
125

Cache-related Hardware Capabilities and Their Impact on
Information Security

RODRIGO BRANCO and BEN LEE, Oregon State University, School of Electrical Engineering and
Computer Science

Caching is an important technique to speed-up execution, and its implementation and use cases vary. When
applied speci!cally to the memory hierarchy, caching is used to speed up memory accesses and memory trans-
lations. Di"erent cache implementations are considered microarchitectural secrets and oftentimes change be-
tween generations. The integration of caches in hardware greatly in#uences security policy enforcement in
the platform since caches maintain copies of code and data and their security properties. Examples of attacks
due to the existence of caches are side-channels against cryptographic software, recent speculative execution
abuses to leak secret data, and usages of cache-based manipulations (e.g., forcing cache splits/incoherence) to
hide from security software detection. This survey examines the security issues due to di"erent cache usages
in a microarchitecture. The survey also explains the most complicated caching features and their impact on
the security of the platform in di"erent scenarios.

CCS Concepts: • Security and privacy → Security in hardware; Hardware attacks and countermea-
sures; Side-channel analysis and countermeasures;
Additional Key Words and Phrases: Hardware cache, memory layout, cache-related attacks

ACM Reference format:
Rodrigo Branco and Ben Lee. 2022. Cache-related Hardware Capabilities and Their Impact on Information
Security. ACM Comput. Surv. 55, 6, Article 125 (December 2022), 35 pages.
https://doi.org/10.1145/3534962

1 INTRODUCTION
Processing e$ciency of modern computing platforms has improved signi!cantly to provide more
computing power. However, one of the main challenges is the performance gap between smaller
but faster memories such as registers/caches and the bigger but slower memories such as DRAM
and secondary storage, i.e., hard disk drives and Solid State Drives (SSDs). In order to address the
CPU-Memory performance gap, modern computers provide caching capabilities that have evolved
quickly and substantially a"ect the way data are transferred between the CPU and the system
memory. Although cache structures have changed across di"erent generations of a platform, most
of those changes are transparent to software (i.e., no software changes are required) because caches
are considered a microarchitectural feature as opposed to an architectural one. As such, caches are
typically used as an intermediary storage between the system memory and CPU cores. However,
there are also less obvious cases of cache usage involving branch prediction, page translation, and

Authors’ address: R. Branco and B. Lee, Oregon State University, School of Electrical Engineering and Computer Science;
emails: rodrigo@kernelhacking.com, rodrigofws@gmail.com, benl@engr.orst.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro!t or commercial advantage and that copies bear this notice and
the full citation on the !rst page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior speci!c permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0360-0300/2022/12-ART125 $15.00
https://doi.org/10.1145/3534962

ACM Computing Surveys, Vol. 55, No. 6, Article 125. Publication date: December 2022.

https://orcid.org/0000-0001-5973-7793
https://orcid.org/0000-0001-6289-1134
https://doi.org/10.1145/3534962
mailto:permissions@acm.org
https://doi.org/10.1145/3534962

125:2 R. Branco and B. Lee

caching the history of decoded instructions (e.g., µop cache [46]). Therefore, in this article, the
term cache is used to describe any structure that holds a copy of a data to optimize its access time.
More importantly, a cache is a shared resource that represents a potential source of information
leakage in the platform.

Understanding cache-related vulnerabilities is challenging because a general categorization of
caching mechanisms in the context of security does not exist. Some of the proposed attacks in the
literature give speci!cs about cache inner workings [66, 68], while others only provide a high-level
description of the characteristics that in#uence the discussed attacks [47, 75] or focus exclusively
on surveying the side-channels and mitigations that become quickly outdated [32, 52]. However,
none of them provide a holistic view of cache components in a system involving various types of
cache-related attacks discussed in this article. Therefore, this article analyzes caches in a platform
from a security pointofview to illustrate their impact on security promises and assumptions in
software as well as surveys security weaknesses that exist because of such cache elements. This
article covers the latest speculative-related covert-channels, introduces a new classi!cation based
on the attack objective, and details speci!c implementation features that are relevant to the ex-
amples that are discussed. Therefore, the objective is to explain the cache internals in a general
way, but pinpoint speci!cs when the di"erences matter in terms of security. While the focus of
the discussion is based on Intel-based architectures and microarchitectures, many of the concepts
and issues discussed apply to other architectures as well.

The survey is organized as follows: Section 2 presents the background information on cache-
related security considerations for both attack/defense and threat modeling, including a taxon-
omy to help understand the di"erent security aspects that need to be considered when a cache is
included in a system. Section 3 introduces di"erent concepts related to caches and cache con!gu-
rations in a modern x86-64 microarchitecture. These concepts will help readers better understand
the complexity and versatility of current usages of caches surveyed in Section 4. Moreover, Sec-
tion 4 details security concerns using speci!c scenarios as well as their impact and mitigations.
Finally, Section 5 concludes this survey.1

2 BACKGROUND ON CACHE-BASED ATTACKS AND DEFENSES
Caches are important to security for the following reasons:

— Caches are frequently shared between entities with di"erent access permissions, which af-
fect security policies (e.g., software running in di"erent privilege modes, such as rings 0 and
3) and contexts (e.g., system management mode and hypervisor);

— since caches are on the direct path of data accesses, if they are not properly updated with the
current data being used, they will provide the wrong view of the system state. For example,
an I/O device reads the system memory via DMA and if the data are not #ushed from the
cache to the system memory or the platform does not provide coherency between the cache
and the system memory for those reads, the I/O device will see di"erent data than the one
in the cache; and

— caches in#uence the access speed with the side-e"ect of potentially leaking unde-
sired information, i.e., creating a side-channel that leaks key information used for
encryption.

The formal de!nition of caches is well understood, but the composition of caches within the
entire system and their impact on security is a fairly new area. A modern computer system provides

1The technical terminology used in the survey is based on the perspective of the hardware, as such it does not di"erentiate,
for example, between page and segmentation faults.

ACM Computing Surveys, Vol. 55, No. 6, Article 125. Publication date: December 2022.

Cache-related Hardware Capabilities and Their Impact on Information Security 125:3

many policies for an operating system to protect/isolate di"erent programs running on the system,
such as separate address spaces and di"erent access permissions. Since a cache holds copies of data
that are used by the platform, including for internal operations (i.e., branch prediction), it must
be treated as a policy enforcement point. In other words, if an application accesses information
from the cache without having the proper context regarding the intended protection (i.e., address
space/memory permissions), then the policy cannot be enforced. Cache operations such as #ushing
a given cache block using the clflush instruction or executing a sequence of branches that adds
entries to the branch predictor tables can be considered as primitives or capabilities available to
an attacker. Therefore, understanding the potential or unintended security impact of using such
primitives is essential. For example, if an attacker is able to observe the performance improvement
due to cached data, this may expose speci!c code decisions that were not meant to be unveiled.
This is referred to as a cache-based side-channel.

Security problems presented in the literature are usually focused only on the cache character-
istics that apply to a speci!c problem without considering other important cache factors, such as
those described in Section 3 that cover a variety of con!guration options that change how caches
behave. In addition, the existence of di"erent caches is oftentimes ignored when performing secu-
rity impact analysis. This makes it much harder to (1) understand the impact of caches on security;
(2) design solutions that are resistant to potential security problems; and (3) leverage cache char-
acteristics to implement security protections for new attacks.

The following subsections present a threat model for caches in a system and discuss how this
serves as a taxonomy for cache security analysis in both cache-based attacks and defenses.

2.1 Threat Modeling
Threat modeling is the process of understanding the potential threats to a given system (software,
hardware, or the entire platform) [67]. A threat model can be created for an entire platform, a part
of the system, or a speci!c component. The process starts by de!ning assets (i.e., what needs to be
protected) and security objectives (i.e., what security guarantees the system provides to its assets).
An example of a security objective is protecting against physical attacks. A trusted computing
base (TCB) is also de!ned, which is essentially a set of all the elements that are trusted (i.e., these
are not considered as attacking entities) by the system to meet the security objectives. Anything
that is considered to be a part of the TCB must also meet the security objectives because, if it is
compromised, it would also a"ect the element for which the threat model was de!ned. This is the
reason why it is di$cult to combine di"erent threat models for di"erent components to create a
single one for an entire system. Threats or adversaries are also identi!ed as they are the potential
points of origin for attacks. These can be anything that is untrusted for a speci!c system and need
to be mitigated according to the security objectives, e.g., other devices in the platform, software
running with high privileges, and so on. Caches as a shared resource change the expectations of
di"erent components in the system potentially causing situations where the security objectives are
broken (e.g., secrets leaked due to a cache-based side-channel). This means that a threat model for
any component in a platform must include the di"erent caches and how they impact the security
objectives of the entire system.

2.2 Cache-based A!acks and Security Vulnerability Taxonomy for Cache-based Issues
This subsection analyzes the weaknesses that arise from having a cache and the attack objectives
in exploiting such weaknesses. A taxonomy on security vulnerabilities is also de!ned based on the
following !ve types of attacks that can occur due to the presence of a cache:

(1) Type 1—Creating an asymmetry (also called a split or an async) between the intended data
to be cached and the actual data cached. An asymmetry can occur between two di"erent

ACM Computing Surveys, Vol. 55, No. 6, Article 125. Publication date: December 2022.

125:4 R. Branco and B. Lee

caches or a cache and DRAM, which are supposed to hold the same data but are on two
di"erent data paths, i.e., used by di"erent components and at di"erent times. This can lead
to bypassing of security functionalities that verify the integrity of data;

(2) Type 2—Leaking of information due to side-channels;
(3) Type 3—Breaking isolation policies on the platform by transferring data using the cache,

which is referred to as a covert-channel;
(4) Type 4—Cache access denial, which would incur a signi!cant performance penalty. The denial

may be partial (i.e., the attacker manages to make the cache unavailable for certain parts of
a target application) or permanent (i.e., the attacker manages to make the cache completely
unavailable to a target application); and

(5) Type 5—Wrongly cached value (or invalid cache hit), which occurs when a cache hit happens
in the wrong context.

In Type 1 attacks, an attacker’s intention is to either leverage some asymmetry among di"erent
caches or create a di"erence between the cache data and the system memory data with the ob-
jective of circumventing a security technology. An example of the former case is having di"erent
entries for the same memory address in the data and instruction Translation Lookaside Bu!ers
(TLBs), as explained in Section 4.1. An example of the latter case is a software-based or DMA-based
memory acquisition device used for forensic analysis [61]. Other hardware-based attacks against
memory acquisition, such as using theInput/Output Memory Management Unit (IOMMU) to
block memory accesses [77], are beyond the scope of this survey since they do not involve the
usage of caches [61].

Type 2 attacks can infer the actual computing paths taken by an algorithm because a
cache hit has a higher performance than a cache miss. Moreover, if the decision paths in-
volve key-related information, parts of the key can be discovered. There are many existing
works that demonstrate the viability of cache timing and probe related side-channel attacks
[50, 83].

Type 3 attacks target the shared cache properties to bypass security policies and transfer infor-
mation using the cache as a covert-channel, even when such a transfer is prohibited [79]. Many of
the speculative execution attacks (also known as transient execution attacks) leverage the control
over the speculation of a target application to execute out-of-order code, called a gadget, which
transfers data using the cache [80]. A requirement for such attacks is the presence of Out-of-
Order (OoO) execution.

Type 4 attacks represent situations where access to a cache are denied causing a slow-down.
Note that this is not really a denial-of-service (DoS) per-se since the cache is an optimization
feature. Cache access denial or less than ideal cache usage scenario is usually an outcome of mit-
igation proposals for other attacks (e.g., less cache is available due to splitting or partitioning),
which ultimately slows down the platform. This type also covers attacks such as memory hog
applications that leverage the way the memory is accessed. For example, the memory controller
has a bu"er that retains the last accessed memory row to optimize memory access and such a row
bu"er is essentially a cache. A memory hog application can repeatedly accesses the same memory
row to have a priority in having its requests met and in the process slow down other applications
in the system [56]. This is not a full DoS because the other requests will wait for a certain period of
time in a priority queue and then their priorities are raised and the applications will get serviced,
but nevertheless the they are slowed-down. This problem is still serious, especially for cloud-based
systems shared by multiple entities.

Type 5 attacks return incorrect information. An example of such a case is when the system is
running in unprivileged mode (ring 3) and a hit on the micro-operation (µop) cache returns µops

ACM Computing Surveys, Vol. 55, No. 6, Article 125. Publication date: December 2022.

Cache-related Hardware Capabilities and Their Impact on Information Security 125:5

that were cached during privileged mode execution (ring 0). If the returned µops have di"erent
semantics for privileged versus unprivileged modes, unexpected behavior can occur. An example
of this problem is discussed in Section 4.6.

In [32], the authors de!ned a taxonomy based on the sharing level of the cache (thread or system
shared) and the degree of temporal concurrency between the exploit and the target application.
Such a taxonomy is excellent when all instances of a given vulnerability class (side-channels for
the case of [32]) are enumerated. Another survey also proposed a taxonomy, but the focus was on
evaluating cryptographic implementations and their resistance to side-channels [52]. In contrast,
this survey develops a taxonomy based on the exploited weaknesses to provide a full understanding
of all possible classes of security issues that occur in any cache implementation including future
ones. The classes of cache-based attacks will expand as technology evolves, but hopefully, the
overall classi!cation method proposed in this survey will still remain relevant.

3 CACHE AND MICROARCHITECTURE PRINCIPLES
This section discusses some cache principles necessary to understand the cache characteristics that
attackers can exploit. While many of the principles discussed are generally well known, this section
also discusses how di"erent con!gurations can cause certain behaviors in modern platforms that
are not o$cially documented.

3.1 No-fill and Non-eviction Modes
The idea behind the no-!ll mode is that no new entries are created, but write hits still update the
cache. As such, the no-!ll mode can be used to create cache splitting where the cache content is
di"erent than the DRAM content. If an encryption key is stored in the cache, but not in DRAM (i.e.,
the DRAM contents are erased), a Cold Boot attack will not be able to access the key (see Online
Supplement). But since accesses still hit the cache, the key is still available for use within the same
machine.

On the other hand, the non-eviction mode guarantees that data in the cache will not be evicted,
which is an obscure feature and is not documented in publicly available Intel architecture manuals,
but is mentioned in less known materials [11, 12, 24]. This mode is used by BIOS [55] during the
early boot process to enable cache-as-RAM (CAR). CAR is a way to execute code that supposedly
needs memory (e.g., function calls require memory since they use the stack) in early boot phases
when memory is still not available.

3.2 Influence of Direct Memory Access (DMA) on Caches
On Intel platforms, Directory Memory Access (DMA) is for the most part coherent [69]. This
means that if a DMA is con!gured to read a range of memory addresses, and if the cache holds
the most up-to-date information, the cached data will be returned. Figure 1 illustrates how DMA
operates, based on the explanation provided in [6].

In Figure 1, a PCIe device issues a DMA access to the PCIe CPU Agent (1), which is then for-
warded to the DMA Arbitrator (2a and 2b). Although only one request is sent to the arbitrator, it
behaves as if two requests were made – one for the memory (path 2a) and the other for the cache
contents (path 2b). The DMA Arbitrator then generates two requests: one for the CPU/caches (3a)
and the other for the memory controller (MC) (3b). If there is a cache hit, the DMA Arbitrator
receives a response from the cache with the data (4a). The memory controller also sends the re-
quest to the system memory and it responds back to the DMA Arbitrator (4b). Finally, the DMA
Arbitrator sends back the most up-to-date data, either from the cache or the system memory.

Given the DMA coherency guarantees in the x86-64 platform, if a device uses DMA to access
memory (see Section 2.2 for discussion on Type 1 attacks) in any modern Intel microarchitecture,

ACM Computing Surveys, Vol. 55, No. 6, Article 125. Publication date: December 2022.

125:6 R. Branco and B. Lee

Fig. 1. DMA access and cache coherency.

it will return the most recent data between the cache and the system memory. But, this will not
be the case in other microarchitectures that do not guarantee cache coherence. Note that this is a
design decision, not a security weakness per-se, unless there is a dependency (assumption) on the
behavior. An example of such a case would be a forensics device that uses DMA to capture DRAM
contents for o%ine examination.2

3.3 Non-coherent TLBs
The Memory Management Unit (MMU) is a hardware component that performs virtual-to-
physical address translations and is usually integrated in the processor. The MMU performs a
page walk (see Section 3.4) by traversing multiple levels of page tables to !nd the physical address
for a given virtual address and caches the result in the TLB.3 Since instruction fetches and data ac-
cesses are di"erent, each CPU core implements at least two di"erent TLBs—one for instructions
TLB (I-TLB) and the other for data TLB (D-TLB). Additionally, modern platforms also have a
Second-level or Shared TLB (S-TLB). The S-TLB is a uni!ed cache that boosts the performance of
I-TLB and D-TLB accesses by increasing their sizes as a level-2 TLB. The S-TLB keeps only a single
entry for a linear address and then invalidates the entries in D-TLB and I-TLB, which is referred to
as merging. Note that TLB is a general term that re#ects the hierarchy of the di"erent, specialized
TLBs and should not be confused with the speci!c I-TLB, D-TLB, or S-TLB.

Each page in a system is referenced by a datastructure that has di"erent con!guration bits (i.e.,
present bit, dirty bit, user/supervisor). But not all of the con!guration bits are re#ected in the
TLBs and which ones are included are not o$cially documented (with some mentioned in [13]).
An important con!guration bit that is included in the TLB is the eXecution Disable (XD) (also
known as Non-eXecutable (NX)) a bit because in principle non-executable pages should not be in
the instruction cache. But, if an instruction fetch generates a fault because the NX bit is set, having
the bit in the I-TLB means that the translation can still be cached. If another fault occurs at the same
instruction, a page walk becomes unnecessary because that entry in the I-TLB has its NX bit set.

2DMA access technologies for servers have special behavior and new optimizations exist, such as Data Direct I/O
(DDIO) [21] which was recently shown to be vulnerable to side-channels [49].
3The TLB uses linear address (after segmentation) and not logical address (before segmentation).

ACM Computing Surveys, Vol. 55, No. 6, Article 125. Publication date: December 2022.

Cache-related Hardware Capabilities and Their Impact on Information Security 125:7

Fig. 2. Mapping of 4 KB pages. CR3 points to the PML4 table.

Unlike DMA accesses, accessing the TLBs does not guarantee coherency in multi-core systems.
For example, consider a system with two cores (Cores 1 and 2), where each core has its own I-TLB,
D-TLB, and S-TLB. If Core 1 loads an I-TLB entry for an executable page meaning an instruction
from that page was executed, and later the page is marked in memory as non-executable, there
will be no automatic synchronization between I-TLB and S-TLB.4 This means the con!guration
for a page in memory and its corresponding entry in the TLB hierarchy do not match at this point;
therefore, a code fetch that eventually hits that I-TLB entry will not generate a fault.5 In addition,
TLB entries for non-executable pages are not cached in the I-TLB, although they may be cached
in the S-TLB.

Since any changes to page table entries are made by the operating system and the non-coherent
behavior of TLBs is known (i.e., documented), no issues will arise from a well-behaving (non-
buggy) operating system. However, a malicious entity, such as a rootkit, is able to create a split
where a page is marked as executable in the TLB but its page table entry is marked as non-
executable. If a security software only expects to locate malicious code in pages marked as ex-
ecutable, it will be completely blind to the malicious code that exists in non-executable pages.
Other cases of security software bypasses using cache split are discussed in Section 4.1.

3.4 Physical Address Extension and Page Walk
Paging in a modern x86 system is quite complicated with di"erent options available to the operat-
ing system [13]. There are four modes of page lookup:

(1) 32-bit paging;
(2) PAE paging;
(3) 4-level paging; and
(4) 5-level paging.
Figure 2 shows a page walk process and how 4 KB pages are mapped. In the !gure, the linear

address contains four 9-bit index !elds plus a 12-bit page o"set. First, the address in the Control
Register 3 (CR3) points to the Page Map Level 4 (PML4) table. CR3 together with the PML4 Index
is used to point to a PML4 Entry (PML4E). This is then used together with the Page Directory
Pointer (PDP) Index to point to a Page Directory Pointer Entry (PDPE). The PDPE is used to-
gether with the Page Directory Index to point to a Page Directory Entry (PDE). The PDE together

4Note that the entry in S-TLB might also exist because the loading of the program to memory cached it.
5Note that some microarchitectures do implement a re-walk in the case of a fault, thereby forcing synchronization.

ACM Computing Surveys, Vol. 55, No. 6, Article 125. Publication date: December 2022.

125:8 R. Branco and B. Lee

Fig. 3. Mapping of 2 MB pages. CR3 points to the PML4 table.

with the Page Table Index points to a Page Table Entry (PTE). Finally, PTE together with the
Page O"set points to a 4 KB physical page. A system with 2 MB pages can be implemented using a
3-level page walk by combining the 9-bit Page Table Index with the 12-bit Page O"set into a 21-bit
Page O"set !eld as shown in Figure 3. Note that 2 MB pages can also be mixed and matched with
4 KB pages.

The Control Register 4 (CR4) is used to control several architectural extensions, many of which
in#uence the caches on the platform. The bits in CR4 that are most relevant to this discussion are
the Physical Address Extension (PAE) bit and the Page Size Extension (PSE) bit. The PAE bit
is used to de!ne the type of page walk to be performed, and extends paging structures to support
64-bit addresses allowing for at least 36-bit physical address space.6 On the other hand, the PSE
bit enables the support for pages larger than 4 KB. Each PDE also includes the Page Size (PS)
bit that determines the page size. The Extended Feature Enable Register, Long Mode Active
(EFER.LMA) bit, which is accessible through a Model Speci"c Register (MSR) in Intel platforms
(MSR 0xC0000080), also a"ects paging and was added to support entering and exiting the long
mode (i.e., 64-bit support together with PAE and PG). As a side note, the CR4 register also has the
Page Global Enable (PGE) bit, which allows the usage of the global (G) bit in PTE to prevent the
page controlled by the PTE from being #ushed on writes to CR3.

Combining all the possible con!gurations leads to at least seven types of page walks.7 This in-
cludes four di"erent modes of page lookup and di"erent CPU addressing modes. Table 1 lists all
the possible con!gurations in a system. In addition, the usage of Extended Page Tables (EPT),
which improves Virtualization Extensions (VT-x) by providing hardware support for virtual-
ization, changes the results of any of the existing modes. This makes it possible to revive an old
attack called Shadow Walker, which is analyzed in Section 4.1. The EPT mode is orthogonal to
the existing modes and largely resembles the 48-bit Linear Address Space Mode. The challenge in
protecting a system or de!ning the impact of a new attack technique is that a speci!c con!gura-
tion changes the overall behavior and may make attacks not possible, or worse, they might endup
allowing attacks.

Since there are several types of page walks, the impact caches have on di"erent scenarios de-
pends on the con!guration of the platform. In other words, di"erent operating systems support
di"erent con!gurations depending on the software running on them, which makes vulnerability
discussions dependent on speci!c use-cases and not general.

6Current processors can support up to 52 bits.
7Recently, Intel announced a 5-level page walk, but currently, no processors support this feature.

ACM Computing Surveys, Vol. 55, No. 6, Article 125. Publication date: December 2022.

Cache-related Hardware Capabilities and Their Impact on Information Security 125:9

Table 1. Page Walk Configurations in a Modern Platform

EFER.LMA CR4.PAE CR4.PSE PDPE.PS PDE.PS TYPE Page Linear Phys. Mode
(PDPE1GB) Size Addr Addr

Length Length
0 0 0 X X 0 4 K 32-bit 32-bit A
0 0 1 X 0 1 4 K 32-bit 32-bit B
0 0 1 X 1 2 4 M 32-bit 40-bit B
0 1 X X 0 3 4 K 32-bit 36–52 -bit C
0 1 X X 1 4 2 M 32-bit 36–52-bit C
1 1 X 0 0 5 4 K 48-bit 36–52-bit L
1 1 X 0 1 6 2 M 48-bit 36–52-bit L
1 1 X 1 X 7 1 G 48-bit 36–52-bit L

3.5 Transactional Synchronization Extensions
Intel Transactional Synchronization Extensions (TSX) is an extension to the x86-64 instruc-
tion set architecture (ISA) that simpli!es thread synchronization by adding a capability to iden-
tify execution areas that must be serialized, known as lock elision [19]. A transactional memory pro-
vides hardware-guaranteed atomicity to simplify concurrent programming that accesses shared
data. Thus, a hardware mechanism must detect access (read/write) con#icts and undo any changes
made to shared data. To implement this, major changes are required in the microarchitecture in-
cluding caches. For instance, speculative values in a transaction must be bu"ered, and therefore
remain not visible to other active threads until the values are !nal and can be committed.

Intel TSX provides the following two interfaces:
(1) Hardware Lock Elision (HLE)—an interface based on the instruction pre!x that is back-

ward compatible with processors that do not support TSX; and
(2) Restricted Transactional Memory (RTM)—a new instruction set interface that provides

greater #exibility in implementing transactional memory.
The HLE interface simply holds a write to a lock allowing multiple threads to enter a critical

region, and only restarting those transactions that fail. The RTM interface is more elaborate pro-
viding the option for the software to execute a fallback code in case of a transaction failure. Given
that a transaction failure triggers a fallback code that can bypass exception handlers in the op-
erating system, this seemingly simple caching of the rollback state needed to support the RTM
interface created another opportunity to perform the side-channel attack of probing the OS page
walk without triggering OS-visible faults. This can be abused to bypass a security mechanism
known as Kernel Address Space Layout Randomization (KASLR), which will be discussed in
Section 4.5.8

3.6 Branch Target Bu"ers
Branch mispredictions cause severe degradation in performance in a modern highly pipelined
processor. An unconditional branch9 interrupts the current instruction fetch operation and restarts
the instruction window from a new memory location. Furthermore, any instructions that have
been fetched beyond the unconditional branch must be discarded. A conditional branch that is
taken can be even more disruptive as it must often wait for operands to be generated or status
bits to be set before the target address of the branch can be determined. This means that the

8Before KASLR, TSX (see Section 3.5) was already proven to be an excellent mechanism for exploiting side-channel vul-
nerabilities [35].
9An unconditional branch “directly” speci!es a target address without having to resolve an address.

ACM Computing Surveys, Vol. 55, No. 6, Article 125. Publication date: December 2022.

125:10 R. Branco and B. Lee

Fig. 4. Instruction decoding pipeline for the sandy bridge.

processor may have already fetched and partially executed many instructions beyond the branch.
Thus, considerable e"ort has been devoted to reducing the performance cost of branches. Modern
processors include Branch Prediction Unit (BPU) as a means to improve performance. The BPU
has two main tasks. First, before the instruction stream is decoded, a prediction is made as to
whether there are any branches coming up. For unconditional branches, a prediction is made on the
branch target and then the next instruction is fetched from that location. For conditional branches,
a prediction is made as to whether or not the branch will be taken. Although the inner workings
of BPUs are highly proprietary, these units use an internal cache known as Branch Target Bu!er
(BTB). The BTB is used to cache addresses of recently executed branch instructions and their
target addresses. This allows the fetching of the target instructions to start immediately.10, 11

The BTB is shared by the threads in a core, and is usually not #ushed when a context switch
occurs between applications running in that core. This means that information leakage from one
application to another through a BTB timing side-channel is possible, as demonstrated in [1, 2].
Covert-channels using the BTB characteristics were also discussed in [26, 28]. Section 4.8 elabo-
rates on the abuses of BTB.

3.7 Instruction Decoding Cache (Microcode Cache) and Small Loop Cache
The CPU fetches x86 instructions from memory and decodes them into micro-operations (µops)
that are executed. This is achieved by multiple decoders that read the x86 instructions and generate
regular, !xed length µops that are natively processed by the underlying hardware.

Figure 4 shows the instruction decoding pipeline for Sandy Bridge, which is the !rst microar-
chitecture to include a microcode (or µop) cache. For a complex instruction, the µcode Engine
generates up to 4 µops/cycle, while a simple instruction generates one µop. The µop Cache stores
instructions in their decoded form (similar to a trace cache or a basic block cache, explained in
Section 3.8), and it is complementary to instruction caches.12 All the µops from the front-end (i.e.,
decoding pipeline) and the µop Cache are ultimately delivered to the µop Decoder Queue as shown
in Figure 4. The µop Decoder Queue also acts as a cache for small loops, as done in Nehalem.

10In the BTB structure, the number of entries and the number of bits are used for the address !eld matching and may vary
by microarchitecture. Most modern microarchitectures use some set-associativity mapping for the BTB. Moreover, the BTB
does not store all the address bits in the tag to save space.
11The BTB and the Branch Predictor could be two distinct units implemented as a small cache and an FSM, respectively,
instead of a single Branch Predictor Unit. BTBs can also exist irrespectively of the presence of a branch predictor (e.g., just
for jump instructions).
12An interesting point about the µop Cache is that it does not require other complex changes (such as having a trace BTB).
The microarchitectures prior to Sandy Bridge had simpler forms of the µop Cache (e.g., Meron had Instruction Loop Bu"er
and Nehalem had a small loop cache).

ACM Computing Surveys, Vol. 55, No. 6, Article 125. Publication date: December 2022.

Cache-related Hardware Capabilities and Their Impact on Information Security 125:11

Since an instruction stream is divided into multiple !xed numbers of bytes of instructions to
be decoded, referred to as the instruction window, the mapping between the instruction cache
and the µop Cache occurs at the granularity of an instruction window (e.g., Sandy Bridge has
an instruction window of 32-byte instructions). After an entire instruction window is decoded
and sent to the back-end for execution, it is inserted in the µop Cache as shown in Figure 4. This
insertion is performed in parallel with the execution pipe, and therefore does not impose any extra
delays. Programs that use instructions that average over 4 bytes (i.e., modern AVX instructions)
bene!t the most. There are many other bene!ts of the µcode Cache, but they are beyond the scope
of this survey.

The µop Cache entries are addressed by the Instruction Pointer (IP) of the !rst decoded in-
struction from the ISA stored in the entry. Each entry also includes the number of valid µops and
the length of the ISA instructions decoded. Note that there are no partial hits, meaning the full
instruction window is either cached or not cached. Moreover, privilege level transitions do not
cause #ushes in the µop Cache, and cache evictions to occur based on the size of the instruction
window. However, context switches (e.g., mov CR3) typically caused the µop Cache to be #ushed.13

The µop Cache is co-located with the L1 instruction cache, and is organized as sets and ways
with a limited number of µops per entry. This means that an instruction window can span multiple
lines in the cache and a hit may take more than one cycle. There is also a maximum number of
µops the cache can provide for each instruction window. If a given instruction window requires
more than the maximum, it cannot !t in the µops Cache and will be decoded normally. Section 4.6
will discuss a security issue related to di"erent semantics cached decoded instructions can have,
which have a di"erent behavior based on the privilege level.

3.8 Trace Cache
A Trace Cache di"ers from a conventional instruction cache in two basic ways:

(1) It stores µops instead of x86 instructions de!ned by the ISA; and
(2) It organizes code based on the expected execution #ow rather than by memory

locations.
One of the critical di"erences between the Trace Cache14 and the µop Cache is that the latter

is meant to augment a traditional front-end while the former was meant to replace it. In a con-
ventional processor, the critical path for performance includes branch prediction (see Section 3.6),
fetching of raw program bytes from the instruction cache, and decoding of x86 instructions to gen-
erate a stream of µops for OoO execution in the back-end. The Trace Cache improves the decoding
of x86 instructions by caching the already decoded results as groups of logical µops that are stored
together to represent a trace segment. This allows a µops trace segment to be fetched from the
Trace Cache rather than re-fetching and re-decoding x86 instructions from the instruction cache.

In terms of security analysis, the Trace Cache is very similar to the µop Cache, and thus presents
similar security concerns (see Section 4.6).

3.9 Latches, #eues, and Other Structures
A modern computer has many di"erent structures that hold data, and the intention of this survey
(or even possible) is not to cover all of them. However, the important aspect is that there are
potential problems if stale data is held by a structure or repeated with latches. The following are

13An exception is when the PCID feature is used and there is no over#ow in the number of stored IDs.
14Trace Cache is no longer present in modern Intel microarchitectures.

ACM Computing Surveys, Vol. 55, No. 6, Article 125. Publication date: December 2022.

125:12 R. Branco and B. Lee

some examples of unconventional data structures that had security vulnerabilities associated with
them:

— Internal buses that might hold previously transmitted values (i.e., stale data).15, 16

— Latches (also called repeaters) are used to optimize access paths when the data might not
yet be ready. A latch will speculatively “repeat” the previously accessed data; therefore, opti-
mizing some common computations without negatively a"ecting the performance of other
computations. The problem with repeaters is that the speculatively “repeated” data might
be considered as a secret to the currently executing computation. The MDS class of issues
uncovered a few vulnerabilities related to latches [10];

— Queues that either leverage internal bu"ers to store data or delay actions based on internally
controlled values, and therefore, might trigger actions after the data changed on the system.
These are also an unexpected vectors and are discussed in Section 4.12;

— Prefetching of values that may cause side-e"ects that are undesirable, as discussed in Sec-
tion 4.7.

It is very hard to test all the possible paths when reverse engineering a given hardware im-
plementation. Therefore, many of these issues have remained hidden for years. In addition, !xes
provided by di"erent companies might not be comprehensive, as the recent speculative execu-
tion attacks demonstrated (see Section 4.9), since they might address only speci!c paths (versus
systematically eliminating the entire vector).

4 SURVEY OF CACHE-RELATED SECURITY WEAKNESSES
This section discusses various weaknesses exposed by a platform due to the presence of di"erent
caches. Such weaknesses become security vulnerabilities in certain software contexts depending
on the system con!guration, e.g., a cache split is only a problem if a security property of the
software depends on maintaining coherency.

Table 2 summarizes the weaknesses discussed in this section and their type of cache attacks as
categorized based on the security vulnerability taxonomy discussed in Section 2.2.

4.1 TLB De-synchronization
TLB de-synchronization is a Type 1 cache attack that was introduced for the !rst time in 2005
and named Shadow Walker [66]. In a Type 1 cache attack, the attacker’s objective is to force the
system to have di"erent copies of the same data in di"erent caches (i.e., create an async). This
means di"erent consumers of such a data will see di"erent values. Therefore, a consumer that
tries to verify data integrity or maliciousness, such as an anti-virus software, will get a di"erent
copy of the data than the ones actually used by the other parts of the system thereby bypassing
the protection mechanism. In order to understand how TLB de-synchronization can be used as an
attack, Figure 5(a) shows the cache organization for early x86 architectures17 that have split TLBs
consisting of I-TLB and D-TLB. Normally, the loader !rst loads the program causing its page-table
translations to be cached in the D-TLB. Afterward, page table translations are cached in the I-TLB
as the program executes. As a result, the corresponding entries in the I-TLB and D-TLB will be
identical and thus synchronized as shown in Figure 6(a).

15Even when the hardware designer speci!cally “zeroes” (i.e., erase) the bus content, in practice the manufactured CPU
might not have the logic in its !nal form due to manufacturing process optimizations. This kind of optimization is similar
to a compiler removing code that it deems unnecessary. Such a case of bad hardware manufacturing optimization led to
one of the vulnerabilities associated with the class named Microarchitectural Data Sampling (MDS) [10].
16The speci!c case involves AES-NI and FPU instructions that shared a common bus.
17Up to the Nehalem microarchitecture introduced in 2008.

ACM Computing Surveys, Vol. 55, No. 6, Article 125. Publication date: December 2022.

Cache-related Hardware Capabilities and Their Impact on Information Security 125:13

Table 2. Categorization of Weaknesses and Their Associated Types of A!acks

Attack Key Characteristics Example Weaknesses Sub- Ref
Type Section

Type 1
Creates an async between I-TLB and D-TLB to
hide malicious code

TLB De-synchronization 4.1 [66]

Creates an async between caches and the system
memory to hide malicious code

Cache-System Memory Async 4.2 [6]

Type 2

Uses software accessible side-channels in
di"erent caches to discover secrets from other
applications in the system

Cache-based Side-Channels 4.4 [58]

Uses transactional memory capabilities as a
side-channel mechanism

Transactional Memory 4.5 [45]

Leverages the branch prediction as a side-channel
mechanism

BTB-related 4.8 [27]

Leverages the page walk hardware as a
side-channel mechanism

Memory Management Unit 4.10 [34]

Leverages the Integrated Graphics Processing
Unit to enhance side-channel attacks

Integrated Graphics Processing Unit
(GPU)

4.11 [31]

Leverages the Hardware Store Elimination
Feature as a side-channel

Hardware Store Elimination feature 4.13 [25]

Type 3
Abuses branch prediction and speculative
execution creating a covert-channel between the
microarchitecture and architecture views of the
system to leak secret data. Oftentimes requires
Out-of-Order (OoO) execution.

Cache-based Covert-Channel Attack
via Speculative Execution (also known
as transient execution attacks)

4.9 [39]

Type 4
Uses memory access prioritization (based on
cached results) to deny (or delay) access to the
system memory

Memory Performance Attacks 4.12 [56]

Type 5

Leverages a cache hit in a di"erent CPU mode to
overwrite protected memory

Cache Poisoning 4.3 [10]

Leverages the context di"erence of an instruction
cached in user mode and later executed in kernel
mode

Security Issue of µop Cache 4.6 [20]

Leverages the prefetch mechanism to !nd
mapped (valid) memory areas in the kernel

Prefetch-based Side-Channel 4.7 [37]

Fig. 5. TLB Organizations.

However, separate TLBs creates the possibility of having an asynchrony between them, where
an access to the same linear address is translated into di"erent physical addresses depending on the
access type (data or instruction). This problem is illustrated in Figure 6(a), where I-TLB and D-TLB
contain di"erent physical addresses for the same linear address. This is a security issue because it
permits an attacker code to be hidden from a security software. For example, an anti-virus software
reads memory to search for a malicious code, which involves accessing data using D-TLB, while

ACM Computing Surveys, Vol. 55, No. 6, Article 125. Publication date: December 2022.

125:14 R. Branco and B. Lee

Fig. 6. TLB sync versus async.

code execution involves fetching instructions using I-TLB. If there is a TLB de-synchronization,
instruction fetch and data access will occur from di"erent physical addresses even though they
have the same linear address.

Shadow Walker forces a TLB de-synchronization and protects both its code execution and data
fetches by performing the following operations:

(1) Trap on a page or a protection fault caused by access to the hidden memory—This is per-
formed by marking the hidden memory as inaccessible using the paging protection bits and
hooking the fault handler in the OS;

(2) Determine whether the trap was caused by a data access or an instruction fetch—This is
done by checking if the PC (EIP/RIP) register matches with the CR2 register that contains
the Page Fault Linear Address (PFLA) (i.e., the address that generated the fault). If the
addresses are the same, the trap was caused by an instruction fetch; otherwise, it was caused
by a data access;

(3) Prime the appropriate TLB—For a data access, the corresponding page table translation for
the address is cached in the D-TLB by setting, reading, and then clearing its data access bits.
For an instruction fetch, the corresponding page table translation for the address is cached in
the I-TLB by executing a single instruction using the Trap Flag (TF), which enables single-
stepping; and

(4) Repeat for all addresses of interest.
As discussed in Section 3.3, the possibility of TLB de-synchronization was eliminated when

S-TLB was added to the Nehalem microarchitecture in 2008 as shown in Figure 5(b).18 However,
Torrey demonstrated at Black Hat Las Vegas in 2014 that forcing a TLB de-synchronization was
still possible due to Extended Page Tables (EPT) introduced to support virtualization [68]. As
discussed in Section 3.4, when VT-x is enabled, the address translation process changes slightly
due to the existence of the EPT because a Virtual Machine ID (VMID) tag is also used during
the translation lookup. This avoids TLB #ushes that would normally occur without VMID and
improves performance.19 The behavior of the S-TLB also changes due to this new layer. Since
the EPT provides more granularity than traditional paging, I-TLB and D-TLB entries that have
con#icting security permissions will not be merged and stored in the S-TLB unless their VMID
tags also match. In essence, this means a hypervisor is still able to create a split because the TLB
entries will not be merged and can be prevented from being #ushed, even in modern platforms.

18However, older systems are still susceptible to this problem.
19Address space changes cause TLB #ushes of pages not marked as global to avoid the address translation of one process
a"ecting another process.

ACM Computing Surveys, Vol. 55, No. 6, Article 125. Publication date: December 2022.

Cache-related Hardware Capabilities and Their Impact on Information Security 125:15

A TLB de-synchronization requires a high-level of privilege, which means that the system
has already been compromised and thus an attacker has a lot of control. Therefore, TLB de-
synchronization is not considered as a vulnerability. Instead, it is an example of unexpected, or
at least undocumented, behavior that security software should be aware of. As discussed in the
Online Supplement, such an unexpected behavior can also be leveraged to implement security
mechanisms.

There are other attacks that leverage the di"erent behaviors of TLBs. For example, Hund
et al. demonstrated a KASLR bypass by leveraging timing issues in accessing pages cached in
the TLB [44]. There are more recent ones, such as TLBleed released in 2018 [33].

4.2 Cache-system Memory Async
In the Frozen Cache research [59], a cache/memory async was created to keep the encryption keys
only in the cache and not in DRAM. This created an opportunity for attackers to perform a Type
1 cache attack by hiding any data from physical memory acquisition. The Frozen Cache research
suggested how it is possible to create such an async, but it does not prove it really happened.

Branco and Barbosa proved the possibility of creating such an async between the cache and
the system memory [6]. Their solution to verify an async between cache and system memory
was based on the page walk mechanism explained in Section 3.4 [6]. However, some additional
explanation is necessary to better understand their !ndings. Their research demonstrated that
exiting the no-!ll mode causes a write-back to synchronize the cache contents that were changed
(see Section 3.1) [6]. They also showed that the invd instruction does not invalidate the cache
if executed during the no-!ll mode. These two undocumented behaviors discovered were used
together with the next steps for the !nal proof. First, an assumption was made on the behavior
of the hardware as well as proving such an assumption was correct. The assumption was that the
page walk hardware can be forced to not use the cache. The rest of the explanation was then based
on a system with the PAE enabled (see Section 3.4). This a"ects the translation mechanism, but
has no e"ect on the cache. If it is possible to prove that the page walk is not using the cache, then
it proves that an async exists between the cache and the system memory. The rationale for this
proof is discussed next.

Table 1 shows the di"erent con!guration options for the page walk process in a platform. In a
32-bit system (when EFER.LMA = 0 and CR4.PAE = 1), the 3-level page walk is slightly di"erent
than the ones shown in Figure 3: The CR3 points to the PDP Table instead of the PML4 Table,
which contains the translation information shown in Figure 7. The proof is based on the fact that
Page Directory Pointer Table Entry (PDPTE) 0 is the !rst structure referenced in a page walk
and a fault will occur if it is marked as non-present. This structure is de!ned in the architecture
manuals as shown in Table 3.

When the Present (P) bit of a PDPTE is cleared, it means that this structure is no longer valid
and any references to it will generate a page fault (#PF). Thus, it is possible to demonstrate that
there is an async between the cache and the system memory by performing the following steps:

(1) Disable interrupts and run only a single thread. This prevents anything else in the system
from interfering with the test.

(2) Mark the PDPTEs as write-back. This means that when the PDPTEs are accessed, they will
be brought into the cache, and when they are modi!ed they will be updated in the cache but
not in the memory.

(3) Using the wbinvd instruction,20 write back all the dirty cache blocks and invalidate the cache
so that it is empty.

20Note that wbinvd returns immediately rather than after the invalidation completes [13], so a delay is necessary.

ACM Computing Surveys, Vol. 55, No. 6, Article 125. Publication date: December 2022.

125:16 R. Branco and B. Lee

Fig. 7. PAE translation.

Table 3. Format of a PAE PDPTE

Bit Name Description
0 P Present – must be 1 to reference a page directory
2:1 Reserved Must be 0
3 PWT Page-level write-through – indirectly determines the memory type

used to access the page directory referenced by this entry
4 PCD Page-level cache disable – indirectly determines the memory type used

to access the page directory referenced by this entry
8:5 Reserved Must be 0
11:9 Ignored Could be any value, since it is ignored
(M-1):12 Address Physical address of 4-KByte aligned page directory referenced by this

entry (M is at most 52)
63:M Reserved Must be 0

(4) Access the PDPTEs forcing them into the cache. The proof of the async is based on how the
system will behave once the PDPTEs are modi!ed.

(5) Clear the P-bit in the PDPTE. Since the entry is cached as a write-back, any updates will
occur only in the cache.

(6) Perform random memory accesses using virtual memory to force a page walk but not enough
accesses to !ll the cache; otherwise, evictions would occur and the memory would be up-
dated. No memory translations should occur if the PDPTEs from the cache has the same
value as the ones from the memory and the system should reboot.

Since the above-mentioned steps did not cause the system to reboot, it means that the page walk
mechanism did not use the cache. If the cache was used, no memory translation would have been
performed and this would have generated a fault. Moreover, since no handler exists (because no
page walk is possible), a double fault would occur and then a reboot. A test was also performed
to force a write-back after clearing the P-bit to trigger such a reboot (in order to con!rm the
assumption that the reboot should happen). This demonstration showed that it is possible to force
an asymmetry between the cache and the system memory.

An async can be used as an attack like the TLB de-synchronization attack discussed in
Section 4.1.

4.3 Protected Memory A!acks using Cache Poisoning
Transitions to di"erent modes of execution occur in architecturally de!ned ways. For exam-
ple, as shown in Figure 8, a system running in the Protected Mode transitions to the System
ACM Computing Surveys, Vol. 55, No. 6, Article 125. Publication date: December 2022.

Cache-related Hardware Capabilities and Their Impact on Information Security 125:17

Fig. 8. Modes of execution and how they are related to each other.

Management Mode (SMM) when a System Management Interrupt (SMI#) is triggered. Af-
terward, executing the rsm (Resume from SMM) instruction will cause the system to transition
back to the previously running mode. Given the di"erent privilege levels of di"erent modes (e.g.,
accessing the memory area exclusive to the SMM, known as System Management RAM, SMRAM,
is not allowed in the Protected Mode), how caches behave during such transitions may create prob-
lems. An example of such a problem was identi!ed in [7] and later proven to be a security issue
in [78]. What the authors found was that cache entry created outside of SMM were not invalidated
before entering SMM. Those entries were instead written back to memory while in SMM thereby
overwriting the protected memory. Cache entries created by a less privileged mode are referred
to as poisoned because they should not be trusted and used. This is a Type 5 attack where these
memory writes can be abused to elevate the privileges of the attacker.

4.4 Cache-based Side-channels Primitives
Cache-based side-channel attacks discussed in this section refer to attacks that use cache-related
operations and timing measurements to obtain information about the memory access history of a
victim, which can be a process or a routine running in a di"erent security context from the attacker.
These Type 2 cache attacks utilize knowledge about memory accesses to leak the private data of a
victim, such as secrets (i.e., a password) and other security assets (e.g., encryption keys).

Most cache-based side-channel attacks consist of three steps: (1) The attacker performs op-
erations to create an initial cache state; (2) the victim is allowed to access memory either syn-
chronously or asynchronously to cause cache loading/eviction; and (3) the attacker directly ex-
ecutes or indirectly triggers a probing routine that measures the timing of the cache operations
to detect the change from the initial cache state and identify the memory access pattern of the
victim’s execution in Step (2).

There are three main approaches to cache-based side-channel attacks: Prime+Probe,
Flush+Reload, and Flush+Flush. All three approaches belong to the same family, but di"er in terms
of attack condition, resolution, and stealthiness. There also exists the Evict+Reload option that re-
quires a shared memory, usually a shared library or shared pages between Virtual Memories
(VMs) as the measurement point. The attacker !rst evicts the shared memory from the cache set.
If the victim accesses the shared memory, this will overwrite the attacker’s data in the cache. The
attacker can di"erentiate whether or not the victim accessed the shared memory by measuring

ACM Computing Surveys, Vol. 55, No. 6, Article 125. Publication date: December 2022.

125:18 R. Branco and B. Lee

the time to access it. Evict+Reload is a newer option that is less dependent on speci!c instructions
to #ush the cache.

The Prime+Probe approach takes advantage of the memory-to-cache mapping correlation in
direct-mapped or set-associative mapping, where a memory block can only be mapped to a speci!c
cache set. Therefore, a cache with S sets and block sizeC , a block with address A can be evicted by
the !lling of another block with address B that is congruent with A mod S ×C . In a Prime+Probe
attack, the attacker !rst !lls the cache with blocks from a known starting address A in the main
memory, referred to as the Prime step. Then, the attacker waits for a certain time window to
allow for the execution of the victim. In the Probe step, the attacker accesses address A again
and measures the access time to determine if the block remains cached or has been evicted. The
latter case indicates that there is a high probability the victim has accessed the memory address
that is congruent with A mod S × C . The advantage of Prime+Probe is that it does not require
shared memory between the attacker and the victim. However, the attack resolution is limited
by the number of cache sets in the system and is less deterministic compared with the other two
approaches.

Osvik et al. demonstrated that Prime+Probe can be used to attack an AES cipher based on
statistical analysis and knowledge of the victim’s memory-access pattern [58]. Given the fact
that performance-oriented AES implementations typically use pre-computed lookup tables in
memory to carry out encryption operations, such as ShiftRows, MixColumns, and SubByte, data-
dependencies in memory access patterns can be used by cryptanalysis to reverse the cipher after
the memory access information is obtained by the Prime+Probe side-channel attack.

Flush+Reload is a simpler and more deterministic approach than Prime+Probe. A Flush+Reload
attack consists of three steps: (1) the attacker evicts a certain block or blocks from the entire cache
hierarchy; (2) the attacker waits for a certain time window to allow for the execution of the victim;
and (3) the attacker accesses the evicted memory addresses and measures the time to access each
block to determine if it was cached, in which case it indicates the victim has accessed that speci!c
memory location during the probe window in Step (2). Note that this approach requires memory
blocks between the attacker and the victim to be shared, which is common in modern multi-user
systems. Examples include shared modules between processes and page-sharing between virtual-
ized guests, such as the Kernel Same-page Merging (KSM) feature that is widely used by the
host to reduce the overall system memory footprint.

Flush+Reload can be used as a side-channel attack by itself as demonstrated in numerous pub-
lished research e"orts. For example, it was used to attack RSA in a certain versions of GNU
Privacy Guard (GnuPG) with CRT-RSA optimization to extract private keys based on its data-
dependent memory access encryption algorithm [82]. It was also widely used as a measurement
approach in speculative covert-channel attacks (e.g., Spectre and Meltdown [30, 38, 39, 48, 51])
by deliberately triggering a data-dependent cache loading gadget since cache block !lling occurs
during speculative execution.

Flush+Flush is a close variant to the Flush+Reload approach except that in the last step the
evicted block is #ushed again instead of reloading. This approach relies on the fact that it takes
a longer time to perform a #ush operation (e.g., using clflush) when the cache block it tries to
#ush is actually in the cache. Therefore, this approach can also determine if the cache block that
was originally evicted has been brought back in by the victim during the probe window. The major
performance di"erence between these two approaches is that a Flush+Flush attack does not gen-
erate a large number of last-level cache (LLC) misses compared to a Flush+Reload attack, which
can be detected using hardware event monitoring, e.g., using the performance monitor feature
in Intel x86 processors [29]. Therefore, the advantage of Flush+Flush over Flush+Reload is attack
stealthiness.

ACM Computing Surveys, Vol. 55, No. 6, Article 125. Publication date: December 2022.

Cache-related Hardware Capabilities and Their Impact on Information Security 125:19

4.5 Transactional Memory A!acks
Transactional memory attacks are Type 2 cache attacks that exploit a side-channel behavior (e.g.,
timing) of memory address translation to extract valuable information, mostly regarding memory
layout.

Jang et al. demonstrated that a side-channel attack on TLB-related address translations can break
KASLR by leveraging Intel’s TSX technology (see Section 3.5) [45]. The bases of this attack are

— Access a memory area that is currently mapped to the kernel address space (i.e., have valid
translations) so that the address translations are cached in the TLB. Subsequent accesses to
the same page will hit in the TLB, while accesses to unmapped areas will not a"ect the TLB;

— The contents of the TLB only depend on the completion of address translations, i.e., page
walk, rather than the completion of accesses. For example, accessing privileged memory
addresses in user mode will populate the TLB regardless of whether or not a page fault is
generated.

Based on the above, it is possible to probe a kernel address in user mode to determine whether
an address is mapped or not based on the fact that less time is taken to generate page faults for
mapped addresses than for unmapped addresses. However, the challenge of this attack is the
small signal-to-noise ratio since a TLB miss only adds about 40 CPU cycles to the fault gen-
eration and handling process. If the memory access probe is timed by a user mode fault han-
dler, there is less than a 1% di"erence in total time between trying to access mapped versus un-
mapped addresses due to the overhead required by the OS to dispatch the fault to a user mode
handler.

This challenge can be overcome by taking advantage of the TSX feature of Intel processors. As
explained in Section 3.5, TSX provides a hardware transactional memory support that allows the
software to execute a fallback code in case of a transaction failure that bypasses exception handling
of the OS. Therefore, when there is an exception during a TSX transaction, the execution is aborted
and the user mode abort handler is directly invoked without the intervention of the OS.

The example below shows a simple code snippet that uses TSX _xbegin() and _xend() to per-
form a time measurement of a memory access probe that generates a fault (e.g., due to a privilege
error when a user mode process tries to read a kernel mode address):
// Timer starts, rdtsc() returns the timestamp
uint64_t start = rdtsc();
// initiate TSX region
if (_xbegin() == _XBEGIN_STARTED) {

// func() tries to access address probe_addr,
// which is supposed to generate a page fault
func(probe_addr);
// commit TSX, which will not happen when exception is raised
_xend();

} else {
// TSX aborted; end timer and get the time duration
uint64_t access_time = rdtsc_end() - start;

}

With TSX, the fault handling overhead is reduced to around 200 cycles, which results in more
than 15% timing di"erence between accesses to mapped and unmapped addresses. In this case, the
kernel memory layout can be ascertained very quickly and accurately to break KASLR.

ACM Computing Surveys, Vol. 55, No. 6, Article 125. Publication date: December 2022.

125:20 R. Branco and B. Lee

Fig. 9. MPX registers.

4.6 Security Issue of the Microcode Cache
As discussed in Section 3.7, the µop Cache enhances the front-end performance by not having to
re-decode instructions that have already been executed. However, the µop Cache is not #ushed
upon context switches; therefore, instructions with context-dependent decoding introduce poten-
tial security issues. A good example of such an issue involves the Memory Protection Extensions
(MPX) technology of 6th generation Intel processor family [20]. MPX is a new security feature
introduced to the Skylake microarchitecture to protect against memory corruption attacks that ex-
ploit bu"er over#ow/under#ow by checking whether runtime memory references are within the
desired boundaries.

The hardware-assisted MPX introduces four new 128-bit bounds registers (BND0–BND3), where
each register contains a 64-bit Lower Bound (LB) and 64-bit Upper Bound (UB) to store the
boundaries of a memory bu"er. This is shown in Figure 9(a). New instructions are also added
to support MPX operations, such as setting the bounds (BNDMK), checking lower/upper bounds
(BNDCL/BNDCU), load/store bounds from/to memory (BNDMOV), and so on. MPX also supports a two-
level mapping that maps a pointer to a pointer address to its corresponding bound data structure
in memory.

The particular security issue related to MPX involves the initialization behavior of the bounds
registers when branch instructions are executed. Since these registers hold the boundaries of
bu"ers used by the program, which can be automatically de!ned by the compiler, and given bu"er
addresses are checked to be within bounds before any accesses can be made. The bounds registers
are considered initialized when LB is set to 0 and UB is set to all ones, which represent access to
the entire address space. Based on this, the initialization behavior of branch instructions (such as
CALL, RET, JMP, and Jcc) is determined by both the BND pre!x (F2h) used together with the speci!c
instruction (e.g., BND RET) and the BND con!guration register as follows:

— If the BND pre!x is present, the bounds registers remain unchanged when a branch instruc-
tion executes;

— Otherwise, the bounds registers will be initialized upon execution of a branch instruction
when the BNDPRESERVE bit of the BND con!guration register is 0, and will remain un-
changed when the BNDPRESERVE bit is 1 (see Figure 9(b)).

Intel added this speci!c behavior based on the branch instruction in order to provide compatibil-
ity with legacy libraries that were not recompiled to use MPX. This allows a new code to deactivate
MPX while branching to a legacy library that does not support it.

There are two di"erent BND con!guration registers: one for user mode and one for kernel
mode. For user mode, the con!guration register is de!ned as BNDCFGU, and for kernel mode, it
is implemented as an MSR named IA32_BNDCFGS. These registers have the same layout for both
modes as shown in Figure 9(b). Therefore, a branch instruction can be executed with di"erent
behaviors depending on how the bounds registers are initialized for di"erent privilege levels.

ACM Computing Surveys, Vol. 55, No. 6, Article 125. Publication date: December 2022.

Cache-related Hardware Capabilities and Their Impact on Information Security 125:21

A consequence of the context-dependent decoding for MPX is that a user mode non-pre!xed
branch instruction (i.e., BNDPRESERVE is 0) might initialize the bounds register while in the ker-
nel mode (i.e., BNDPRESERVE is 1) the same instruction may not. Moreover, if the same branch
instruction is !rst executed in the user mode and then executed in the kernel mode,21 the kernel
mode execution will hit in the µop Cache and reuse the decoded µops from the user mode exe-
cution. Therefore, the bounds registers will be initialized when it is not supposed to, which is a
security issue because the initialization of bounds registers allows access to the entire memory
range bypassing the protection of MPX.

4.7 Prefetch-based Side-channel A!ack Against KASLR
Prefetching is supported across di"erent architectures (e.g., x86, ARM). Hardware prefetching is car-
ried out transparently by the CPU, while software prefetching is performed using the prefetch
instruction that loads a certain block of data from memory to cache. This instruction can fur-
ther specify which level of cache to prefetch into. For example, current Intel CPUs provide mul-
tiple prefetch instructions—prefetcht0 (all cache levels), prefetcht1 (level 2 cache and higher),
prefetcht2 (level 3 cache and higher), and prefetchnta (non-temporal cache structure, which is
a hint to the processor that data will be only used once).

There are two properties of prefetching that make it a good candidate to be used in side-channel
attacks:

— Prefetching instructions merely provide hints and can be ignored by the processor,22 and
therefore do not have a deterministic behavior. They also do not a"ect program behavior
according to Intel’s developer manual, and therefore do not generate faults regardless of the
validity and privilege levels of the addresses to be prefetched.

— The execution time of a prefetch instruction depends on the actual fetched #ow (i.e., address
translation, data movement) and can be accurately measured.

Given these attributes, Gruss et al. demonstrated that a Type 5 attack is possible through a
prefetch side-channel to break KASLR on platforms running Linux OS with Intel CPUs [37]. The
attack is carried out by a user mode application that uses prefetch to probe the kernel memory
range and retrieves the virtual address of the targeted kernel driver, which is not supposed to be
known by user processes due to KASLR.

The attack involves two stages to exploit the side-channel behavior of prefetch. In the !rst
stage, a code sequence shown below is used to measure the time taken to prefetch an arbitrary
virtual address that belongs to the kernel memory.
1 ; rcx = kernel address
2 mfence
3 rdtscp
4 mov ebx, eax
5 cpuid
6 prefetchnta [rcx]
7 cpuid
8 rdtscp
9 mfence
10 sub eax, ebx

21Because the microcode cache lookup uses the IP, this bug would only happen if both the kernel and user modes were
sharing addresses for the instruction.
22This is to accommodate future optimizations that would otherwise be impossible with guaranteed execution of prefetch
instructions.

ACM Computing Surveys, Vol. 55, No. 6, Article 125. Publication date: December 2022.

125:22 R. Branco and B. Lee

The code uses rdtscp to measure the time taken to execute the prefetchnta instruction. Note
that mfence is used to serialize all the memory loads and stores to increase the measurement
accuracy, while cpuid is used to serialize the prefetching itself since it is not serialized by other
memory fences.

The timing result from such a measurement re#ects the address translation behavior of the
prefetch #ow, i.e., the target virtual address of prefetchchnta needs to be translated into the
physical address to locate the memory block. This will either hit in the TLB or go through the
multi-level page translation. When the user mode code prefetches from an arbitrary kernel address
space, one of the following three possibilities occurs: (i) complete the translation by hitting in the
TLB, (ii) go to the last level of the paging structure in case of a mapped address, at which point the
privilege level mismatch is known, or (iii) stop at the level with an invalid paging entry in case of
an unmapped address. In all cases, no actual cache loading will take place. However, based on the
address translation #ow, the timing results are statistically distinguishable between the cases of
mapped and unmapped kernel addresses.

Since kernel drivers (modules) are loaded sequentially, the published attack by Gruss et al. uses
2 MB steps to search through the designated kernel address range to locate the regions that are
mapped to physical memory [37]. After narrowing down the address range in the !rst stage, the
second stage of the attack further pinpoints the exact address of the targeted driver using the
Evict+Prefetch approach, which involves the following three major steps:

(1) Evict all cached blocks that belong to the kernel as well as address translations cached in
TLB by accessing a large bu"er in user mode;

(2) perform a system call to the targeted driver; and
(3) measure the time required to prefetch a kernel address p within the mapped area obtained

from the !rst stage.
Step 2 will cache both the driver code and the address translations of the driver regions. There-

fore, if the kernel address p probed in Step 3 is within the target driver range, prefetching will
take less time than the baseline case without the system call. Afterward, the lowest virtual address
of the targeted driver can be determined using a !ne-stepped search, which gives the exact base
address of the driver e"ectively breaking the mitigation objective of KASLR.

4.8 BTB-related A!acks
As introduced in Section 3.6, BTB is a special cache that stores target addresses of recently executed
branches. This allows a branch instruction to execute faster when its address hits compared to
when it misses in the BTB. Since BTB is shared across di"erent security contexts on the same
core, whether a speci!c branch instruction has been executed in the victim can be determined by
tailoring it to hit the same BTB entry and measuring its execution time. This is a Type 2 attack
because knowing whether a given branch has been executed may reveal pieces of information
from the target process. A simple example is when a branch is a conditional based on one bit of a
secret key.

BTB entries are tagged with certain bits of branch addresses; therefore, an attacker controlled
branch can cause a BTB collision with the targeted branch in the victim when these bits match.
Figure 10 shows an example code snippet, where the attacker code executes right after the victim’s
function. In this example, whether the address of attacker_jmp is going to collide with the address
of victim_jmp can be determined by measuring the execution time of the former. If the jump target
o"set T2 in the attacker and the victim are the same, the attacker will execute faster than the
baseline (which is measured before running the victim).

ACM Computing Surveys, Vol. 55, No. 6, Article 125. Publication date: December 2022.

Cache-related Hardware Capabilities and Their Impact on Information Security 125:23

Fig. 10. A!acker and victim routines.

One such scenario of a side-channel attack is to break KASLR by pin-pointing the virtual address
of a known branch in the victim’s execution #ow. For example, Evtyushkin et al. demonstrated
that KASLR in modern 64-bit Linux OS can be completely bypassed, and user mode ASLR can be
weakened by exploiting the BTB-related side-channel behavior [27].

The attack to break KASLR is carried out on a platform with an Intel Haswell processor running
Linux kernel version 4.5. Besides the BTB side-channel mentioned above, the attack is also based
on the fact that the Haswell platform uses only bits 0–30 of the virtual address for BTB entry
tagging, while bits 31–47 are ignored. This allows a cross-mode BTB collision to occur between a
user mode branch and a kernel mode branch. Meanwhile, KASLR in 64-bit Linux only randomizes
bits 21–29 of the kernel virtual address, which makes it possible to recover the full virtual address
of a speci!c kernel mode branch instruction in user mode.

The attack contains the following !ve steps:
(1) Find a target branch (a direct jump in this case) in the kernel code, where its execution can

be triggered by a user mode application, e.g., through a system call;
(2) assuming the targeted kernel mode branch has virtual address K , the user mode attacker

allocates memory to load a code block containing a direct jump at virtual address A and
makes sure that (i) the bits 0–19 are the same between A and K ; (ii) the jump instruction at
address A jumps to a di"erent o"set than the jump at address K ;

(3) the user mode attacker initiates the execution of the targeted kernel mode branch at address
K by calling the identi!ed system call;

(4) the user mode attacker runs the code block containing the jump at address A and measures
its execution time. Repeat Steps 3 and 4 multiple times to obtain a statistically stable results;
and

(5) the code block containing the jump at address A is moved by a 2 MB o"set each time and
the above test is repeated to go through all possible combinations for the bits randomized
by KASLR (i.e., bits 21–29). Identify BTB collision cases that require a longer execution time
for the jump instruction.

There are a total of 512 possible addresses for A and the attack can be carried out within a very
short time (∼60 ms).

ACM Computing Surveys, Vol. 55, No. 6, Article 125. Publication date: December 2022.

125:24 R. Branco and B. Lee

Table 4. Vulnerability Identifications and Names

CVE Intel Nomenclature Other Known Names
CVE-2017-5753 Bounds Check Bypass Variant 1/Spectre v1
CVE-2017-5715 Branch Target Injection Variant 2/Spectre v2
CVE-2017-5754 Rogue Data Cache Load Variant 3/Meltdown
CVE-2018-3639 Speculative Store Bypass SSB
CVE-2018-3640 Rogue Register Read -
CVE-2018-11091 Microarchitectural Data Sampling Uncacheable Memory MDSUM/RIDL
CVE-2018-12126 Microarchitectural Store Bu"er Data Sampling MSBDS/Fallout
CVE-2018-12127 Microarchitectural Fill Bu"er Data Sampling MFBDS/RIDL
CVE-2018-12130 Microarchitectural Load Port Data Sampling MLPDS/RIDL
CVE-2019-11135 TSX Asynchronous Abort TAA/RIDL
CVE-2019-1125 SWAPGS -
CVE-2020-0549 L1D Eviction Sampling L1Des/RIDL
CVE-2020-0548 Vector Register Sampling VRS/RIDL
CVE-2020-0550 Snoop-assisted L1 Data Sampling Snoopy
CVE-2020-0543 Special Register Bu"er Data Sampling Advisory SRBDS/Cross-Talk
CVE-2020-12965 Transient Execution of Non-canonical Accesses -

The same approach can be applied to attack user mode ASLR by running the attacker process
on the same core as the victim process. The limitation of this approach is that ASLR in 64-bit Linux
randomizes 28 bits of the virtual address (i.e., bits 12–39), while the lower 31 bits are used for BTB
addressing making it possible to only recover part of the randomized bits. However, this is still a
considerable reduction of the ASLR entropy making it computationally possible to brute force the
remaining bits.

4.9 Cache-based Covert-channel A!ack via Speculative Execution
Cache-based covert-channel attacks that exploit speculative execution are a fairly new class
of attacks. These attacks are known as Spectre (with variants [38, 39, 48, 64]), Meltdown [39]
(with variants [30, 38, 51]), and L1 Terminal Fault (L1TF) [17], also known as Foreshadow.
Additional speculative attacks are still being discovered that leverage di"erent caches and tech-
niques [9, 22, 63, 71, 73], and these are all examples of Type 3 attacks. These attacks are also
known as transient execution attacks because they exploit microarchitectural actions that are sup-
posed to be discarded [8]. The reason why these attacks continue to be found is because they
a"ect di"erent caches in many di"erent systems and implementations. They exploit prefetchers,
BTBs, internal CPU bu"ers, and even latches. Instead of covering the speci!cs of each case, this
subsection provides a general understanding on how this class of attacks is performed.

Although the focus of this discussion is on Spectre, Meltdown, and Foreshadow/L1TF, there are
numerous other attacks based on cache-based covert channels. Table 4 shows some of the di"erent
vulnerabilities and the names that were given to them either by the researchers who !rst discussed
the issues or by Intel). They are also known by Common Vulnerabilities and Exposures (CVE)
IDs.23

Speculative execution is one of the most important techniques of modern processors to improve
CPU performance across various architectures. It allows instructions to be executed microarchi-
tectural in advance of knowing whether or not they will be architecturally committed. The CPU
executes these instructions without any security checks because their results will be dropped if
the speculation is found to be incorrect, and therefore will not in#uence the !nal computation.
In principle, speculative execution does not cause security issues as long as its microarchitectural
states are not exposed to the execution. However, one exception to this is that cache blocks are

23CVE is a list of publicly known cybersecurity vulnerabilities.

ACM Computing Surveys, Vol. 55, No. 6, Article 125. Publication date: December 2022.

Cache-related Hardware Capabilities and Their Impact on Information Security 125:25

Fig. 11. Schematic of cache-based covert-channel.

loaded during speculative execution. This means that the uncommitted microarchitectural states,
which should not be exposed, can leave measurable traces for architectural probing.

Note that the OoO execution model allows instructions to be dispatched to execution units in
an order that is potentially di"erent from a given program order. While it is possible to design a
CPU that is OoO but not speculative or one that is speculative but in-order, the discussion in this
section applies to CPUs that use both speculation and OoO. Some of the issues discussed, such as
Meltdown are speci!cally dependent on the presence of OoO execution.

Besides the cache-based covert-channel, another key element of this type of attacks is to gain
control over the speculative execution so that (1) the speculative cache loading is data-dependent
and (2) the data is from a di"erent security domain that should not be exposed to the attacker.
This class of attacks often uses some of the classic cache-based side-channel techniques (e.g.,
Flush+Reload and Flush+Flush) as a measurement approach, but it is still essentially a covert-
channel attack since its essence is to break the isolation between microarchitectural and architec-
tural states (see Figure 11).24

Although both Spectre and Meltdown use similar cache-based covert-channels, their variants
have di"erent approaches for triggering the desired speculative execution. Spectre, with two vari-
ants, induces a controlled speculative execution in the victim by exploiting branch prediction,
whereas Meltdown exploits speculative behavior in a potentially fault-triggering condition in the
attacker itself.

Spectre
Both variants of Spectre leverage branch prediction, which is one major aspect of speculative
execution. Spectre Variant I misuses the conditional branch predictor.25 The code snippet shown
below could be vulnerable for attack by Spectre Variant I due to its code structure.
//STRIDE is a constant defined as integer times of cache block size
//untrusted_index is untrusted input from attacker
if (untrusted_index < array1_size)

data = array2[array1[untrusted_index] * STRIDE];

The conditional branch in the third line checks if untrusted_index is within the valid range.
Since this is attacker controlled, the conditional branch can be trained to be predicted as true by
testing an in-bound index. After training, an out-of-bounds index is used to speculatively execute
the fourth line causing the data pointed by the attacker-controlled index to be cached. After the
speculative execution, the value of array1[untrusted_index] can be known by scanning the
cache blocks in array2 using either Flush+Reload or Flush+Flush.

24There are other reliable measurement mechanisms for covert-channels [54]. Moreover, caches are not necessarily the
only option for the covert-channel: Port contention [4] was demonstrated to work as well [5].
25This variant was also exploited remotely [64].

ACM Computing Surveys, Vol. 55, No. 6, Article 125. Publication date: December 2022.

125:26 R. Branco and B. Lee

Fig. 12. Schematic of spectre variant II a!ack flow.

Note that in order to carry out the attack, the attacker needs to (1) induce latency in the con-
ditional branch to create a window for speculative execution by evicting array1_size from the
cache, (2) make sure the cache blocks for array2 are evicted before the attack, and (3) perform
direct or indirect access to array2 to carry out the measurement.

Spectre Variant II targets the indirect branch predictor26 and exploits the fact that it is shared
across di"erent security contexts and is not #ushed upon a context switch. This allows an attacker
to control the speculative execution of a victim from a di"erent security domain by injecting tar-
get address entries into the indirect branch predictor. Figure 12 shows the attack #ow of Spectre
Variant II, where the attacker manipulates the speculative execution of an indirect branch in the
victim by matching both its address and branch history. The desired target of the victim is a code
gadget that performs data-dependent caching, which can be measured by the attacker.

Spectre has other attack scenarios, such as Application-to-Application, Application-to-OS,
GuestVM-to-Hypervisor, OS-to-SMM, and so on. Given that di"erent predictors are used for the
di"erent types of indirect branches, it was demonstrated that returns can also be used for at-
tacks [53]. Intel proposed a new type of branch instruction to give control to software as a mitiga-
tion option [42]. The organization of the Return Stack Bu!er (RSB) also changed based on the
microarchitecture [43].

Although Spectre relies on speculative reads, speculative writes might also be used to control
the speculation and are harder to detect and protect against [23]. Mechanisms such as hardware
memory disambiguation and store-to-load forwarding also provide speculative writes. This essen-
tially means that an instruction executed speculatively might “write” to a location and specula-
tive reads during the speculative window will see the overwritten value instead of the committed
value [40, 62, 71].27 Intel also proposed a new memory type to make it easier to mitigate such
issues [41].

Meltdown
Compared to the two Spectre variants, Meltdown exploits the behavior that speculative execution
continues microarchitectural even when an architectural fault occurs. Therefore, a user mode code

26The indirect branch predictor stores the absolute or relative addresses of branch targets in an array, where each array
entry is tagged by both the address of the indirect branch and the hash of the recent branch history.
27Memory disambiguation, also known as memory fusion, has been shown to have side-channels, as demonstrated in [57].

ACM Computing Surveys, Vol. 55, No. 6, Article 125. Publication date: December 2022.

Cache-related Hardware Capabilities and Their Impact on Information Security 125:27

can try to directly load from a kernel address and make the subsequent cache load depend on the
value read from the kernel space. This is shown in the code example below:
; rcx = kernel address
; rdx = measurement array
mov al, byte [rcx]
shl rax, 0xc
mov rdx, qword [rdx + rax]

Although the load in the third line will trigger an architectural exception due to the mismatched
privilege level, with a proper setup such as using a branch that takes a long time to resolve, there
is a window in which the execution continues speculatively before the exception is raised and the
pipeline is #ushed. In such a case, cache block loading that depends on the kernel space data (i.e.,
the !fth line) could already be carried out and not be reverted despite the exception. Afterward,
using a registered user mode fault handler or a technology such as Intel TSX (see Section 3.5), the
attacker can resume execution after the exception and carry out measurements in its own memory
range to obtain the data from the kernel memory. The entire fault handling can be avoided if the
load already occurs in a speculative channel, which can be created by the attacker using either
variant of Spectre.

The L1TF attack has similar characteristics as Meltdown, but instead of a privilege violation fault,
its vulnerability is triggered by a terminal page fault, which occurs when the page table entry for
a virtual address is not present. An example L1TF scenario is a guest VM attacking the hypervisor
by controlling the mapping between linear addresses and the guest’s physical addresses, which is
su$cient to gain control over the target of the leak. The leak occurs because the system will end-up
using the guest physical address as if it is the host physical address during the speculative access.
Therefore, if the contents of such host physical addresses are in L1 D-cache, the guest would be
able to read them.

The mitigation proposed by Intel against Meltdown was a software change to split the address
space between user mode and kernel mode [16], which is based on the proposed approach to pro-
tect against using prefetching to bypass KASLR (discussed in Section 4.7) [36]. The recommended
!x for Spectre and L1TF involved a hybrid between software and microcode (i.e., new hardware
capabilities implemented through new MSRs) [18]. Another option to protect against Spectre was
proposed by Google that replaces all indirect branches for call/ret pairs and is named retpoline [15].

Note that the BTB side-channel attack discussed in Section 4.8 can be viewed as one of the
earlier works that laid the foundation for the discovery of the speculative covert-channel attack.
However, there are two major di"erences between these two types of attacks:

— A speculative covert-channel attack actively in#uences the speculative execution of the vic-
tim, while a BTB side-channel attack is passive where the attacker only observes the side-
channel behavior of the victim’s execution; and

— A speculative covert-channel attack causes the microarchitectural state to be leaked by forc-
ing cache block loading. In contrast, a BTB side-channel attack uses measurement di"erences
in the attacker to learn about the victim branch decisions.

4.9.1 The Special Case of Intel SGX. Intel Software Guard eXtensions (SGX) provides a se-
cure (i.e., isolated) computing environment for user mode software called enclave that protects
against attacks from the OS or other highly privileged software [14]. Nevertheless, side-channel
attacks were suggested against it as soon as the technology was released [81]. All the di"erent
variants of the speculative covert-channels had a case/scenario to attack SGX, including [70, 71]
and others.

ACM Computing Surveys, Vol. 55, No. 6, Article 125. Publication date: December 2022.

125:28 R. Branco and B. Lee

The use of speculative execution was leveraged in [65] to quickly replay di"erent possibilities
and speed up brute-forcing against SGX. This attack does not require a restart of the target because
speculative execution does not crash the target application and thus is much faster. This type
of attack does not !t within the proposed taxonomy since the particularities are related to the
speculative execution and not to the existence of a cache.

4.10 Side-channel on the Memory Management Unit
Page tables are essentially data stored in memory; therefore, accessing PTEs during a page walk
will result in caching memory blocks containing the accessed PTEs. Since it is possible to probe the
cache activity using side-channel attacks as mentioned in Section 4.4, there is an intrinsic cache-
based side-channel that can reveal the actual virtual address being translated by the MMU, which
is a Type 2 attack. The discovery of the virtual address being translated by the MMU breaks ASLR
since the memory layout becomes known [34].28

There are two major factors that lead to the creation of this intrinsic side-channel:
— Page tables are page-aligned in memory and the page o"set of a PTE directly correlates to

certain bits of the virtual address being translated. For example, in current x86-64 platforms,
the lower 48 bits of a 64-bit address are used for virtual memory addressing29: The lower
12 bits represent the page o"set while the other 36 bits are the bits that are being translated.
Assuming four levels of page tables are used as shown in Figure 2 and each PTE is 8 bytes in
size, 9 of the 36 bits at each translation level determines the page o"set of the corresponding
PTE;

— In an N -way, set-associative cache with S sets with 64-byte block size, bits 6 to (6+loд2S-1)
of the physical address determine which set the address maps to. Since physical and virtual
addresses share the lower 12 bits as the page o"set, bits 6–11 of the virtual address partially
determines the address of the set. For example, suppose a cache has 8,192 sets, then the
mapping is determined by bits 6–18 of the physical address. Bits 6–11, which are the same
for both physical and virtual addresses, represent the page block index, and bits 12–18 of the
physical address represent the page color. Therefore, there are 128 di"erent page colors and
two pages with the same color will have their cache blocks with the same page o"set map
to the same cache set.

Based on these two factors, the virtual address itself determines the page o"set of the PTEs for
di"erent levels during the page walk and in turn, the cache sets loaded by the MMU. This could be
measured by an attacker through a cache-based side-channel to recover the exact virtual address.
This attack is also called ASLR⊕Cache, or simply AnC [34].

In the actual attack scenario published by Gras et al. [34], the attacker is inside the victim’s
browser sandbox with the aim of de-randomizing the memory layout to exploit memory corrup-
tion vulnerabilities. The attacker executes a JavaScript code to trigger a memory allocation of a
predetermined size by, for example, creating ArrayBu"er (JavaScript) or spraying JITed code.30

Since such a memory allocation is either page-aligned or starts from a known page o"set, the at-
tacker has control over the lower 12 bits of the accessed addresses. However, the attacker does

28This is di"erent than the confused deputy [76] scenario proposed in [72], which breaks the isolation provided by page
coloring.
29If the highest bits are not all the same, the access is named a “non-canonical” access. Non-canonical accesses should
fault, but speculative non-canonical accesses were mis-handled by some systems, potentially leaking data [3] through a
side-channel.
30JavaScript is JIT compiled to native code, and spraying means creating a large consecutive block.

ACM Computing Surveys, Vol. 55, No. 6, Article 125. Publication date: December 2022.

Cache-related Hardware Capabilities and Their Impact on Information Security 125:29

not know the full virtual address because ASLR randomizes the bits 12 and above. This attack was
demonstrated in a modern 64-bit Linux OS, which provides 28 bits of ASLR entropy.

As mentioned in Section 4.4, the Prime+Probe approach can be used to measure the cache set(s)
accessed during the page walk of a speci!c translation. This requires the Prime stage to #ush all
TLB entries and page tables out of the cache by accessing a large eviction set. However, the eviction
process itself may trigger a page walk and cache the accessed PTEs, which inevitably introduces
noise to measurements.

To solve this problem, an alternative approach called Evict+Time is used. The Evict+Time ap-
proach is similar to Prime+Probe, but it only evicts one or one speci!c group of cache sets at a
time and measures the execution time of the target routine. Evict+Time has less bandwidth, i.e.,
data are leaked slower than Prime+Probe, but it is more noise-resistant in this particular attack
scenario.

In an AnC attack, an Evict+Time measurement involves the following three steps:
(1) Allocate a memory area as an eviction set that (a) contains pages with all the page colors

and (b) has a number of pages larger than the number of entries in TLB;
(2) Evict a group of cache sets by accessing all the pages in the eviction set with page o"set

T . This will evict the targeted cache sets and also #ush the D-TLB and the uni!ed TLB (i.e.,
S-TLB); and

(3) Measure the time taken to access the target address V , which will trigger a page walk since
Step 2 #ushed the TLBs. The target itself is at a di"erent page o"set than T so that it does
not get evicted. If any of the PTEs used in this page walk is hosted by the evicted cache sets,
accessing the target address V will take a longer time, and vice versa.

The page o"sets of the cache blocks hosting the PTEs of the target address V are known by
repeating Steps 2 and 3 for all 64 possible T o"sets, which would reveal the higher 6 bits of the
9 bits used in each level of translation. However, it is not clear at this point which o"set corresponds
to which translation level. To solve this, the attacker can slide the PTE at a speci!c level by moving
the target address V with certain step sizes.

In a 64-bit 4-level translation (see Section 3.4), the PTL are referred to as PTL4 to PTL1 from
high to low in the page table hierarchy. If the attacker shifts the target address V by an o"set of
i × 4 KB with i = 1, 2, . . . , 8, the PTE of PTL1 and only PTL1 will shift by a step of 8 bytes as i is
increased. By observing when one of the cache block o"sets becomes resolved from the changes
in the original Evict+Time probing, the following two pieces of information can be obtained:

— The exact cache block o"set corresponding to PTE of PTL1, which gives the higher 6 bits of
the 9 bits translated at PTL1; and

— The smallest i that causes the shift in PTE cache block, which gives the lower 3 bits of the
9 bits translated at PTL1.

Therefore, all 9 bits of the target address V translated by PTL1 can be resolved. Similarly, the
9 bits for PTL2 can also be recovered using the same approach by changing the step size ofV from
4 KB to 2 MB. For higher bits corresponding to PTL3 and PTL4, 8 GB and 4 TB of virtual memory
need to be allocated, respectively, using the same sliding technique, which is not practical in this
attack scenario. The authors resolved this challenge by allocating a 2 GB memory range and relying
on the behavior of browser memory allocators to have the allocated region cross the boundary of
PTL3 and PTL4.

Another level of complexity to the AnC attack is that the MMU may have a private page table
cache that is separate from regular caches. The hardware implementation of the page table cache
in MMU is architecture and platform speci!c and often undocumented. Since AnC attacks using
Evict+Time rely on all levels of PTEs to remain only in regular caches, the page table cache of

ACM Computing Surveys, Vol. 55, No. 6, Article 125. Publication date: December 2022.

125:30 R. Branco and B. Lee

MMU needs to be #ushed (at least for a certain PTL) in order for this attack to work. This actually
provides a good opportunity to reverse engineer the hardware design of MMU by developing an
e"ective way of #ushing page table cache with specially designed memory accesses [74].

4.11 Side-channel A!ack empowered by the Integrated Graphics Processing Unit
Researchers are exploring creative ways to abuse cache issues. A recent example leverages the
integrated GPU to not only accelerate microarchitectural side-channel attacks, but also to expose
them to a remote attacker, e.g., from a browser by means of Java Script [31].

As with traditional cache-based side-channels, the reverse engineering e"orts required due to
the lack of documentation are still a barrier, but as more information is discovered, additional
security issues will be found. For example, some new techniques to gather internal information on
the GPUs, which have lead to the bypassing of existing CPU-based side-channel mitigations, have
been discussed in [31].

4.12 Memory Performance A!acks
In 2007, Microsoft researchers unveiled a new class of attacks, dubbed Memory Performance At-
tacks [56]. Although this class of attacks is about memory access patterns, the root cause of the
problem is the existence of a row bu"er in the memory controller to cache the content of an entire
memory row. The memory controller prioritizes memory requests to favor hits into the row bu"er
since it is faster. This possibility created a side-channel [60], but more importantly, the possibility
of a denial of access to requests that do not hit in the row bu"er. This is a Type 4 cache attack in
which accesses to a cache are denied (or in this case, requests are slowed, since at some point it
will be served).

They experimented with applications speci!cally causing access patterns that hit in the row
bu"er, and therefore their requests were prioritized causing a measurable slow down in the entire
system execution.

4.13 Hardware Store Elimination
An interesting and subtle example of the in#uence of caches in security is the Hardware Store Elim-
ination feature of the latest Intel client-based microarchitectures. This feature was undocumented
until the release of a blog post showing performance improvements in the writing 0’s versus 1’s
into memory [25]. While the blog in question discussed the performance results of writing of 0’s
versus 1’s, security researchers immediately identi!ed this di"erentiation as a side-channel.

The feature optimizes write operations for situations where the entire cache block is already
!lled with 0’s (e.g., the blog demonstrates a memcpy() operation of a sequence of 0’s in memory),
which avoids complicated cache coherence states to track when it is evicted from one level of
cache to another. But such optimization signi!es that there is a clear and measurable di"erence
between writing sequences of 0’s and any other values. The consequence for security is not only on
privacy where some content might be guessed by a di"erent user on a system, but also on certain
cryptographic implementations/requirements. For example, it is common to have operations with
long sequences of zeros in cryptography, such as using transformation masks, having really long
key sequences, or identifying trailing data in encrypted packets.

5 CONCLUSIONS
A modern computer architecture is complex and has many di"erent components that in#uence the
overall security. As a result of such complexities and ongoing microarchitectural enhancements,
fully documenting all aspects of the architecture and components is not feasible. Thus, many of

ACM Computing Surveys, Vol. 55, No. 6, Article 125. Publication date: December 2022.

Cache-related Hardware Capabilities and Their Impact on Information Security 125:31

the capabilities are not completely explained or there is not enough code to properly test all the
inner workings.

This article discussed the general implications of cache behavior in modern platforms and pro-
vided a signi!cant amount of technical depth on its impact on security. The challenges caused by
having di"erent con!guration options and di"erent implementation/design choices have histori-
cally created weaknesses and vulnerabilities, with the most relevant ones discussed in this survey.
A lot of work still remains in this area and many other cache-related features were not discussed.
However, the taxonomy together with case studies presented in this survey can be used as a guide
to evaluating the impact of such features on the overall system security and over time can be
expanded to cover new classes of issues.

ACKNOWLEDGMENTS
We would like to acknowledge the contribution from Gabriel Negreira Barbosa, who participated in
the initial discussions and helped in the proof-of-concept code development, which was presented
at Troopers Conference in Germany [6]. The code published was used to prove the behavior of
di"erent parts of caches in a given system, such as the cache disable bit and non-eviction mode. In
addition, we would like to thank Kekai Hu who helped with the initial proofreading and many of
the drawings. We would also like to thank Ke Sun for providing additional technical reviews and
comments. We also would like to thank Joseph Nuzman for the deep technical review and feed-
back. Finally, we would like to thank Sergey Bratus, for the inspiring conversation that initiated
one of the authors in the journey of hardware caches and their security implications, long before
speculative side-channels were a thing.

REFERENCES
[1] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. 2007. On the power of simple branch prediction analysis.

In Proceedings of the 2nd ACM Symposium on Information, Computer and Communications Security. Association for
Computing Machinery, New York, NY, 312–320. DOI:https://doi.org/10.1145/1229285.1266999

[2] Onur Acunde!nediçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. 2007. Predicting secret keys via branch prediction.
In Proceedings of the 7th Cryptographers’ Track at the RSA Conference on Topics in Cryptology. Springer-Verlag, Berlin,
225–242. DOI:https://doi.org/10.1007/11967668_15

[3] Inc. Advanced Micro Devices. 2021. Transient Execution of Non-canonical Accesses (CVE-2020-12965). Retrieved
January 25, 2022 from https://www.amd.com/en/corporate/product-security/bulletin/amd-sb-1010.

[4] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Cesar Pereida García, and Nicola Tuveri. 2018. Port
Contention for Fun and Pro!t. Cryptology ePrint Archive, Report 2018/1060. Retrieved from https://eprint.iacr.org/
2018/1060.

[5] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner, Alessandro Sorniotti, Babak Falsa!, Mathias
Payer, and Anil Kurmus. 2019. SMoTherSpectre. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. DOI:https://doi.org/10.1145/3319535.3363194

[6] Rodrigo Branco and Gabriel N. Barbosa. 2015. Modern Platform-Supported Rootkits. Retrieved February 05, 2017
from https://github.com/rrbranco/Troopers2015/blob/master/Troopers2015-Final-Presented-Public.pptx.

[7] BSDaemon, coideloko, and D0nAnd0n. 2008. System Management Mode Hack - Using SMM for Other Purposes.
Retrieved February 22, 2017 from http://phrack.org/issues/65/7.html.

[8] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von Berg, Philipp Ortner, Frank Piessens,
Dmitry Evtyushkin, and Daniel Gruss. 2019. A systematic evaluation of transient execution attacks and defenses. In
Proceedings of the 28th USENIX Security Symposium. USENIX Association, Santa Clara, CA, 249–266. Retrieved from
https://www.usenix.org/conference/usenixsecurity19/presentation/canella.

[9] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz Lipp, Marina Minkin, Daniel Moghimi, Frank
Piessens, Michael Schwarz, Berk Sunar, Jo Van Bulck, and Yuval Yarom. 2019. Fallout: Leaking data on meltdown-
resistant CPUs. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security. Asso-
ciation for Computing Machinery, New York, NY, 769–784. DOI:https://doi.org/10.1145/3319535.3363219

[10] Intel Corporation. [n.d.]. Microarchitectural Data Sampling Advisory. Retrieved December 01, 2021 from https://
www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00233.html.

ACM Computing Surveys, Vol. 55, No. 6, Article 125. Publication date: December 2022.

https://doi.org/10.1145/1229285.1266999
https://doi.org/10.1007/11967668_15
https://www.amd.com/en/corporate/product-security/bulletin/amd-sb-1010
https://eprint.iacr.org/2018/1060
https://doi.org/10.1145/3319535.3363194
https://github.com/rrbranco/Troopers2015/blob/master/Troopers2015-Final-Presented-Public.pptx
http://phrack.org/issues/65/7.html
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://doi.org/10.1145/3319535.3363219
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00233.html

125:32 R. Branco and B. Lee

[11] Intel Corporation. 2003. Intel Platform Innovation Framework for EFI. Retrieved May 05, 2021 from https://www.
intel.com/content/dam/www/public/us/en/documents/reference-guides/e!-pei-cis-v09.pdf.

[12] Intel Corporation. 2009. 64-bit Intel Xeon Processor MP with 1 MB L2 Cache. Retrieved May 05, 2021 from https:
//www.intel.com/content/dam/support/us/en/documents/processors/xeon/sb/30675212.pdf.

[13] Intel Corporation. 2016. Intel 64 and IA-32 Architectures Software Developer Manuals. Retrieved May 05, 2020 from
https://software.intel.com/en-us/articles/intel-sdm.

[14] Intel Corporation. 2017. Intel Software Guard eXtensions. Retrieved April 30, 2020 from https://software.intel.com/
en-us/sgx.

[15] Intel Corporation. 2018. Retrieved April 30, 2020 from https://software.intel.com/security-software-guidance/
insights/deep-dive-retpoline-branch-target-injection-mitigation.

[16] Intel Corporation. 2018. Intel Analysis of Speculative Execution Side Channels. Retrieved July 10, 2018
from https://software.intel.com/sites/default/!les/managed/b9/f9/336983-Intel-Analysis-of-Speculative-Execution-
Side-Channels-White-Paper.pdf.

[17] Intel Corporation. 2018. Resources and Response to Side Channel L1 Terminal Fault. Retrieved August 18, 2018 from
https://www.intel.com/content/www/us/en/architecture-and-technology/l1tf.html.

[18] Intel Corporation. 2018. Speculative Execution Side Channel Mitigations. Retrieved July 10, 2018 from https://
software.intel.com/sites/default/!les/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf.

[19] Intel Corporation. 2019. Transactional Synchronization Extensions. Retrieved May 27, 2020 from
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-
reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions-2/intrinsics-for-intel-
transactional-synchronization-extensions-intel-tsx/intel-transactional-synchronization-extensions-intel-tsx-
overview.html?language=en.

[20] Intel Corporation. 2020. 6th Generation Intel Processor Family Speci!cation Update - Errata SKL046. Retrieved May
27, 2020 from https://www.intel.com/content/dam/www/public/us/en/documents/speci!cation-updates/desktop-
6th-gen-core-family-spec-update.pdf.

[21] Intel Corporation. 2020. Intel Data Direct I/O Technology Overview. Retrieved May 05, 2021 from https://www.intel.
com/content/dam/www/public/us/en/documents/white-papers/data-direct-i-o-technology-overview-paper.pdf.

[22] Intel Corporation. 2020. Snoop Assisted L1D Sampling Advisory. Retrieved April 30, 2020 from https://www.intel.
com/content/www/us/en/security-center/advisory/intel-sa-00330.html.

[23] Microsoft Security Research & Defense. 2018. Analysis and mitigation of speculative store bypass (CVE-2018-3639).
Retrieved April 30, 2020 from https://msrc-blog.microsoft.com/2018/05/21/analysis-and-mitigation-of-speculative-
store-bypass-cve-2018-3639/.

[24] Mark Doran, Kevin D. Davis, and Mark Svancarek. 2009. UEFI Boot Time Optimization Under Microsoft Win-
dows 7. Retrieved May 05, 2021 from https://www.intel.com/content/dam/doc/guide/ue!-boot-time-optimizaiton-
windows7.pdf.

[25] Travis Downs. 2020. Hardware Store Elimination. Retrieved May 27, 2020 from https://travisdowns.github.io/blog/
2020/05/13/intel-zero-opt.html.

[26] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2015. Covert channels through branch predictors:
A feasibility study. In Proceedings of the 4th Workshop on Hardware and Architectural Support for Security and Privacy.
ACM, New York, NY, 8 pages. DOI:https://doi.org/10.1145/2768566.2768571

[27] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2016. Jump over ASLR: Attacking branch predictors
to bypass ASLR. In Proceedings of the 49th Annual IEEE/ACM International Symposium on Microarchitecture. IEEE
Press, Piscataway, NJ, 13 pages. Retrieved from http://dl.acm.org/citation.cfm?id=3195638.3195686.

[28] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2016. Understanding and mitigating covert chan-
nels through branch predictors. ACM Transactions on Architecture and Code Optimization 13, 1 (2016), 23 pages.
DOI:https://doi.org/10.1145/2870636

[29] Anders Fogh. 2016. Cache side channel attacks: CPU Design as a security problem. Retrieved June 13,
2018 from https://conference.hitb.org/hitbsecconf2016ams/sessions/cache-side-channel-attacks-cpu-design-as-a-
security-problem/.

[30] Anders Fogh. 2017. Negative Result: Reading Kernel Memory From User Mode. Retrieved July 05, 2018 from https:
//cyber.wtf/2017/07/28/negative-result-reading-kernel-memory-from-user-mode/.

[31] Pietro Frigo, Cristiano Giu"rida, Herbert Bos, et al. 2018. Grand pwning unit: Accelerating microarchitectural attacks
with the GPU. In Proceedings of the 2018 IEEE Symposium on Security and Privacy. 195–210.

[32] Ge, Qian et al. 2018. A survey of microarchitectural timing attacks and countermeasures on contemporary hardware.
[33] Ben Gras, Kaveh Razavi, Herbert Bos, et al. 2018. Translation leak-aside bu"er: Defeating cache side-channel protec-

tions with TLB attacks. In Proceedings of the 27th USENIX Conference on Security Symposium. USENIX Association,
955–972.

ACM Computing Surveys, Vol. 55, No. 6, Article 125. Publication date: December 2022.

https://www.intel.com/content/dam/www/public/us/en/documents/reference-guides/efi-pei-cis-v09.pdf
https://www.intel.com/content/dam/support/us/en/documents/processors/xeon/sb/30675212.pdf
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/sgx
https://software.intel.com/security-software-guidance/insights/deep-dive-retpoline-branch-target-injection-mitigation
https://software.intel.com/sites/default/files/managed/b9/f9/336983-Intel-Analysis-of-Speculative-Execution-Side-Channels-White-Paper.pdf
https://www.intel.com/content/www/us/en/architecture-and-technology/l1tf.html
https://software.intel.com/sites/default/files/managed/c5/63/336996-Speculative-Execution-Side-Channel-Mitigations.pdf
https://software.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions-2/intrinsics-for-intel-transactional-synchronization-extensions-intel-tsx/intel-transactional-synchronization-extensions-intel-tsx-overview.html?language=en
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/desktop-6th-gen-core-family-spec-update.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/data-direct-i-o-technology-overview-paper.pdf
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00330.html
https://msrc-blog.microsoft.com/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639/
https://www.intel.com/content/dam/doc/guide/uefi-boot-time-optimizaiton-windows7.pdf
https://travisdowns.github.io/blog/2020/05/13/intel-zero-opt.html
https://doi.org/10.1145/2768566.2768571
http://dl.acm.org/citation.cfm?id=3195638.3195686
https://doi.org/10.1145/2870636
https://conference.hitb.org/hitbsecconf2016ams/sessions/cache-side-channel-attacks-cpu-design-as-a-security-problem/
https://cyber.wtf/2017/07/28/negative-result-reading-kernel-memory-from-user-mode/

Cache-related Hardware Capabilities and Their Impact on Information Security 125:33

[34] Ben Gras, Kaveh Razavi, Erik Bosman, et al. 2017. ASLR on the line: Practical cache attacks on the MMU. In Proceed-
ings of the NDSS. Retrieved from https://www.vusec.net/download/?t=papers/anc_ndss17.pdf.

[35] Daniel Gruss, Julian Lettner, Felix Schuster, et al. 2017. Strong and e$cient cache side-channel protection using hard-
ware transactional memory. In Proceedings of the 26th USENIX Security Symposium. USENIX Association, Vancouver,
BC, 217–233. Retrieved from https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/
gruss.

[36] Daniel Gruss, Moritz Lipp, Michael Schwarz, et al. 2017. KASLR is dead: Long live KASLR. In Proceedings of the
Engineering Secure Software and Systems. Springer International Publishing, Cham, 161–176.

[37] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, Stefan Mangard. 2016. Prefetch side-channel
attacks: Bypassing SMAP and kernel ASLR. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. ACM, New York, NY, 368–379. DOI:https://doi.org/10.1145/2976749.
2978356.

[38] Jann Horn. 2018. Exploiting Branch Target Injection. In!ltrate Security Conference, 2018.
[39] Jann Horn. 2018. Reading privileged memory with a side-channel. Retrieved January 03, 2018 from https://

googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html.
[40] Jann Horn. 2018. Speculative Execution, Variant 4. Retrieved April 30, 2020 from https://bugs.chromium.org/p/

project-zero/issues/detail?id=1528.
[41] Kekai Hu, Ke Sun, and Rodrigo Branco. 2019. A New Memory Type Against Speculative Side Channel Attacks.

Retrieved April 30, 2020 from https://github.com/intelstormteam/Papers/blob/master/2019-A_New_Memory_Type_
Against_Speculative_Side_Channel_Attacks.pdf.

[42] Kekai Hu, Ke Sun, and Rodrigo Branco. 2019. A New Type of Branch Instruction. Retrieved April 30, 2020 from
https://github.com/intelstormteam/Papers/blob/master/2019-A_New_Type_of_Branch_Instruction.pdf.

[43] Kekai Hu, Ke Sun, and Rodrigo Branco. 2019. A Recursive Counter for Linked List RSB. Retrieved April 30, 2020 from
https://github.com/intelstormteam/Papers/blob/master/2019-A_Recursive_Counter_for_Linked_List_RSB.pdf.

[44] Ralf Hund, Carsten Willems, and Thorsten Holz. 2013. Practical timing side channel attacks against kernel space
ASLR. In Proceedings of the 2013 IEEE Symposium on Security and Privacy. 191–205.

[45] Yeongjin Jang, Sangho Lee, and Taesoo Kim. 2016. Breaking kernel address space layout randomization with intel
TSX. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. ACM, New York,
NY, 380–392. DOI:https://doi.org/10.1145/2976749.2978321

[46] David Kanter. 2010. Intel’s Sandy Bridge Micro Architecture (Instruction Decode and uop Cache). Retrieved January
22, 2017 from http://www.realworldtech.com/sandy-bridge/4/.

[47] Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz. 2012. In Proceedings of the 21st USENIX Security Symposium.
USENIX, Bellevue, WA, 189–204. Retrieved from https://www.usenix.org/conference/usenixsecurity12/technical-
sessions/presentation/kim.

[48] Paul Kocher, Jann Horn, Anders Fogh, et al. 2018. Spectre Attacks: Exploiting Speculative Execution. Retrieved July
05, 2018 from https://spectreattack.com/spectre.pdf.

[49] Michael Kurth, Ben Gras, Dennis Andriesse, Cristiano Giu"rida, Herbert Bos, and Kaveh Razavi. 2020. NetCAT:
Practical cache attacks from the network. In Proceedings of the S&P. Retrieved December 12, 2021 from https:
//download.vusec.net/papers/netcat_sp20.pdf.

[50] Nate Lawson. 2009. Side channel attacks on cryptographic software. In Proceedings of the IEEE Security and Privacy.
IEEE. DOI:https://doi.org/10.1109/MSP.2009.165

[51] Moritz Lipp, Michael Schwarz, Daniel Gruss, et al. 2018. Meltdown. Retrieved July 05, 2018 from https://
meltdownattack.com/meltdown.pdf.

[52] Yangdi Lyu and Prabhat Mishra. 2018. A survey of side-channel attacks on caches and countermeasures. Journal of
Hardware and Systems Security 2, 1 (2018), 33–50.

[53] Giorgi Maisuradze and Christian Rossow. 2018. Ret2spec: Speculative execution using return stack bu"ers. In Pro-
ceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. Association for Computing
Machinery, New York, NY, 2109–2122. DOI:https://doi.org/10.1145/3243734.3243761

[54] Clementine Maurice, Manuel Weber, Michael Schwarz, et al. 2017. Hello from the other side: SSH over robust cache
covert channels in the cloud. DOI:https://doi.org/10.14722/ndss.2017.23294

[55] Ronald Minnich. 2015. Coreboot Project. Retrieved April 30, 2020 from https://github.com/coreboot/coreboot/blob/
4.1/src/cpu/intel/haswell/cache_as_ram.inc.

[56] Thomas Moscibroda and Onur Mutlu. 2007. Memory performance attacks: Denial of memory service in multi-core
systems. In Proceedings of the 16th USENIX Security Symposium on USENIX Security Symposium. USENIX Association,
Berkeley, CA, 18 pages. Retrieved from http://dl.acm.org/citation.cfm?id=1362903.1362921.

[57] Marco Oliverio, Kaveh Razavi, Herbert Bos, et al. 2017. Secure page fusion with VUsion: https://Www.Vusec.Net/
Projects/VUsion. In Proceedings of the 26th Symposium on Operating Systems Principles. Association for Computing
Machinery, New York, NY, 531–545. DOI:https://doi.org/10.1145/3132747.3132781

ACM Computing Surveys, Vol. 55, No. 6, Article 125. Publication date: December 2022.

https://www.vusec.net/download/?t=papers/anc_ndss17.pdf
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/gruss
https://doi.org/10.1145/2976749.2978356
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://github.com/intelstormteam/Papers/blob/master/2019-A_New_Memory_Type_Against_Speculative_Side_Channel_Attacks.pdf
https://github.com/intelstormteam/Papers/blob/master/2019-A_New_Type_of_Branch_Instruction.pdf
https://github.com/intelstormteam/Papers/blob/master/2019-A_Recursive_Counter_for_Linked_List_RSB.pdf
https://doi.org/10.1145/2976749.2978321
http://www.realworldtech.com/sandy-bridge/4/
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/kim
https://spectreattack.com/spectre.pdf
https://download.vusec.net/papers/netcat_sp20.pdf
https://doi.org/10.1109/MSP.2009.165
https://meltdownattack.com/meltdown.pdf
https://doi.org/10.1145/3243734.3243761
https://doi.org/10.14722/ndss.2017.23294
https://github.com/coreboot/coreboot/blob/4.1/src/cpu/intel/haswell/cache_as_ram.inc
http://dl.acm.org/citation.cfm?id=1362903.1362921
https://Www.Vusec.Net/Projects/VUsion
https://doi.org/10.1145/3132747.3132781

125:34 R. Branco and B. Lee

[58] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache attacks and countermeasures: The case of AES. In
Proceedings of the CryptographersŠ Track at the RSA Conference. David Pointcheval (Ed.). Springer, Berlin, 1–20.

[59] Jurgen Pabel. 2009. Frozen Cache. Retrieved February 05, 2017 from http://frozencache.blogspot.com.
[60] Peter Pessl, Daniel Gruss, Clémentine Maurice, et al. 2016. DRAMA: Exploiting DRAM addressing for cross-CPU

attacks. In Proceedings of the 25th USENIX Security Symposium. USENIX Association, Austin, TX, 565–581. Retrieved
from https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/pessl.

[61] Joanna Rutkowska. 2007. Beyond the CPU: Defeating Hardware Based RAM Acquisition. Retrieved February 05, 2017
from http://www.!rst.org/conference/2007/papers/rutkowska-joanna-slides.pdf.

[62] Michael Schwarz, Claudio Canella, Lukas Giner, et al. 2019. Store-to-leak forwarding: Leaking data on meltdown-
resistant CPUs. arXiv:1905.05725. Retrieved from http://arxiv.org/abs/1905.05725.

[63] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Stecklina, Thomas Prescher, and Daniel Gruss.
2019. ZombieLoad: Cross-privilege-boundary data sampling. In Proceedings of the CCS.

[64] Michael Schwarz, Martin Schwarzl, Moritz Lipp, and Daniel Gruss. 2018. NetSpectre: Read arbitrary memory over
network. arXiv:1807.10535. Retrieved from http://arxiv.org/abs/1807.10535.

[65] Dimitrios Skarlatos, Mengjia Yan, Bhargava Gopireddy, et al. 2019. MicroScope: Enabling microarchitectural replay
attacks. In Proceedings of the 46th International Symposium on Computer Architecture. Association for Computing
Machinery, New York, NY, 318–331. DOI:https://doi.org/10.1145/3307650.3322228

[66] Sherri Sparks and Jamie Butler. 2005. Raising the bar for windows rootkit detection. Phrack Magazine (2005). Re-
trieved February 05, 2017 from http://phrack.org/issues/63/8.html.

[67] Frank Swiderski and Window Snyder. 2004. Threat Modeling. Microsoft Press.
[68] Jacob Torrey. 2014. MoRE shadow walker: TLB-splitting on modern x86. Black Hat USA Conference Proceedings (2014).

Retrieved February 05, 2017 from https://www.blackhat.com/docs/us-14/materials/us-14-Torrey-MoRE-Shadow-
Walker-The-Progression-Of-TLB-Splitting-On-x86-WP.pdf.

[69] Jim Turley. 2014. Introduction to Intel Architecture. Retrieved April 30, 2020 from https://www.intel.com/content/
dam/www/public/us/en/documents/white-papers/ia-introduction-basics-paper.pdf.

[70] Jo Van Bulck, Marina Minkin, O!r Weisse, et al. 2018. Foreshadow: Extracting the keys to the intel SGX kingdom
with transient out-of-order execution. In Proceedings of the 27th USENIX Conference on Security Symposium. USENIX
Association, 991–1008.

[71] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Marina Minkin, Daniel Genkin, Yarom Yuval, Berk
Sunar, Daniel Gruss, and Frank Piessens. 2020. LVI: Hijacking transient execution through microarchitectural load
value injection. In Proceedings of the 41th IEEE Symposium on Security and Privacy.

[72] Stephan Van Schaik, Cristiano Giu"rida, Herbert Bos, et al. 2018. Malicious management unit: Why stopping cache
attacks in software is harder than you think. In Proceedings of the 27th USENIX Conference on Security Symposium.
USENIX Association, 937–954.

[73] Stephan Van Schaik, Alyssa Milburn, Sebastian Osterlund, et al. 2019. RIDL: Rogue in-#ight data load. In Proceedings
of the 2019 IEEE Symposium on Security and Privacy. Institute of Electrical and Electronics Engineers Inc., 88–105.
DOI:https://doi.org/10.1109/SP.2019.00087

[74] Stephan van Schaik, Kaveh Razavi, Ben Gras, et al. 2017. Reverse Engineering Hardware Page Table Caches Using
Side-Channel Attacks on the MMU. Technical Report IR-CS-51. Vrije Universiteit Amsterdam. Retrieved from https:
//www.vusec.net/download/?t=papers/revanc_ir-cs-77.pdf.

[75] Venkatanathan Varadarajan, Thomas Ristenpart, and Michael Swift. 2014. Scheduler-based Defenses against Cross-
VM Side-channels. In Proceedings of the 23rd USENIX Security Symposium. USENIX Association, San Diego,
CA, 687–702. Retrieved from https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/
varadarajan.

[76] Wikipedia. 2020. Confused Deputy Problem. Retrieved May 27, 2020 from https://en.wikipedia.org/wiki/Confused_
deputy_problem.

[77] Wikipedia. 2020. IOMMU Hardware. Retrieved May 05, 2020 from http://en.wikipedia.org/wiki/IOMMU.
[78] Rafal Wojtczuk and Joanna Rutkowska. 2009. Attacking SMM Memory via Intel CPU Cache Poisoning. Retrieved

February 22, 2017 from http://invisiblethingslab.com/resources/misc09/smm_cache_fun.pdf.
[79] Zhenyu Wu, Zhang Xu, and Haining Wang. 2012. Whispers in the hyper-space: High-speed covert channel attacks

in the cloud. In Proceedings of the 21st USENIX Security Symposium. USENIX, Bellevue, WA, 159–173. Retrieved from
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/wu.

[80] Wenjie Xiong and Jakub Szefer. 2020. Survey of Transient Execution Attacks. arXiv:2005.13435. Retrieved from https:
//arxiv.org/abs/2005.13435.

[81] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-channel attacks: Deterministic side channels
for untrusted operating systems. In Proceedings of the 2015 IEEE Symposium on Security and Privacy. IEEE Computer
Society, 640–656. DOI:https://doi.org/10.1109/SP.2015.45

ACM Computing Surveys, Vol. 55, No. 6, Article 125. Publication date: December 2022.

http://frozencache.blogspot.com
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/pessl
http://www.first.org/conference/2007/papers/rutkowska-joanna-slides.pdf
http://arxiv.org/abs/1905.05725
http://arxiv.org/abs/1905.05725
http://arxiv.org/abs/1807.10535
http://arxiv.org/abs/1807.10535
https://doi.org/10.1145/3307650.3322228
http://phrack.org/issues/63/8.html
https://www.blackhat.com/docs/us-14/materials/us-14-Torrey-MoRE-Shadow-Walker-The-Progression-Of-TLB-Splitting-On-x86-WP.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-introduction-basics-paper.pdf
https://doi.org/10.1109/SP.2019.00087
https://www.vusec.net/download/?t=papers/revanc_ir-cs-77.pdf
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/varadarajan
https://en.wikipedia.org/wiki/Confused_deputy_problem
http://en.wikipedia.org/wiki/IOMMU
http://invisiblethingslab.com/resources/misc09/smm_cache_fun.pdf
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/wu
http://arxiv.org/abs/2005.13435.
https://arxiv.org/abs/2005.13435
https://doi.org/10.1109/SP.2015.45

Cache-related Hardware Capabilities and Their Impact on Information Security 125:35

[82] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A high resolution, low noise, L3 cache side-channel attack.
In Proceedings of the 23rd USENIX Security Symposium. USENIX Association, San Diego, CA, 719–732. Retrieved from
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom.

[83] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. 2012. Cross-VM side channels and their use to
extract private keys. In Proceedings of the 2012 ACM Conference on Computer and Communications Security. ACM,
New York, NY, 305–316. DOI:https://doi.org/10.1145/2382196.2382230

Received 12 June 2020; revised 26 April 2022; accepted 2 May 2022

ACM Computing Surveys, Vol. 55, No. 6, Article 125. Publication date: December 2022.

https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://doi.org/10.1145/2382196.2382230

