
1096   Mohammed Sinky et al. © 2015        ETRI Journal, Volume 37, Number 6, December 2015 
http://dx.doi.org/10.4218/etrij.15.0114.1263 

This paper presents a dynamic retry adaptation scheme 
for H.264 HD video, called DRAS.264, which dynamically 
adjusts the retry limits of frames at the medium access 
control (MAC) layer according to the impact those frames 
have on the streamed H.264 HD video. DRAS.264 is 
further improved with a bandwidth estimation technique, 
better prediction of packet delays, and expanded results 
covering multi-slice video. Our study is performed using 
the Open Evaluation Framework for Video Over 
Networks as a simulation environment for various 
congestion scenarios. Results show improvements in 
average peak signal-to-noise ratios of up to 4.45 dB for 
DRAS.264 in comparison to the default MAC layer 
operation. Furthermore, the ability of DRAS.264 to 
prioritize data of H.264 bitstreams reduces error 
propagation during video playback, leading to noticeable 
visual improvements. 
 

Keywords: Wireless, network, H.264, streaming, 
multimedia. 
                                                               

Manuscript received Oct. 31, 2014; revised July 22, 2015; accepted July 30, 2015. 
An earlier version of this work was published in the 8th International Conference on 

Ubiquitous Information Management and Communication (ICUIMC 2014).  
This work was supported in part by LG Display Co., Korea and Ministry of Education 

Science and Technology (MEST) and the Korean Federation of Science and Technology 
Societies (KOFST). 

Mohammed Sinky (corresponding author, mhsinky@uqu.edu.sa) is with the Computer 
Engineering Department, Umm Al-Qura University, Makkah, Saudi Arabia. 

Ben Lee (benl@eecs.orst.edu) is with the School of Electrical Engineering and Computer 
Science, Oregon State University, Corvallis, USA. 

Tae-Wook Lee (twlee@lgdisplay.com), Chang-Gone Kim (cgkim02@lgdisplay.com), and 
Jong-Keun Shin (rgbshin@lgdisplay.com) are with LG Display Co. Ltd., LCD Laboratory, 
Paju, Rep. of Korea. 

I. Introduction 

Peer-to-peer HD video streaming between smartphones, 
tablets, set-top boxes, and other mobile devices over WLANs 
has become an important enabling technology for home 
entertainment and N-screen applications. However, packet loss 
and delay are two major factors that affect the quality of video 
streams for these applications. The sensitivity of real-time 
video to these factors poses challenges for current enabling 
products, such as Intel WiDi [1] and Apple Airplay [2]. 
Although WLAN-based video streaming solutions have 
quickly emerged on the market, providing smooth playback of 
HD content is becoming more challenging as the popularity of 
peer-to-peer video streaming increases. Due to the lossy nature 
of wireless media, the IEEE 802.11 medium access control 
(MAC) layer provides built-in reliability by performing 
retransmissions of lost packets up to some fixed limit, referred 
to as the retry limit [3]. However, too many retransmissions can 
cause packet delays that lead to violation of video playback 
deadlines. Also, packets of compressed video carry varying 
levels of importance within the context of video reconstruction 
[4]. Therefore, more time may be spent delivering a lower 
priority packet at the expense of delaying other packets that 
have a higher visual impact on displayed video.  

This problem was addressed in our prior work using an 
adaptive MAC layer retransmission scheme tailored to H.264 
videos, known as Dynamic Retry Adaption Scheme for H.264 
(DRAS.264) [5]. In this scheme, H.264-compliant bitstreams 
are parsed in real time to evaluate packet priorities and then 
dynamically adjust their retry limits accordingly. Specifically, 

Dynamic Retry Adaptation Scheme to      
Improve Transmission of H.264 HD Video over 

 802.11 Peer-to-Peer Networks 

Mohammed Sinky, Ben Lee, Tae-Wook Lee, Chang-Gone Kim, and Jong-Keun Shin 



ETRI Journal, Volume 37, Number 6, December 2015 Mohammed Sinky et al.   1097 
http://dx.doi.org/10.4218/etrij.15.0114.1263 

DRAS.264 assigns higher retry limits to any packet 
containing a slice header as well as packets that hold I-frame 
slice data. Slice headers impact visual quality the most, 
followed by the data present in I-frames. Therefore, 
prioritizing slice headers gives a decoder a better chance to 
reconstruct video frames, while protecting I-frame data 
prevents error propagation. All other packets of the bitstream 
are assigned lower retry limits to avoid unnecessary 
retransmissions of low-impact data. 

This paper extends our prior work on DRAS.264 by 
applying DRAS.264 to multi-slice videos and incorporating 
bandwidth estimation. Therefore, in addition to providing a 
discussion of the basic DRAS.264 scheme, the specific 
contributions of the paper are as follows: 1) application of a 
new bandwidth estimation technique to dynamically enable  
or disable the DRAS.264 retry assignment (RA) process, 2) 
improvements to the RA mechanism of DRAS.264 by 
supplying the number of packets contained per slice to the 
MAC layer via cross-layer communication, and 3) 
performance evaluation of videos encoded using multi-slices, 
which is a built-in feature of the H.264 codec to allow for better 
error resiliency in networked environments. 

This paper is organized as follows. Section II provides a 
background on the contention problem at the MAC layer and 
the important error-resilience features of the H.264 codec. 
Section III discusses the related work. The core of the original 
DRAS.264 algorithm augmented with the new bandwidth 
estimation process and improved RA method is presented in 
Section IV. Section V shows a comparison between the 
performance of the newly modified DRAS.264 and the default 
MAC layer operation. Finally, Section VI concludes the paper 
and discusses possible future work.  

II. Background 

Any shared medium requires serialized access to prevent 
contention. The distributed coordination function (DCF) of the 
802.11 MAC protocol governs access to shared wireless media. 
Since stations (STAs) must be given atomic access, multiple 
STAs in a network cause additional delay during transmission. 
For real-time video, high end-to-end delays can lead to 
deadline violations and thus video quality degradation. This 
section covers the delays associated with the DCF. 
Furthermore, the implications of delayed and lost packets are 
discussed in terms of how they affect video reconstruction for 
H.264-encoded video.  

1. DCF Operation 

The IEEE 802.11 DCF relies on specific time intervals. The  

 

Fig. 1. IEEE 802.11 DCF Timing. 

Tdef

MAC frame

S
IF

S
 

A
C

K
 

DIFS def DIFS MAC frame S
IF

S
 

A
C

K
 

DIFS 

Tbkf 

Tsuc 

Tbkf

Time spent waiting

Wasted 
transmission 

TcolWaiting 

MAC frame S
IF

S
 

A
C

K
 

Time spent transmitting 

 
 
shortest of these intervals is referred to as a time slot (Tslot), and 
STAs check the availability of the medium in integrals of   
this time period [3]. The next shortest interval is the short 
interframe space (TSIFS), which is a mandatory waiting period 
between the successful delivery of a MAC frame and when its 
corresponding acknowledgement (ACK) frame is sent in 
response. Finally, the DCF interframe space (TDIFS), which is 
given as TDIFS = TSIFS + 2×Tslot, is the duration for which the 
medium must be sensed idle before a new MAC frame can 
begin transmission. DCF avoids collisions by assigning a 
random backoff (BO) variable representing the number of time 
slots that an STA must wait after TDIFS before it can start 
transmission. The BO variable is selected from the range    
[0,	CW], where CW is known as the contention window. The 
CW doubles for each failed transmission attempt until it 
reaches a standard-defined maximum value.  

Figure 1 illustrates an example timing of DCF, which 
consists of the following four main states: success, collision, 
BO, and deferred. In Fig. 1, the STA spends a total of 14 time 
slots in the BO state, represented by Tbkf (11 during the first 
transmission and 3 during the second transmission). 
Additionally, it transitions to the deferred state (Tdef) when 
another STA gains access to the medium. During transmission, 
either successful or unsuccessful delivery of the corresponding 
ACK frame is the difference between the success (Tsuc) and 
collision (Tcol) states. For the second transmission in Fig. 1, 
another STA has seized the medium at the same time causing 
collision, thus wasting the time spent transmitting. 

To simplify the timing calculations for each state, all packets 
are assumed to be of equal length. Therefore, Tsuc, Tcol, and Tdef 
are equivalent and are given as  

Tsuc = Tcol = Tdef = Tfrm + TSIFS + TACK ,         (1) 

where (TACK) is the time needed for an ACK frame to be 
delivered. Note that Tbkf for the rth retry, Tbkf(r), only depends 
on the random time slot chosen for that attempt, BOr, Thus, 

Tbkf(r) = BOr × Tslot (CWr × Tslot).         (2) 

A summary of the time durations for the defined intervals of 
the 802.11 DCF is provided in Table 1. 



1098   Mohammed Sinky et al. ETRI Journal, Volume 37, Number 6, December 2015 
http://dx.doi.org/10.4218/etrij.15.0114.1263 

Table 1. Important time durations of 802.11 DCF scheme. 

Values 
State 

802.11a 802.11b 802.11g 802.11n 

TSIFS 16 μs 10 μs 10 μs 10 μs 

TDIFS 34 μs 50 μs 28 μs 28 μs 

Tslot 9 μs 20 μs 9 μs 9 μs 

TACK Data rate dependent 

Tfrm Payload size + data rate dependent 

SIFS: short interframe space, DIFS: DCF interframe space,  

ACK: MAC layer acknowledgement frame, frm: MAC layer data frame

 

 
2. H.264 Codec 

The H.264 codec, also referred to as Advanced Video 
Coding (AVC), is today’s de facto standard for video 
compression [6]. Like all video codecs, H.264/AVC uses 
predictive methods to reconstruct video sequences; however, it 
exhibits a much higher coding efficiency than its predecessors. 
Encoded videos consist of sequences of groups of pictures 
(GOP), which are sets of coded frames placed in decoding 
order. Packet loss within a GOP sequence gives rise to error 
propagation, particularly when it happens early in the GOP 
sequence. This is because later frames in a GOP sequence 
reference earlier frames. The basic units operated on by the 
H.264 video codec are 16	 × 16 pixel regions referred to as 
macroblocks (MBs). MBs are labeled according to whether 
bidirectional motion compensation (B-frames), previous frame 
motion compensation (P-frames), or intra prediction (I-frame) 
techniques are used. MBs may also be grouped into spatial 
regions of frames known as slices, which is a feature of the 
H.264 codec designed for error resiliency and parallel 
processing of images. Similar to the frame types, the three 
main slice types for H.264 encoded video are I-, P-, and B-
slices. Additionally, a special type of intra prediction slice exists, 
which is known as an Instantaneous Decoder Refresh (IDR) 
slice. IDR-slices prevent decoders from referencing slices of 
earlier frames and always initiate new GOP sequences.  

H.264 is composed of two layers — the video coding layer 
(VCL) and the network abstraction layer (NAL). The VCL is 
the compressed video bitstream. The NAL encapsulates the 
VCL with additional information, making it suitable for 
transmission over existing packet-based networks [7].  

A slice-based representation of an H.264 video frame is 
given in Fig. 2, which shows an original video frame and the 
corresponding received frame with packet loss for an 8-slice 
video. Each slice maps to a spatial region within the frame 
whose boundaries are indicated by the solid blue lines in     

 

Fig. 2. Effect of packet loss on H.264 video reconstruction: (a) 
original frame and (b) received frame. 

(a) 

H.264 slice header lost

Slice 4: first 8 packets dropped, last 7 received 

Entire slice cannot  
be reconstructed 

Slice 5: last 2 packets dropped 

Latter part of the slice cannot 
be reconstructed 

(b) 

 

 
Fig. 2(b). The solid grey blocks correspond to missing 
information as a result of packet loss. A decoder will attempt to 
hide these areas using error concealment (EC) techniques [8]; 
however, the frame in Fig. 2(b) is shown without EC for 
illustrative purposes. As can be seen, more than half of the 
received frame is missing despite the fact that 68% of packets 
arrive on time. In particular, slices 2, 4, and 7 could not be 
reconstructed even though most of the packets for these slices 
were properly received. This is because the few initial packets 
of those respective slices contained slice headers; the header 
information within each slice or NAL unit carries a high degree 
of importance for proper video reconstruction. Therefore, 
DRAS.264 was designed to exploit this characteristic to 
increase the chances of proper video reconstruction under less-
than-desirable network conditions. 

III. Related Work 

Prioritized MAC layer retransmission strategies for video 
streaming were first studied in [9], where retry limits were 
dynamically assigned to the layers of video encoded by the fine 
granularity scalability technique of MPEG-4. However, the 
study ignored playout deadlines, which is undesirable for real-
time video. More advanced methodologies were presented in 



ETRI Journal, Volume 37, Number 6, December 2015 Mohammed Sinky et al.   1099 
http://dx.doi.org/10.4218/etrij.15.0114.1263 

[10]–[12]. In these methods, optimal retry limits are computed 
offline for different channel conditions and playout constraints. 
However, the authors resort to heuristic-based approaches to 
comply with real-time video constraints. These schemes rely 
heavily on determining the importance of each packet, which is 
typically done prior to the encoding process. In [13], packets 
are discarded based on priority-computed deadlines rather than 
the retry limit set by the 802.11 MAC protocol. 

Cross-layer approaches in streaming H.264 videos are 
known to leverage 802.11e access categories (ACs) to optimize 
video delivery. Some methods simply mark parts of the H.264 
bitstream, which are then mapped to ACs of varying priority 
[14]. There also exist techniques that employ automatic repeat 
request. Some work with offline computations that quantify the 
impact of error propagation of H.264 bitstreams, while others 
apply buffer management, channel estimation, and transcoding 
for improved real-time video delivery [15]–[16]. These are 
orthogonal to DRAS.264. 

The body of work on adaptive retransmission shows general 
trends of improvement for real-time video streaming. However, 
earlier studies mostly focus on the efficiency of pre-processing 
compressed video. This is not necessary for DRAS.264. 
Furthermore, instead of CIF (352	×	288) video, this work studies 
HD (1,920	×	1,080) resolution, which is a significant expansion 
in the scope of research. Finally, no work has studied the effect of 
802.11 retry-limit adaptation for H.264 encoded video.  

IV. DRAS.264 

DRAS.264 is a sender-based scheme consisting of the 
following two main mechanisms: slice protection (SP) and   
RA. SP focuses on how packets containing slice headers are 
transmitted. RA is the process by which retry limits are assigned 
according to the type of video frame that is being transmitted. 
Figure 3 shows the architecture of the DRAS.264 scheme, which 
operates primarily at the MAC layer. The SP Module provides 
cross-layer communication between the MAC and Network 
layers and is responsible for processing the drop notification of 
MAC layer frames that contain slice headers. The RA Module 
reads the current MAC frame and monitors the 802.11 wireless 
performance to adaptively adjust the retry limit. It also requires 
as input the number of packets contained in the current slice 
being processed, which is communicated from the Application 
layer. Note that this implementation does not require explicit 
feedback from the receiving STA. 

DRAS.264 closely monitors and parses all 802.11 frames 
that are being transmitted at the MAC layer. The relative 
importance of each frame is extracted, yielding four main 
priority levels — slice headers, I-frames, P-frames, and B- 
frames (in decreasing order). Furthermore, all packet delays are  

 

Fig. 3. DRAS.264 architecture. 

slc
pktN

I P B …

Application layer 

H.264 bitstream 

Network layer MAC layer Physical 
layer

Read signal 
(dequeue) 

RTP packet 

11111225

slc_hdr 

RTP 
packetization

Head of network 
queue 

Network layer 
queue 

RTP packets

Number of packets 
per slice 

DRAS.264 

notification 

NIC 
Drop  Slice 

protection 
module 

NIC 
buffer

Current 
retry 
limit

r

Retry 
assignment 

module

 
 

 

Fig. 4. IETF RFC 6184 merging Sequence Parameter Set (SPS) 
and Picture Parameter Set (PPS) with slice headers. 

SPS PPS IDR slice NAL units 

RTP 
packets Payloadhd

r 

hd
r 

Payload

First slice

hd
r 

Payload 

1,450 B < 1,450 B 

hd
r 

Payload hd
r 

Payload

New slice

…

Slice Slice Slice PPS Slice

 
 
monitored to decide on termination of retransmissions for a 
particular packet if its deadline is expected to be exceeded. 
Both the relative packet importance and real-time delay 
information dictate the RA for each packet.  

DRAS.264 is based on the Real-time Transport Protocol 
(RTP) and is able to detect H.264/RTP packets encapsulated in 
MAC layer frames. The Fragmentation Unit (FU) structure of 
IETF RFC 6,184 [17] is applied for encapsulation of H.264 
data into RTP packets, as outlined in Fig. 4. The detection of 
H.264/RTP packets involves examining the MAC layer frames 
residing at the head of the transmission queue of the network 
interface card (NIC). These frames are parsed to extract the 
encapsulated RTP packets, which are then further examined for 
particular RTP header fields. RTP packetization facilitates the 
detection of new H.264 slices with the marker (m) bit in the 
RTP header. During packetization, m-bit is set when a slice is 
fragmented across multiple packets. At the MAC layer, the 
value of m-bit for the previous packet is stored in a variable, 
prev_m. When prev_m = 0, this indicates that the current 
packet holds information residing at the start of a slice, and 
hence represents a slice header. The slice type is then saved for 
use in subsequent steps of the RA process. 

1. SP 

As discussed in Section II, slice headers are crucial for video 
reconstruction. Thus, one of the important features of DRAS.264 
is the SP mechanism shown in Fig. 5. Note that the default 



1100   Mohammed Sinky et al. ETRI Journal, Volume 37, Number 6, December 2015 
http://dx.doi.org/10.4218/etrij.15.0114.1263 

 

Fig. 5. Flowchart for slice protection. 

No 

No 

No 

No 

Start H.264 
transmission  

Reset 802.11 MAC 
layer variables 

Begin transmission  
for head of queue 

MAC frame 

TX timeout 

SSRC + + 

SSRC < r 

slc_hdr = = 1 

Yes 

Yes 

Yes 

Yes 

Tfrm > Dfrm 

Default 802.11 MAC 
standard [3] 

Notify network 
layer of drop 

(remove packet 
from queue) 

Disable drop 
notification to 
network layer

 
802.11 MAC protocol is still applied. In particular, the STA 
Short Retry Count (SSRC), which is a MAC layer variable 
used to count the number of retransmissions, is monitored and 
checked against the assigned retry limit, r. Only when an 
H.264 slice header is contained within the packet under 
transmission (slc_hdr = 1) will the proposed deviate from the 
default operation. In this case, if r = SSRC, then the packet 
drop notification to the network layer is blocked. This is subject 
to the time constraint that the projected packet delivery time, 
Tfrm, should not be greater than the frame deadline, Dfrm, where 
Dfrm is computed as  

Dfrm = Tini + λ×TS,               (3) 

where Tini is the initial startup delay, λ = 1/fps, and TS is the 
RTP timestamp. Keep in mind that throughout this process the 
normal MAC layer operation continues; that is, when SSRC = 
r, the CW and BO variables are reset, which is represented by 
the first block in the flowchart. However, since the drop 
notification to the network layer is disabled for MAC frames 
holding slice headers, the same packet residing at the head   
of the network layer queue is allowed another set of 
retransmissions with the newly set MAC layer variables. Thus, 
as long as a MAC frame containing a slice header is within its 
deadline, DRAS.264 will not drop it. However, if Tfrm > Dfrm, 
then the network layer drop notification is enabled when the 
assigned retry limit is reached. 

2. RA 

The second important feature of DRAS.264 is the process by  

 

Fig. 6. Flowchart for RA. 

No 

No 

No

No

Start H.264 
transmission

Get next MAC layer
frame and parse

Tfrm > Dfrm 
Yes

New slice? 

slc header? 

Set slc_hdr = 1 

Set r = r–1 

(set for all packets of slice)

r + + pkt slc
pkt frmdly ( ) >T r N D

Missing slc, 
set r = 0  

set slc_hdr = 0

Yes

Yes
(set for remaining packets of slice) 

Set r = MRL 

 
which retry limits are assigned. This task is outlined in Fig. 6. 
As presented in the figure, the first step after parsing an RTP 
packet is to compare its Tfrm with Dfrm to determine if the 
current packet has a chance to arrive on time. If this criterion is 
not met, then the retry limit of the current packet and all 
subsequent packets of the frame are set to zero. This effectively 
“drops” packets that are projected to be delayed beyond their 
deadlines and avoids unnecessary retransmissions. For real-
time video, this buys time for subsequent frames and GOP 
sequences, which by nature of the algorithm will be allocated 
to higher priority packets.  

RA performs on groups of packets rather than on a per-
packet basis, and works alongside SP. Specifically, all the 
packets of a slice are considered as a group and RA only takes 
place when the first packet of a slice (that is, a slice header) is 
encountered. Based on the packetization scheme shown in  
Fig. 4, this has the advantage of protecting SPS and PPS in 
addition to slice headers. When a slice header is found by way 
of the m-bit, explained earlier, a slice header flag, slc_hdr, is set 
and communicated with the SP Module as presented in Fig. 3. 
This is followed by setting r to the maximum retry limit 
(MRL), which is the maximum number of retransmissions 
permitted by the MAC layer. For this work, the default value 
for MRL is 7. 

The predicted packet delay for the rth retry attempt, Tpkt
dly(r), 

needs to be known. Details on the delay prediction are 
provided in the next subsection. All the predicted packet delays 



ETRI Journal, Volume 37, Number 6, December 2015 Mohammed Sinky et al.   1101 
http://dx.doi.org/10.4218/etrij.15.0114.1263 

are kept as an array indexed by r. This is multiplied by the 
number of packets contained in the slice, Nslc

pkt, where “slc” 
represents the slice type. Thus, NI

pkt, N
P
pkt, and NB

pkt represent 
the number of packets contained in I-slice, P-slice, and B-slice, 
respectively. Since this information is readily available during 
the packetization process, the number of packets per slice is 
passed down from the application layer to the MAC layer 
using cross-layer communication, as shown in Fig. 3. 

The modification of the retry limit is based on the product 
Tpkt

dly(r) · N
slc

pkt and the frame deadline, Dfrm. If the resulting 
cumulative delay exceeds the frame deadline, then the retry 
limit is decremented by 1. Otherwise, r holds the last assigned 
value and the RA module waits for the next MAC layer frame 
to become available for processing. One important factor 
during RA is frame sizes. Due to the fact that reference frames 
typically hold a larger amount of data than non-reference 
frames (that is, NI

pkt > NP
pkt > NB

pkt), directly comparing Dfrm 
against Tpkt

dly(r) · N
slc

pkt would give the most important packets 
the least amount of time for transmission and thus the lowest 
retry limits. This is contradictory to the relative importance of  
each slice type within an H.264 bitstream. Therefore, the time 
computed per packet, Dfrm/Nslc

pkt, is exchanged between B-
slices and I-slices. That is, NB

pkt is used for I-slices, while NI
pkt 

is used for B-slices for the inequality in Fig. 6. The 
computation for P-slices remains unchanged with NP

pkt. This 
ensures the selection of retry limits is proportional to the impact 
those packets will have on the received video. 

3. Prediction of Packet Delays 

Recall from Section II that a packet can be in one of the 
following four states: success, collision, BO, and deferred. 
Based on these states, an analytical model is derived to predict 
packet delays. For an STA employing the DRAS.264 scheme, 
a running average of the time spent per state is recorded at each 
transmission attempt, and Tpkt

dly(r) is made up of the sum of 
those average delays. The main factors contributing to the 
overall delay between when a packet is transmitted to the time 
the corresponding ACK frame is successfully received are as 
follows: 
■  nc: collisions; 
■  BOr: BO variable for rth retry attempt; and 
■  ntx: number of deferrals before ACK is received.  

Based on these metrics, Tpkt
dly(r) is given by the following 

equation:  

cpkt
bkf c col tx bsydly 0

suc c tx DIFS

( ) ( )

( ) ,

n

r
T r T r n T n T

T n n T


  

  
       (4) 

where Tbkf(r) represents the delay associated with the BO state 
for the rth retry, and Tbkf, Tcol, Tbsy, and Tsuc represent the time 

spent in “BO,” “collision,” “busy,” and “successful” states, 
respectively. These terms are defined as follows: 
■ Tbkf(r) = BOr × Tslot, where BOr  [0, CWr] and CWr =   

a2r – 1, where a = CWinit	+	1. Note that CWinit differs from 
one standard to another (such as 802.11a and 802.11b).  

■ Tcol and Tbsy refer to the time consumed during a collision or 
deferral state, respectively. Since the underlying assumption 
in this work considers all MAC layer frames to be of equal 
length, both parameters have the same computation given in 
(1): Tbsy = Tcol = Tfrm + TSIFS + TACK, where Tfrm, TSFIS, and 
TACK are given in Table 1.  

■ Tsuc is the duration for a successful transmission, and is 
equivalent to Tbsy due to the aforementioned assumption 
regarding the MAC frame size. 

Since Tbsy = Tcol, (4) can be reformulated as 

 
 

  

cpkt
bkf suc bkfdly 1

c tx bsy DIFS

(0) ( )

,

n

r
T T T T r

n n T T


     

    


        (5) 

where terms enclosed in square brackets represent specific 
delays associated with the four main states. The first bracketed 
computation refers to the time spent during a successful 
transmission; the second bracket refers to the total time spent  
in the BO state; and the third term represents the time spent 
during the collision and deferral states. 

For the default 802.11 operation, a MAC layer frame may 

absorb up to six retransmissions. Therefore, a certain delay is 

incurred per retry attempt, which only varies based on the BO 

counter and deferral time. For the basis of prediction, the 

average BO window size per attempt, E[BOk], and the average 

number of transmissions other STAs gain access to the 

medium for the kth attempt, txE[ ],
k

n  are recorded during 

transmissions. Also, considering the case for a successfully 

transmitted frame at the rth attempt, the number of collisions 

that take place during the transmission is equal to the number 

of retry attempts; that is, nc = r ≤ R. Note that R represents the 

maximum number of retries allowed, which is six for the 

default MAC protocol. The components E[BOk], txE[ ],
k

n  and 

the replacement of nc by r lead to the following general 

equation for the estimation of packet delay based on the 

number of retry attempts, Tpkt
dly(r): 

   

 

pkt
suc slot col DIFSdly 0

tx bsy DIFS0

( ) E BO

E[ ] .
k

r
kk

r

k

T r T T r T T

n T T





   

 




  (6) 

Equation (6) is realized as an array of predicted delays 

indexed by the retry attempt r. The running averages of BO 

times, E[BOk], and instances of deferral, txE[ ],
k

n are summed 

for all attempts up to and including the retry attempt in question  



1102   Mohammed Sinky et al. ETRI Journal, Volume 37, Number 6, December 2015 
http://dx.doi.org/10.4218/etrij.15.0114.1263 

to account for the delays from the previous attempts.  
The delays computed in (6) tend to under-predict the actual 

end-to-end delays experienced at the MAC layer. Under-
prediction does not pose an issue when assigning retry limits to 
packets, because lower per-packet delays constitute assigning 
retry limits greater than the minimum value needed to 
successfully deliver a packet. However, if over-prediction takes 
place, a retry limit that is too low for successful delivery will be 
selected. Thus, DRAS.264 employs some leniency in the RA 
process by assigning one higher value to r, as shown in the last 
step of Fig. 6. 

4. Bandwidth Availability Estimation 

One drawback to the originally proposed DRAS.264 
algorithm in [5] is that retry limits would be unnecessarily 
reduced, regardless of the video streaming performance. Thus, 
for stretches of video, the default MAC layer operation would 
outperform DRAS.264 at times. Therefore, a method to 
conditionally apply DRAS.264 was cited as a necessary 
component for better performance. To implement this, the  
RA Module of DRAS.264 is augmented with bandwidth 
estimation to determine when to activate/deactivate the RA 
process. Bandwidth availability estimation in DRAS.264 
considers the maximum MAC layer packet size and inter-ACK 
arrival times to calculate the goodput. This is done by keeping 
track of ACK arrival times, tACK, during transmissions. When a 
new ACK arrives, the inter-ACK time is computed using 
 

(ACK) ACK( ) ACK( 1) ,i i iT t t    where tACK(i) and tACK(i−1) are the 

ACK arrival times for the two previous successfully delivered 

MAC layer frames.  

The maximum frame size is divided by the most recently 

computed inter-ACK time, (ACK) ,
i

T  to obtain the goodput, 

where the MAC frame size including headers amounts to 

1,506 bytes and is referred to as MAC_frame_size. Thus, the 

following equation can be used to represent the effective 

available bandwidth BWi: 

(ACK)BW MAC _ frame _ size / .
ii T         (7) 

Equation (7) gives an instantaneous measure of network 

performance. However, it is important to capture the trend over 

time to avoid unnecessarily activating RA in DRAS.264. Thus, 

an exponentially weighted moving average is applied to BWi, 

which is given as 

avg_BWi = α	×	BWi	+	(1 − α)	× avg_BWi−1,      (8) 

where α is a weighting factor. During streaming, avg_BWi is 

monitored and compared against a predefined threshold, 

BW_th. If avg_BWi falls below the threshold, then DRAS.264 

is activated and retry adjustment operates as described in Fig. 5. 

Otherwise, retry limits revert to the default value and remain 

static. The selection of an optimal α and BW_th is beyond  

the scope of this paper. However, favorable results have been 

observed with α = 0.2 and BW_th in the range of 10 Mbps to 

26 Mbps for different scenarios in a 54 Mbps network. 

 

Fig. 7. OEFMON simulation environment. 

QualNet  
connector

DirectShow 
connector 

Sender agent 

Original raw 
video 

QualNet scenario DirectShow graph

Multimedia module 

Load 

QualNet 
Execute

OEFMON 

QoS mapping 
parameter 

DirectShow 
Raw video   

source filter 
Video encoder filter Video decoder filter

Raw video    
writer filter 

Coding 
configuration

Network/ 
receiver 
status 

Sent video Received 
video Network simulator 

Network Receiver agent

Multimedia 
displayer 

Sender log Receiver log Received raw video



ETRI Journal, Volume 37, Number 6, December 2015 Mohammed Sinky et al.   1103 
http://dx.doi.org/10.4218/etrij.15.0114.1263 

 

Fig. 8. Experimental setup. 

Primary video 
stream 

3 m 

3 m 

2.5 m 2.5 m 

 

V. Simulation Study 

Our simulation study was performed on within the Open 
Evaluation Framework for Video Over Networks (OEFMON) 
designed at the Korea Advanced Institute of Science and 
Technology [18]. Figure 7 shows the OEFMON framework, 
which integrates DirectShow, a multimedia engine, with the 
QualNet network simulator [19]. In our work, the raw video 
source input shown in the figure is bypassed, and a pre-
encoded H.264 video is directly sent via the network to 
accurately portray contemporary in-home streaming demands. 
Furthermore, OEFMON has been updated to allow for multi-
slice video simulations, a main feature of the H.264 codec 
designed for lossy network environments. 

To simulate a practical local streaming experience, eight 
nodes are arranged as depicted in Fig. 8, representing a typical 
apartment scenario. Four simultaneous streams exist among the 
eight nodes, the primary stream being shown in red. All the 
results obtained are for the primary stream whose sender is 
DRAS.264-enabled. The remaining three streams are used to 
inject background traffic at a constant bit rate (CBR) using the 
default IEEE 802.11 MAC protocol. Streaming distances are 
less than or equal to 3 m, which is a suitable viewing range for 
home networks (see Fig. 8). Although this range may vary, for 
the given scenario it does not impact performance. In other 
words, as long as transmitting nodes are within the carrier 
sense range of each other (up to 100 m), interference will exist 
amongst video streams. 

Three short video clips (Sony Bravia, African Cats, and LG 
Racing) were used for the primary video stream in Fig. 8. The 
clips were encoded using the widely known open source 
encoder x264 [20] with the Main Profile, Level 4.1 at 1,080p 
and 30 fps. African Cats and LG Racing were encoded using 
eight slices and with average bitrates of 4 Mbps and 5 Mbps, 
respectively. Sony Bravia was encoded using four slices with 

an average bitrate of 7.2 Mbps. The test clips range in length 
from 315 frames to 450 frames. In addition, RTP over UDP 
was used for the streaming protocol. The network scenario was 
created in QualNet version 5.0.2 with an 802.11a network and 
a bandwidth of 54 Mbps. Two background scenarios were 
considered — high congestion and burst congestion. For high 
congestion, all three background streams are CBR traffic at  
10 Mbps and this was tested for both 8-slice videos (African 
Cats and LG Racing). The background streams start one 
second after the primary video stream is initiated and continue 
until the end of simulation. Burst congestion is tested with the 
Sony Bravia clip, and the background traffic is gradually 
increased starting at 2 s with 10 Mbps, then an additional     
5 Mbps background stream introduced at 3 s, followed by a 
third 5 Mbps stream introduced at 4 s. The burst ends at 5 s. 

Figure 9 shows the peak signal-to-noise ratio (PSNR) results 
for the received videos in reference to the original undistorted 
video for DRAS.264 (red lines) and the default 802.11 MAC 
protocol (blue lines). Since a PSNR value of 37 dB (green 
dashed line) is considered “excellent” quality [21], any values 
above 40 dB are saturated. The estimated bandwidth avg_BW 
computed by (8) is also shown on the graphs (black lines) with 
the selected bandwidth threshold, BW_th, indicated by a   
red dashed line. When avg_BW < BW_th, the retry limit 
modification process of DRAS.264 takes effect (see Fig. 6). 
Otherwise, the retry limit is set to the default static value. 

One important observation from the simulation results is that 
virtually no packet loss occurs for the default 802.11 MAC 
layer (except for one packet from African Cats). Thus, any 
PSNR degradation seen for the default 802.11 MAC in Fig. 9 
is due to delivery of packets beyond their playout deadlines. 
These are wasted transmissions that accumulate delay and lead 
to progressive degradation due to error propagation. For Sony 
Bravia, African Cats, and LG Racing, the percentages of 
packets that miss their playout deadlines are 2.2%, 23.7%, and 
51.0%, respectively. The low percentage for Sony Bravia is 
because it is experiencing burst congestion. Thus, Fig. 9(a) 
focuses on the part of the graph where the burst occurs, 
between frames 30 and 120. All other parts of the video exhibit 
perfect PSNR.  

Figures 9(b) and 9(c) present results for video streamed 
under high congestion conditions where background traffic is 
continuous. Nevertheless, DRAS.264 is able to lessen the 
impact of interference. In contrast, the default 802.11 MAC 
operation has difficulty recovering from the accumulated delay.  

With DRAS.264, the percentages of total packets that miss 
their playout deadlines drop to 1.6%, 18.7%, and 23.0% for 
Figs. 9(a), 9(b), and 9(c), respectively. When factoring in the 
true packet drops, the percentages are 2%, 20%, and 31.9%, 
respectively. This is due to two reasons — reducing retry limits 



1104   Mohammed Sinky et al. ETRI Journal, Volume 37, Number 6, December 2015 
http://dx.doi.org/10.4218/etrij.15.0114.1263 

 

Fig. 9. PSNR vs. frame number: (a) Sony Bravia (burst 
congestion), (b) African Cats (high congestion), and (c) 
LG Racing (high congestion). 

2 3 4 5 

50

40

30

20

10

0

Time (s) 

20 40 60 80 100 120 140

54 

25 

Frame number 

P
S

N
R

 

B
an

dw
id

th
 a

va
il

ab
il

it
y 

(M
bp

s)
 

(a) 

50

40

30

20

10

0

54 

10 

P
S

N
R

 

B
an

dw
id

th
 a

va
il

ab
il

it
y 

(M
bp

s)
 

2 4 6 8 10 12
Time (s) 

0 50 100 150 200 350 300 350
Frame number 

(b) 

DRAS.264 
MAC 

avg_BW 
BW_th 

DRAS.264 
MAC 

avg_BW 
BW_th 

50

40

30

20

10

0

54 

26 

P
S

N
R

 

B
an

dw
id

th
 a

va
il

ab
il

it
y 

(M
bp

s)
 

2 4 6 8 10 12 
Time (s) 

0 50 100 150 200 350 300 350 
Frame number 

(c) 

14 16

400

DRAS.264 
MAC 

avg_BW 
BW_th 

 
 
and dropping expired packets. However, DRAS.264 still has a 
lower effective packet loss rate than the default 802.11 MAC 
protocol. Furthermore, the average PSNR results improve by 
0.39 dB for Sony Bravia, 4.45 dB for African Cats, and    
3.48 dB for LG Racing. 

Figure 10 shows the resulting visual improvements when 
DRAS.264 is applied to video streaming. Frame number 115 
(a B-frame) of Sony Bravia is presented in Fig. 10(a). Note that 
the default MAC 802.11 protocol (the image on the right) 
suffers heavily from error propagation. The green colors in the 

 

Fig. 10. Visual comparison of DRAS.264 and default 802.11 
MAC operation. Images on left are result of 
DRAS.264 streaming and images on right are based on 
default 802.11 protocol: (a) frame 115 of Sony Bravia 
(B-frame), (b) frame 100 of African Cats (P-frame), 
and (c) frame 60 of LG Racing (I-frame). 

(a) 

(b) 

(c) 

 
 
frame indicate that the decoder is attempting to reference 
information that is completely lost. This can be traced back   
to the PSNR graph in Fig. 9(a). Specifically, the PSNR 
improvement for DRAS.264 over the default MAC 802.11 
protocol is observed during the GOP containing frames 90   
to 119. The severe error propagation seen for the default 
streaming method comes from an early P-frame in the GOP 
(frame 93) that missed its playout deadline. During this frame 
sequence, the heaviest burst of congestion takes place. Thus, 
avg_BW is below BW_th (25 Mbps) for the majority of the 
time between 4 s and 5 s, and DRAS.264 is enabled. During 
the operation of DRAS.264, retry limits for B-slices are reduced, 
allocating more time for slices of a higher priority. This allows 
frame 93 to be delivered, reducing the observed error propagation. 

Figure 10(b) presents frame 100 (a P-frame) from the 
African Cats clip, where the observed distortion is similar to 
that discussed for Fig. 10(a). For the default MAC operation, 
the error propagation seen in this frame originates from 
unsuccessful delivery of multiple reference frames early in the 
GOP sequence that spans frames 76 to 105. Although the IDR 
frame of the GOP (frame 76) is mostly received in tact, frames 
77–82 miss their deadlines leading to very poor quality 
throughout the remainder of the GOP sequence. This can be 
seen in the PSNR graph in Fig. 9(b) for the default MAC 
operation. Note that a sharp drop takes place just after frame 76 



ETRI Journal, Volume 37, Number 6, December 2015 Mohammed Sinky et al.   1105 
http://dx.doi.org/10.4218/etrij.15.0114.1263 

and the PSNR values remain below 20 dB until the next IDR 
frame (frame 106) is encountered.  

Nevertheless, DRAS.264 is still able to maintain high PSNR 
values during the same GOP sequence and virtually no 
distortion is noticeable in frame 100. The slight reduction seen 
on the PSNR graph for frame 100 is difficult to find on the 
actual image. However, the distortion is contained in the first 
slice and originates from dropped packets in frame 94. Thus, 
subsequent top slices reference incorrect macroblocks, leading 
to minor error propagation. 

Note that BW_th is set to a very low value of 10 Mbps in  
Fig. 9(b). This decision can be attributed to the lower bitrate  
(4 Mbps) used to encode the African Cats video, which 
generates less data. Longer inter-ACK arrival times can be 
mistaken for poor network conditions. Therefore, in this 
particular scenario, setting BW_th to lower values avoids 
activating the DRAS.264 scheme when it is unnecessary to do so. 

Finally, Fig. 10(c) shows frame 60 (an I-frame) from the LG 
Racing clip. For DRAS.264, the last packet of slice 4 is lost. 
Note that this has a slight effect on the reconstruction of slice 5 
because some inter-dependencies exist between slices. For the 
last slice, only the first packet is delivered on time leading to 
weighted pixel average (WPA) being applied to the remainder 
of the slice. The default MAC protocol suffers a more severe 
degradation on frame 60. Slices 5–8 and part of slice 4 are 
delivered beyond their deadlines, which are then considered 
lost by the decoder leading to WPA being used for over half the 
frame. 

Since frame 60 is an I-frame, it serves as the main reference 
frame for the subsequent frames in the GOP. Therefore, as seen 
in Fig. 9(c), PSNR for DRAS.264 remains above 25 dB while 
PSNR for the default MAC protocol is below 17 dB 
throughout the GOP. Also, many frames are lost for the default 
MAC case, most notably frames 61–75, frames 126–140, and 
frames 229–357. When frames are lost, the last frame in the 
display buffer is repeated, which can be visually described as a 
pause in playback. Once a frame is properly delivered, the 
video makes an abrupt transition to the current scene being 
streamed. During the stretch of high congestion that starts at 
frame 30 and ends at frame 350, DRAS.264 mostly avoids this 
phenomenon and is able to provide a smoother video playback 
due to less frame loss.  

VI. Conclusion and Future Work 

This paper presented DRAS.264, which is an adaptive  
MAC layer retransmission scheme tailored to H.264 videos. 
DRAS.264 also incorporates a bandwidth estimation method 
to control the retry adjustment process and cross-layer 
communication to provide the exact number of packets per 

slice aiding in more accurate RAs per packet. Our simulation 
study using OEFMON shows that DRAS.264 results in better 
overall video quality when compared to the static retry limit 
scheme of the default 802.11 MAC layer. 

DRAS.264 can be further improved in two areas. First, 
accessing packets in the network layer queue and purging those 
packets that are expected to exceed their deadlines can help to 
further reduce unnecessary delay. Second, dynamic selection of 
α for the bandwidth estimation process as well as finding an 
optimal bandwidth threshold have a strong potential to fine- 
tune DRAS.264 activation for improved performance. 

References 

[1] Intel, Intel WiDi® and Intel Pro® Wireless Display, Intel 

Coporation©, 2014. Accessed July 8, 2014. http://www.intel. com/ 

content/www/us/en/architecture-and-technology/intel-wireless- 

display.html 

[2] Apple, Airplay–play content from iOS on Apple TV, Apple Inc. ©, 

2014. Accessed July 8, 2014. https://www.apple.com/airplay/ 

[3] IEEE Std. 802.11™-2012, IEEE Standard for Inform. Technol. 

Part 11: Wireless LAN Medium Access Contr. (MAC) and 

Physical Layer (PHY) Specifications, IEEE, Piscataway, NJ, 

USA, 2012.  

[4] J. Greengrass, J. Evans, and A. Begen, “Not All Packets are Equal, 

Part 2: The Impact of Network Packet Loss on Video Quality,” 

IEEE Internet Comput., vol. 13, no. 2, Mar. 2009, pp. 74–82. 

[5] M. Sinky et al., “DRAS.264: A Dynamic Retry Adaptation 

Scheme to Improve Transmission of H.264 HD Video over 

802.11 Peer-to-Peer Networks,” ICUIMC, Siem Reap, Cambodia, 

no. 51, Jan. 911, 2014, pp. 18. 

[6] ITU-T Rec. H.264 | ISO/IEC 14496-10, AVC: Advanced Video 

Coding for Generic Audiovisual Services, Feb. 2014. 

[7] T. Stockhammer, M. Hannuksela, and T. Wiegand, “H.264/AVC 

in Wireless Environments,” IEEE Trans. Circuits Syst. Video 

Technol., vol. 13, no. 7, July 2003, pp. 657–673. 

[8] I. Richardson, “The H.264 Advanced Video Compression 

Standard,” West Sussex, UK: John Wiley and Sons, 2010, pp. 

237–248. 

[9] Q. Li and M. van der Schaar, “Providing Adaptive QoS to 

Layered Video over Wireless Local Area Networks through Real-

Time Retry Limit Adaptation,” IEEE Trans. Multimedia., vol. 6, 

no. 2, Apr. 2004, pp. 278–290. 

[10] M. van der Schaar, D. Turaga, and R. Wong, “Classification-

Based System for Cross-Layer Optimized Wireless Video 

Transmission,” IEEE Trans. Multimedia., vol. 8, no. 5, Oct. 2006, 

pp. 1082–1095. 

[11] M. van der Schaar and D. Turaga, “Cross-Layer Packetization 

and Retransmission Strategies for Delay-Sensitive Wireless 

Multimedia Transmission,” IEEE Trans. Multimedia., vol. 9, no. 



1106   Mohammed Sinky et al. ETRI Journal, Volume 37, Number 6, December 2015 
http://dx.doi.org/10.4218/etrij.15.0114.1263 

1, Jan. 2007, pp. 185–197. 

[12] C.-M. Chen, C.-W. Lin, and Y.-C. Chen, “Cross-Layer Packet 

Retry Limit Adaptation for Video Transport over Wireless 

LANs,” IEEE Trans. Circuits Syst. Video Technol., vol. 20, no. 11, 

Nov. 2010, pp. 1448–1461. 

[13] M. Lu, P. Steenkiste, and T. Chen, “A Time-Based Adaptive Retry 

Strategy for Video Streaming in 802.11 WLANs,” Wireless 

Commun. Mobile Comput., vol. 7, no. 2, Feb. 2007, pp. 187–203. 

[14] A. Ksentini, M. Naimi, and A. Gueroui, “Toward an 

Improvement of H.264 Video Transmission over IEEE 802.11e 

through a Cross-Layer Architecture,” IEEE Commun. Mag., vol. 

44, no. 1, Jan. 2006, pp. 107–114. 

[15] P. Bucciol et al., “Cross-Layer Perceptual ARQ for H.264 Video 

Streaming over 802.11 Wireless Networks,” IEEE GLOBECOM, 

Dallas, TX, USA, Nov. 29–Dec. 3, 2004, vol. 5, pp. 3027–3031. 

[16] A. Moid and A. Fapojuwo, “A Cross-Layer Framework for 

Efficient Streaming of H.264 Video over IEEE 802.11 

Networks,” J. Comput. Syst. Netw. Commun., vol. 2009, Apr. 

2009, pp. 1–13. 

[17] IETF 6184, “RTP Payload Format for H.264 Video,” May 2011. 

[18] C. Lee et al., “OEFMON: An Open Evaluation Framework for 

Multimedia over Networks,” IEEE Commun. Mag., vol. 49, no. 9, 

Sept. 2011, pp. 153–161. 

[19] Scalable Network Technologies, Inc., “QualNet 5.0.2 User’s 

Guide,” 2010. 

[20] VideoLAN Organization, x264, the Best H.264/AVC Encoder, 

2014. Accessed July 9, 2014. http://www.videolan.org/ 

developers/x264.html 

[21] J. Gross et al., “Cross-Layer Optimization of OFDM 

Transmission Systems for MPEG-4 Video Streaming,” Comput. 

Commun., vol. 27, no. 11, July 2004, pp. 1044–1155. 

 
Mohammed Sinky received his BS and MS 

degrees in computer engineering from Oregon 

State University (OSU), Corvallis, USA, in 

2001 and 2004, respectively. He worked as a 

lecturer at Umm Al-Qura University, Makkah, 

Saudi Arabia, between 2005 and 2007. He 

returned to OSU and earned his PhD degree in 

electrical and computer engineering, in 2015. His interests include 

embedded systems, video compression, wireless video streaming, and 

parallel processing.  

 

 

 

 

 

 

 

 

Ben Lee received his BE degree in electrical 

engineering in 1984 from the Department of 

Electrical Engineering, State University of New 

York, Stony Brook, USA and his PhD degree  

in computer engineering in 1991 from the 

Department of Electrical and Computer 

Engineering, Pennsylvania State University, 

University Park, USA. He is currently a professor at the School of 

Electrical Engineering and Computer Science, Oregon State University 

(OSU), Corvallis, USA.  He has published over 100 conference 

proceedings, book chapters, and journal articles in the areas of 

embedded systems; computer architecture; multithreading and thread-

level speculation; parallel and distributed systems; and wireless 

networks.  He received the Loyd Carter Award for Outstanding and 

Inspirational Teaching and the Alumni Professor Award for 

Outstanding Contribution to the College and the University from the 

OSU College of Engineering in 1994 and 2005, respectively.  He 

also received the HKN Innovative Teaching Award from Eta Kappa 

Nu, School of Electrical Engineering and Computer Science, in 2008. 

He has been on program and organizing committees for numerous 

international conferences, including 2003 International Conference on 

Parallel and Distributed Computing Systems, 2005-2011 

IEEE Workshop on Pervasive Wireless Networking, 2006, 2007, and 

2009, and IEEE International Conference on Pervasive Computing and 

Communications.  He was also a keynote speaker at the 2014 

International Conference on Ubiquitous Information Management and 

Communication.  He is currently the chair for the Social, P2P, and 

Multimedia Networking, Services and Applications track for the 2016 

IEEE Consumer Communications and Networking Conference. His 

research interests include wireless networks; embedded systems; 

computer architecture; multithreading and thread-level speculation; and 

parallel and distributed systems. 

 

Tae-Wook Lee is a chief research engineer at 

LG Display, Timing Controller Development 

Team, Paju, Rep. of Korea. He received his BS, 

MS, and PhD degrees in electrical engineering 

from the University of Ulsan, Rep. of Korea, in 

1998, 2000, and 2004, respectively. His PhD 

work was on inner product optimization and its 

application to image compression. In 2004, he joined LG Display Co., 

and since then has worked on the backlight driving, LED local 

dimming, and timing controllers for LCD TVs. 

 

 

 

 

 

 

 



ETRI Journal, Volume 37, Number 6, December 2015 Mohammed Sinky et al.   1107 
http://dx.doi.org/10.4218/etrij.15.0114.1263 

Chang-Gone Kim is a chief research engineer 

at LG Display, Timing Controller Development 

Team, Paju, Rep. of Korea. He received his BS 

and MS degrees in electrical engineering from 

Kyungpook National University, Daegu, Rep. 

of Korea. Currently, he is responsible for the 

design of timing controllers as a leader of the 

Timing Controller Development Team, LG Display R&D Center. 

 

Jong-Keun Shin received his BS and MBA 

degrees in electrical engineering from 

Kyungpook National University, Daegu, Rep. 

of Korea. He is a vice-president at LG Display, 

Paju, Rep. of Korea, where he worked on 

applied technology and circuit development. 

Currently, he is the CEO of eCONY Co., Ltd., 

Gumi, Rep. of Korea. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  


	I. Introduction
	II. Background
	III. Related Work
	IV. DRAS.264
	V. Simulation Study
	VI. Conclusion and Future Work
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [1200 1200]
  /PageSize [612.000 792.000]
>> setpagedevice


