
https://blog.outscale.com/us/new-technology-from-intel-will-help-solve-the-clouds-noisy-neighbor-problem/
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/security-technologies-4th-gen-core-retail-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/security-technologies-4th-gen-core-retail-paper.pdf
https://doi.org/10.1145/1698750.1698752
http://i.blackhat.com/us-18/Wed-August-8/us-18-Joly-Bialek-A-Dive-in-to-Hyper-V-Architecture-and-Vulnerabilities.pdf
http://i.blackhat.com/us-18/Wed-August-8/us-18-Joly-Bialek-A-Dive-in-to-Hyper-V-Architecture-and-Vulnerabilities.pdf
https://channel9.msdn.com/Blogs/Seth-Juarez/Windows-10-Virtual-Secure-Mode-with-David-Hepkin
https://channel9.msdn.com/Blogs/Seth-Juarez/Windows-10-Virtual-Secure-Mode-with-David-Hepkin
https://doi.org/10.1145/1655148.1655151
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/ISCA.2014.6853210
PLX-HTTPS://www.blackhat.com/presentations/bh-usa-09/KORTCHINSKY/BHUSA09-Kortchinsky-Cloudburst-SLIDES.pdf
PLX-HTTPS://www.blackhat.com/presentations/bh-usa-09/KORTCHINSKY/BHUSA09-Kortchinsky-Cloudburst-SLIDES.pdf
https://newsroom.intel.com/editorials/advancing-security-silicon-level/
https://newsroom.intel.com/editorials/advancing-security-silicon-level/
https://01.org/intel-kgt

45:34 F. Sierra-Arriaga et al.

[85] McAfee Labs. 2015. McAfee Labs Threats Report May 2015. Retrieved May 10, 2016 from http://www.mcafee.com/

us/resources/reports/rp-quarterly-threat-q1-2015.pdf.

[86] Tianlin Li, Yaohui Hu, Ping Yang, and Kartik Gopalan. 2015. Privacy-preserving virtual machine. In Proceedings of

the 31st Annual Computer Security Applications Conference (ACSAC’15). ACM, New York, NY, 231–240. DOI:https:

//doi.org/10.1145/2818000.2818044

[87] Siarhei Liakh, Michael Grace, and Xuxian Jiang. 2010. Analyzing and improving linux kernel memory protection: A

model checking approach. In Proceedings of the 26th Annual Computer Security Applications Conference (ACSAC’10).

ACM, New York, NY, 271–280. DOI:https://doi.org/10.1145/1920261.1920301

[88] David Lie and Lionel Litty. 2010. Using hypervisors to secure commodity operating systems. In Proceedings of the

5th ACM Workshop on Scalable Trusted Computing. ACM, 11–20.

[89] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and Yubin Xia. 2015. Thwarting memory disclosure with efficient

hypervisor-enforced intra-domain isolation. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and

Communications Security (CCS’15). ACM, New York, NY, 1607–1619. DOI:https://doi.org/10.1145/2810103.2813690

[90] A. Theodore Markettos, Colin Rothwell, Brett F. Gutstein, Allison Pearce, Peter G. Neumann, Simon W. Moore,

and Robert N. M. Watson. 2019. Thunderclap: Exploring vulnerabilities in operating system IOMMU protection via

DMA from untrustworthy peripherals. In Proceedings of the 26th Annual Network and Distributed System Security

Symposium (NDSS’19).

[91] Clémentine Maurice, Christoph Neumann, Olivier Heen, and Aurélien Francillon. 2014. Confidentiality issues on a

GPU in a virtualized environment. In Financial Cryptography and Data Security. Springer, 119–135.

[92] Arif Mohamed. 2009. A history of cloud computing.Retrieved May 10, 2016 from http://www.computerweekly.com/

feature/A-history-of-cloud-computing.

[93] Soo-Jin Moon, Vyas Sekar, and Michael K. Reiter. 2015. Nomad: Mitigating arbitrary cloud side channels via provider-

assisted migration. In Proceedings of the ACM Conference on Computer and Communications Security.

[94] Scott Mueller and Mark Edward Soper. 2001. Microprocessor Types and Specifications. Retrieved September 18, 2016

from http://www.informit.com/articles/article.aspx?p=130978&seqNum=27.

[95] Ryan Naraine. 2006. Blue Pill Prototype Creates 100% Undetectable Malware. Retrieved May 10, 2016 from http:

//www.eweek.com/c/a/Windows/Blue-Pill-Prototype-Creates-100-Undetectable-Malware.

[96] Ryan Naraine. 2007. Blue Pill hacker challenge update: It’s a no-go. Retrieved May 10, 2016 from http://www.zdnet.

com/article/blue-pill-hacker-challenge-update-its-a-no-go/.

[97] Ryan Naraine. 2007. Rutkowska faces ’100% undetectable malware’ challenge. Retrieved May 10, 2016 from http:

//www.zdnet.com/article/rutkowska-faces-100-undetectable-malware-challenge/.

[98] Khang T. Nguyen. 2016. Introduction to Cache Allocation Technology in the Intel Xeon Processor E5 v4

Family. Retrieved January 8, 2017 from https://software.intel.com/en-us/articles/introduction-to-cache-allocation-

technology.

[99] National Vulnerability Database. 2007. CVE-2007-2455. Retrieved May 10, 2016 from https://web.nvd.nist.gov/view/

vuln/detail?vulnId=CVE-2007-2455.

[100] Alfredo Andres Omella. 2006. Methods for virtual machine detection. (2006).

[101] Oracle. 2019. About VirtualBox. Retrieved August 4, 2019 from https://www.virtualbox.org/wiki/VirtualBox.

[102] Tavis Ormandy. 2007. An empirical study into the security exposure to hosts of hostile virtualized environments.

[103] PCI-SIG. 2010. PCI Express Base Specification Revision 3.0.

[104] Gábor Pék, Andrea Lanzi, Abhinav Srivastava, Davide Balzarotti, Aurélien Francillon, and Christoph Neumann.

2014. On the feasibility of software attacks on commodity virtual machine monitors via direct device assignment.

In Proceedings of the 9th ACM Symposium on Information, Computer and Communications Security. ACM, 305–316.

[105] Diego Perez-Botero, Jakub Szefer, and Ruby B. Lee. 2013. Characterizing hypervisor vulnerabilities in cloud comput-

ing servers. In Proceedings of the 2013 International Workshop on Security in Cloud Computing (Cloud Computing’13).

ACM, New York, NY, 3–10. DOI:https://doi.org/10.1145/2484402.2484406

[106] Neil Peterson. 2016. Windows Containers. Retrieved August 22, 2016 from https://msdn.microsoft.com/en-us/

virtualization/windowscontainers/about/about_overview.

[107] Global Platform. 2016. GlobalPlatform made simple guide: Trusted Execution Environment (TEE) Guide. Retrieved

May 10, 2016 from http://www.globalplatform.org/mediaguidetee.asp.

[108] KVM Project. 2015. KVM FAQ. Retrieved August 20, 2018 from https://www.linux-kvm.org/page/FAQ.

[109] Xen Project. 2016. Hvmloader. Retrieved December 31, 2017 from https://wiki.xenproject.org/wiki/Hvmloader.

[110] Xen Project. 2018. Driver Domain. Retrieved October 18, 2018 from https://wiki.xenproject.org/wiki/Driver_

Domain.

[111] Xen Project. 2018. Xen Project Software Overview. Retrieved August 4, 2019 from https://wiki.xenproject.org/wiki/

Xen_Project_Software_Overview.

ACM Computing Surveys, Vol. 53, No. 2, Article 45. Publication date: May 2020.

http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q1-2015.pdf
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q1-2015.pdf
https://doi.org/10.1145/2818000.2818044
https://doi.org/10.1145/2818000.2818044
https://doi.org/10.1145/1920261.1920301
https://doi.org/10.1145/2810103.2813690
http://www.computerweekly.com/feature/A-history-of-cloud-computing
http://www.computerweekly.com/feature/A-history-of-cloud-computing
http://www.informit.com/articles/article.aspx?p$=$130978&seqNum$=$27
http://www.eweek.com/c/a/Windows/Blue-Pill-Prototype-Creates-100-Undetectable-Malware
http://www.eweek.com/c/a/Windows/Blue-Pill-Prototype-Creates-100-Undetectable-Malware
http://www.zdnet.com/article/blue-pill-hacker-challenge-update-its-a-no-go/
http://www.zdnet.com/article/blue-pill-hacker-challenge-update-its-a-no-go/
http://www.zdnet.com/article/rutkowska-faces-100-undetectable-malware-challenge/
http://www.zdnet.com/article/rutkowska-faces-100-undetectable-malware-challenge/
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://web.nvd.nist.gov/view/vuln/detail?vulnId$=$CVE-2007-2455
https://web.nvd.nist.gov/view/vuln/detail?vulnId$=$CVE-2007-2455
PLX-HTTPS://www.virtualbox.org/wiki/VirtualBox
https://doi.org/10.1145/2484402.2484406
https://msdn.microsoft.com/en-us/virtualization/windowscontainers/about/about_overview
https://msdn.microsoft.com/en-us/virtualization/windowscontainers/about/about_overview
http://www.globalplatform.org/mediaguidetee.asp
PLX-HTTPS://www.linux-kvm.org/page/FAQ
https://wiki.xenproject.org/wiki/Hvmloader
https://wiki.xenproject.org/wiki/Driver_Domain
https://wiki.xenproject.org/wiki/Driver_Domain
https://wiki.xenproject.org/wiki/Xen_Project_Software_Overview
https://wiki.xenproject.org/wiki/Xen_Project_Software_Overview

Security Issues and Challenges for Virtualization Technologies 45:35

[112] Niels Provos, Markus Friedl, and Peter Honeyman. 2003. Preventing privilege escalation. In Proceedings of the 12th

Conference on USENIX Security Symposium, vol. 12 (SSYM’03). USENIX Association, Berkeley, CA, 16–16.

[113] Thomas Ptacek. 2007. Joanna: We Can Detect BluePill. Let Us Prove It! Retrieved May 10, 2016 from https:

//web.archive.org/web/20070810120035http://www.matasano.com/log/895/joanna-we-can-detect-bluepill-let-us-

prove-it/.

[114] Quarkslab. 2018. Introduction to Trusted Execution Environment: ARM’s TrustZone. Retrieved November 18, 2018

from https://blog.quarkslab.com/introduction-to-trusted-execution-environment-arms-trustzone.html.

[115] Danny Quist, Val Smith, and Offensive Computing. 2006. Detecting the presence of virtual machines using the local

data table. (2006).

[116] Jordan Rabet. 2018. Hardening Hyper-V through offensive security research. Retrieved August 20, 2019 from https://

i.blackhat.com/us-18/Thu-August-9/us-18-Rabet-Hardening-Hyper-V-Through-Offensive-Security-Research.pdf.

[117] Sanaz Rahimi and Mehdi Zargham. 2010. Security implications of different virtualization approaches for secure

cyber architectures. In Proceedings of the Secure and Resilient Cyber Architectures Conference (MITRE’10).

[118] Thorsten Holz Ralf Hund and Felix C. Freiling. 2009. Return-oriented rootkits: Bypassing kernel code integrity

protection mechanisms. In Proceedings of the 18th USENIX Security Symposium (USENIX Security 09). USENIX.

[119] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cristiano Giuffrida, and Herbert Bos. 2016. Flip feng shui: Ham-

mering a needle in the software stack. In Proceedings of the 25th USENIX Security Symposium (USENIX Security’16).

USENIX Association, 1–18.

[120] Ryan Riley, Xuxian Jiang, and Dongyan Xu. 2007. An architectural approach to preventing code injection attacks.

In Proceedings of the 37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN’07).

IEEE Computer Society, 30–40. DOI:https://doi.org/10.1109/DSN.2007.13

[121] Ryan Riley, Xuxian Jiang, and Dongyan Xu. 2008. Guest-transparent prevention of kernel rootkits with VMM-based

memory shadowing. In Proceedings of the 11th International Symposium on Recent Advances in Intrusion Detection

(RAID’08). Springer-Verlag, Berlin, 1–20. DOI:https://doi.org/10.1007/978-3-540-87403-4_1

[122] Matteo Riondatto. 2015. FreeBSD Handbook. Chapter 14:Jails. Retrieved May 10, 2016 from http://www.freebsd.org/

doc/en/books/handbook/jails.html.

[123] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. 2009. Hey, you, get off of my cloud: Exploring

information leakage in third-party compute clouds. In Proceedings of the 16th ACM Conference on Computer and

Communications Security (CCS’09). ACM, New York, NY, 199–212. DOI:https://doi.org/10.1145/1653662.1653687

[124] Dan Rosenberg. 2014. Reflections on Trusting TrustZone. Retrieved November 18, 2018 from https://www.blackhat.

com/docs/us-14/materials/us-14-Rosenberg-Reflections-on-Trusting-TrustZone.pdf.

[125] Mendel Rosenblum and Carl Waldspurger. 2011. I/O virtualization. Queue 9, 11, Article 30 (Nov. 2011), 10 pages.

DOI:https://doi.org/10.1145/2063166.2071256

[126] Mark Russinovich. 2015. Containers: Docker, Windows and Trends. Retrieved May 10, 2016 from https://azure.

microsoft.com/en-us/blog/containers-docker-windows-and-trends/.

[127] Joanna Rutkowska. 2004. Red Pill... or How to Detect VMM Using (Almost) One CPU Instruction. Retrieved May 10,

2016 from http://repo.hackerzvoice.net/depot_ouah/Red_%20Pill.html.

[128] Joanna Rutkowska. 2006. The Blue Pill Hype. Retrieved May 10, 2016 from http://theinvisiblethings.blogspot.mx/

2006/07/blue-pill-hype.html.

[129] Joanna Rutkowska. 2006. Introducing Blue Pill. Retrieved May 10, 2016 from http://theinvisiblethings.blogspot.mx/

2006/06/introducing-blue-pill.html.

[130] Joanna Rutkowska. 2006. Subverting Vista Kernel for Fun and Profit. Retrieved May 10, 2016 from https://www.

blackhat.com/presentations/bh-usa-06/BH-US-06-Rutkowska.pdf.

[131] Joanna Rutkowska and Alexander Tereshkin. 2007. IsGameOver() anyone. Retrieved May 10, 2016 from https://www.

blackhat.com/presentations/bh-usa-07/Rutkowska/Presentation/bh-usa-07-rutkowska.pdf.

[132] Joanna Rutkowska and Rafal Wojtczuk. 2018. Qubes Architecture Overview. Retrieved October 18, 2018 from https:

//www.qubes-os.org/doc/architecture/#key-architecture-features.

[133] F. L. Sang, E. Lacombe, V. Nicomette, and Y. Deswarte. 2010. Exploiting an I/OMMU vulnerability. In Proceedings

of the , 2010 5th International Conference on Malicious and Unwanted Software (MALWARE’10). 7–14. DOI:https:

//doi.org/10.1109/MALWARE.2010.5665798

[134] Fernand Lone Sang, Vincent Nicomette, and Yves Deswarte. 2011. I/O attacks in intel pc-based architectures and

countermeasures. In Proceedings of the 2011 First SysSec Workshop (SYSSEC’11). IEEE Computer Society, 19–26.

DOI:https://doi.org/10.1109/SysSec.2011.10

[135] Vasily A. Sartakov and Rudiger Kapitza. 2014. NV-Hypervisor: Hypervisor-based persistence for virtual machines. In

Proceedings of the 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN’14).

IEEE Computer Society, 654–659. DOI:https://doi.org/10.1109/DSN.2014.64

ACM Computing Surveys, Vol. 53, No. 2, Article 45. Publication date: May 2020.

https://web.archive.org/web/20070810120035
https://web.archive.org/web/20070810120035
http://www.matasano.com/log/895/joanna-we-can-detect-bluepill-let-us-prove-it/
http://www.matasano.com/log/895/joanna-we-can-detect-bluepill-let-us-prove-it/
https://blog.quarkslab.com/introduction-to-trusted-execution-environment-arms-trustzone.html
https://i.blackhat.com/us-18/Thu-August-9/us-18-Rabet-Hardening-Hyper-V-Through-Offensive-Security-Research.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Rabet-Hardening-Hyper-V-Through-Offensive-Security-Research.pdf
https://doi.org/10.1109/DSN.2007.13
https://doi.org/10.1007/978-3-540-87403-4_1
http://www.freebsd.org/doc/en/books/handbook/jails.html
http://www.freebsd.org/doc/en/books/handbook/jails.html
https://doi.org/10.1145/1653662.1653687
PLX-HTTPS://www.blackhat.com/docs/us-14/materials/us-14-Rosenberg-Reflections-on-Trusting-TrustZone.pdf
PLX-HTTPS://www.blackhat.com/docs/us-14/materials/us-14-Rosenberg-Reflections-on-Trusting-TrustZone.pdf
https://doi.org/10.1145/2063166.2071256
https://azure.microsoft.com/en-us/blog/containers-docker-windows-and-trends/
https://azure.microsoft.com/en-us/blog/containers-docker-windows-and-trends/
http://repo.hackerzvoice.net/depot_ouah/Red_%20Pill.html
http://theinvisiblethings.blogspot.mx/2006/07/blue-pill-hype.html
http://theinvisiblethings.blogspot.mx/2006/07/blue-pill-hype.html
http://theinvisiblethings.blogspot.mx/2006/06/introducing-blue-pill.html
http://theinvisiblethings.blogspot.mx/2006/06/introducing-blue-pill.html
PLX-HTTPS://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Rutkowska.pdf
PLX-HTTPS://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Rutkowska.pdf
PLX-HTTPS://www.blackhat.com/presentations/bh-usa-07/Rutkowska/Presentation/bh-usa-07-rutkowska.pdf
PLX-HTTPS://www.blackhat.com/presentations/bh-usa-07/Rutkowska/Presentation/bh-usa-07-rutkowska.pdf
PLX-HTTPS://www.qubes-os.org/doc/architecture/#key-architecture-features
PLX-HTTPS://www.qubes-os.org/doc/architecture/#key-architecture-features
https://doi.org/10.1109/MALWARE.2010.5665798
https://doi.org/10.1109/MALWARE.2010.5665798
https://doi.org/10.1109/SysSec.2011.10
https://doi.org/10.1109/DSN.2014.64

45:36 F. Sierra-Arriaga et al.

[136] Daniel J. Scales, Mike Nelson, and Ganesh Venkitachalam. 2010. The design of a practical system for fault-tolerant

virtual machines. SIGOPS Oper. Syst. Rev. 44, 4 (Dec. 2010), 30–39. DOI:https://doi.org/10.1145/1899928.1899932

[137] Innokentii Sennovskii. 2018. Wake up Neo: detecting virtualization through speculative execution. Retrieved August

20, 2019 from https://2018.offzone.moscow/getfile/?bmFtZT0xNS0wMF9XYWtlX1VwX05lby5wZGYmSUQ9NDAy.

[138] Fermin Serna. 2012. The info leak era on software exploitation. Retrieved August 20, 2019 from https://media.

blackhat.com/bh-us-12/Briefings/Serna/BH_US_12_Serna_Leak_Era_Slides.pdf.

[139] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. 2007. SecVisor: A tiny hypervisor to provide lifetime kernel

code integrity for commodity oses. In Proceedings of 21st ACM SIGOPS Symposium on Operating Systems Principles

(SOSP ’07). ACM, New York, NY, 335–350. DOI:https://doi.org/10.1145/1294261.1294294

[140] Kuniyasu Suzaki, Kengo Iijima, Toshiki Yagi, and Cyrille Artho. 2011. Memory deduplication as a threat to the guest

OS. In Proceedings of the 4th European Workshop on System Security. ACM, 1.

[141] Medhi Talbi. 2017. Attacking a co-hosted VM: A hacker, a hammer and two memory modules. Retrieved from https:

//thisissecurity.stormshield.com/2017/10/19/attacking-co-hosted-vm-hacker-hammer-two-memory-modules/.

[142] Yinqian Zhang Tianwei Zhang, and Ruby B. Lee. 2016. CloudRadar: A real-time side-channel attack detection system

in clouds. In International Symposium on Research in Attacks, Intrusions, and Defenses. Springer, Cham, 118–140.

[143] UEFI. 2013. UEFI Secure Boot in Modern Computer Security Solutions. Retrieved November 18, 2018 from http:

//www.uefi.org/sites/default/files/resources/UEFI_Secure_Boot_in_Modern_Computer_Security_Solutions_2013.

pdf.

[144] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein, Thomas

F. Wenisch, Yuval Yarom, and Raoul Strackx. 2018. Foreshadow: Extracting the keys to the intel SGX Kingdom with

transient out-of-order execution. In Proceedings of the 27th USENIX Conference on Security Symposium (SEC’18).

USENIX Association, Berkeley, CA, 991–1008.

[145] Venkatanathan Varadarajan, Thomas Ristenpart, and Michael Swift. 2014. Scheduler-based defenses against cross-

VM side-channels. In Proceedings of the 23rd USENIX Conference on Security Symposium (SEC’14). USENIX Associa-

tion, Berkeley, CA, 687–702.

[146] Venkatanathan Varadarajan, Yinqian Zhang, Thomas Ristenpart, and Michael Swift. 2015. A placement vulnerability

study in multi-tenant public clouds. In Proceedings of the 24th USENIX Conference on Security Symposium (SEC’15).

USENIX Association, Berkeley, CA, 913–928.

[147] VMware. 2006. Virtualization Overview. Retrieved May 10, 2016 from http://www.vmware.com/pdf/virtualization.

pdf.

[148] VMware. 2015. Mechanisms to determine if software is running in a VMware virtual machine. Retrieved May 10,

2016 from http://kb.vmware.com/kb/1009458.

[149] VMware. 2018. Understanding VM snapshots in ESXi / ESX. Retrieved November 18, 2018 from https://kb.vmware.

com/s/article/1015180.

[150] VMware. 2019. VMware and Pwn2Own Vancouver 2019. Retrieved August 20, 2019 from https://blogs.vmware.com/

security/2019/03/vmware-and-pwn2own-vancouver-2019.html.

[151] VMware. 2019. VMware ESXi: The Purpose-Built Bare Metal Hypervisor. Retrieved August 4, 2019 from https://

www.vmware.com/products/esxi-and-esx.html.

[152] VMware. 2019. Workstation Pro. Retrieved August 4, 2019 from https://www.vmware.com/products/workstation-

pro.html.

[153] Carl Waldspurger and Mendel Rosenblum. 2012. I/O virtualization. Commun. ACM 55, 1 (Jan. 2012), 66–73. DOI:https:

//doi.org/10.1145/2063176.2063194

[154] Jiang Wang, Angelos Stavrou, and Anup Ghosh. 2010. Hypercheck: A hardware-assisted integrity monitor. In Pro-

ceedings of the International Workshop on Recent Advances in Intrusion Detection. Springer, 158–177.

[155] Zhu Wang, Tao Huang, and Sha Wen. 2012. A file integrity monitoring system based on virtual machine. In Proceed-

ings of the 2012 Second International Conference on Instrumentation, Measurement, Computer, Communication and

Control. IEEE Computer Society, 653–655.

[156] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein, Raoul

Strackx, Thomas F Wenisch, and Yuval Yarom. 2018. Foreshadow-NG: Breaking the Virtual Memory Abstraction with

Transient Out-of-order Execution. Technical Report.

[157] Felix Wilhelm. 2016. PoC for breaking hypervisor ASLR using branch target buffer collisions. Retrieved January 15,

2017 from https://github.com/felixwilhelm/mario_baslr.

[158] Rafal Wojtczuk. 2008. Subverting the Xen hypervisor. Retrieved May 10, 2016 from https://www.blackhat.com/

presentations/bh-usa-08/Wojtczuk/BH_US_08_Wojtczuk_Subverting_the_Xen_Hypervisor.pdf.

[159] Rafal Wojtczuk. 2014. Poacher turned gamekeeper: Lessons learned from eight years of breaking hypervisors.

Retrieved May 10, 2016 from http://www.bromium.com/sites/default/files/wp-bromium-breaking-hypervisors-

wojtczuk.pdf.

ACM Computing Surveys, Vol. 53, No. 2, Article 45. Publication date: May 2020.

https://doi.org/10.1145/1899928.1899932
https://2018.offzone.moscow/getfile/?bmFtZT0xNS0wMF9XYWtlX1VwX05lby5wZGYmSUQ9NDAy
https://media.blackhat.com/bh-us-12/Briefings/Serna/BH_US_12_Serna_Leak_Era_Slides.pdf
https://media.blackhat.com/bh-us-12/Briefings/Serna/BH_US_12_Serna_Leak_Era_Slides.pdf
https://doi.org/10.1145/1294261.1294294
https://thisissecurity.stormshield.com/2017/10/19/attacking-co-hosted-vm-hacker-hammer-two-memory-modules/
https://thisissecurity.stormshield.com/2017/10/19/attacking-co-hosted-vm-hacker-hammer-two-memory-modules/
http://www.uefi.org/sites/default/files/resources/UEFI_Secure_Boot_in_Modern_Computer_Security_Solutions_2013.pdf
http://www.uefi.org/sites/default/files/resources/UEFI_Secure_Boot_in_Modern_Computer_Security_Solutions_2013.pdf
http://www.uefi.org/sites/default/files/resources/UEFI_Secure_Boot_in_Modern_Computer_Security_Solutions_2013.pdf
http://www.vmware.com/pdf/virtualization.pdf
http://www.vmware.com/pdf/virtualization.pdf
http://kb.vmware.com/kb/1009458
https://kb.vmware.com/s/article/1015180
https://kb.vmware.com/s/article/1015180
https://blogs.vmware.com/security/2019/03/vmware-and-pwn2own-vancouver-2019.html
https://blogs.vmware.com/security/2019/03/vmware-and-pwn2own-vancouver-2019.html
PLX-HTTPS://www.vmware.com/products/esxi-and-esx.html
PLX-HTTPS://www.vmware.com/products/esxi-and-esx.html
PLX-HTTPS://www.vmware.com/products/workstation-pro.html
PLX-HTTPS://www.vmware.com/products/workstation-pro.html
https://doi.org/10.1145/2063176.2063194
https://doi.org/10.1145/2063176.2063194
https://github.com/felixwilhelm/mario_baslr
PLX-HTTPS://www.blackhat.com/presentations/bh-usa-08/Wojtczuk/BH_US_08_Wojtczuk_Subverting_the_Xen_Hypervisor.pdf
PLX-HTTPS://www.blackhat.com/presentations/bh-usa-08/Wojtczuk/BH_US_08_Wojtczuk_Subverting_the_Xen_Hypervisor.pdf
http://www.bromium.com/sites/default/files/wp-bromium-breaking-hypervisors-wojtczuk.pdf
http://www.bromium.com/sites/default/files/wp-bromium-breaking-hypervisors-wojtczuk.pdf

Security Issues and Challenges for Virtualization Technologies 45:37

[160] T. Wood, K. K. Ramakrishnan, J. Hwang, G. Liu, and W. Zhang. 2015. Toward a software-based network: Integrating

software defined networking and network function virtualization. IEEE Netw. 29, 3 (May 2015), 36–41. DOI:https:

//doi.org/10.1109/MNET.2015.7113223

[161] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu Teodorescu. 2016. One bit flips, one cloud flops: Cross-

VM row hammer attacks and privilege escalation. In Proceedings of the 25th USENIX Security Symposium (USENIX

Security’16). USENIX Association, 19–35.

[162] Yuanzhong Xu, Weidong Cui, and M. Peinado. 2015. Controlled-channel attacks: Deterministic side channels for

untrusted operating systems. In Proceedings of the 2015 IEEE Symposium on Security and Privacy (SP’15). 640–656.

DOI:https://doi.org/10.1109/SP.2015.45

[163] Lok-Kwong Yan, Manjukumar Jayachandra, Mu Zhang, and Heng Yin. 2012. V2E: Combining hardware virtual-

ization and software emulation for transparent and extensible malware analysis. SIGPLAN Not. 47, 7 (Mar. 2012),

227–238. DOI:https://doi.org/10.1145/2365864.2151053

[164] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. 2012. Cross-VM side channels and their use to

extract private keys. In Proceedings of the 2012 ACM Conference on Computer and Communications Security (CCS’12).

ACM, New York, NY, 305–316. DOI:https://doi.org/10.1145/2382196.2382230

[165] Yinqian Zhang and Michael K. Reiter. 2013. DüPpel: Retrofitting commodity operating systems to mitigate cache

side channels in the cloud. In Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications

Security (CCS ’13). ACM, New York, NY, 827–838. DOI:https://doi.org/10.1145/2508859.2516741

[166] Yongbin Zhou and DengGuo Feng. 2005. Side-Channel Attacks: Ten Years after Its Publication and the Impacts on

Cryptographic Module Security Testing.

[167] Dino A. Dai Zovi. 2006. Hardware Virtualization Rootkits. Retrieved May 10, 2016 from https://www.blackhat.com/

presentations/bh-usa-06/BH-US-06-Zovi.pdf.

Received April 2018; revised September 2019; accepted February 2020

ACM Computing Surveys, Vol. 53, No. 2, Article 45. Publication date: May 2020.

https://doi.org/10.1109/MNET.2015.7113223
https://doi.org/10.1109/MNET.2015.7113223
https://doi.org/10.1109/SP.2015.45
https://doi.org/10.1145/2365864.2151053
https://doi.org/10.1145/2382196.2382230
https://doi.org/10.1145/2508859.2516741
PLX-HTTPS://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Zovi.pdf
PLX-HTTPS://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Zovi.pdf

