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ABSTRACT A cognitive radio (CR) is a promising technology to solve the emerging spectrum crisis,
especially for applications where thousands of wireless sensor nodes are deployed. Since continuous
spectrum sensing will greatly reduce the lifetime of a network composed of energy-restricted CR nodes,
an accurate method for predicting spectrum occupancy is necessary to improve energy efficiency. This paper
proposes a hidden Markov model (HMM)-based cooperative spectrum sensing (CSS) that predicts the status
of a network environment. The traditional prediction algorithms for cooperative spectrum sensing assume
that all CR nodes have the same network environment. However, the channel availability of various CR
nodes can be quite different, and thus the traditional algorithms will lead to low prediction accuracy in a
complex radio environment. The proposed methods learn the historical spectrum sensing results and help
the network to make an energy-efficient spectrum sensing decision. More specifically, the hidden state of
HMM is set to different areas, where primary users (PUs) perform different activities. A Baum-Welch (BW)
algorithm is employed to estimate the parameters of the HMM based on the past spectrum sensing results,
and then the parameters are fed to a forward algorithm for the predicting of PUs’ activity. Based on the
prediction, secondary users (SUs) are classified into either "interfered by PU" or "not interfered by PU."
The nodes selected as "interfered by PU" will not perform spectrum sensing to reduce unnecessary energy
consumption. The performance of the proposed method is evaluated using the simulations under different
traffic conditions. The simulation results show that, compared with the conventional HMM-based methods,
the effectiveness of the proposed algorithm in energy efficiency and spectrum utilization improved by about
13% and 15%, respectively.

INDEX TERMS Cognitive radio, hidden Markov model, spectrum sensing, energy efficiency.

I. INTRODUCTION
Wireless communication requirement in IoT services is
rapidly growing, and the ISM spectrum based networks (e.g.,
Wireless Sensor Networks, Wireless Body Area Networks
and Vehicle-to-Vehicle Networks, etc.) cannot provide the
expected communication reliability and throughput due to

The associate editor coordinating the review of this manuscript and
approving it for publication was Tie Qiu.

the overcrowded spectrum [1], [2]. Therefore, cognitive
Radio (CR) has been proposed as a promising tech-
nology to solve the emerging spectrum crisis. In order
to efficiently utilize the underutilized licensed spectrum,1

Secondary Users (SUs) need to adapt Dynamic Spectrum

1(Studies show that spectrum occupancy seems to peak at about 14%,
except under emergency conditions, where occupancy can reach 100% for
brief periods of time [3])
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Allocation (DSA) to maximize the utilization of idle licensed
spectrum in an opportunistic manner [4]. When an SU wants
to utilize a licensed channel, it will observe and measure
the state of the spectral occupancy (i.e., idle/busy) by per-
forming spectrum sensing [5]–[7]. Due to multi-path fading
effect, the cooperative spectrum sensing (CSS) technology
is employed. The main idea of CSS is for SUs to share
their spectrum sensing information to determine the status
of a licensed channel more accurately than using individual
decisions.
However, frequent spectrum sensing will reduce the net-

work lifetime of wireless communication devices in IoT,
which are typically battery powered. Therefore, develop-
ing an energy-efficient spectrum sensing method is crucial.
To overcome this problem, Qu et al. proposed a method
to decrease the energy consumption by selecting only few
SUs with high detection accuracy and then distribute the
sensing results to the neighboring SUs [8]. This method can
be further enhanced by applying machine learning methods.
Bhowmick et al. have proposed a technique that utilizes
historic data, where SUs predict the future state of a channel
and then either sense the channels that are marked as idle or
harvest energy from the channels that are marked as busy [9].
Eltom et al. proposed a HiddenMarkovModel (HMM) based
spectrum prediction algorithm to accurately predict the spec-
trum state of the next time slot [10].
However, the aforementioned schemes assume all SUs

operate under the same network environment, i.e., all the SUs
cannot access the licensed channel if the Primary User (PU)
is active. In certain CR networks, when a PU is active, it will
prevent SUs located around the PU to access the licensed
channel, while other SUs who are far from the PU can utilize
the licensed channel [11].
To solve the problem, this paper proposes an HMM-based

Cooperative Spectrum Sensing (CSS) method, by classifying
SUs as either ‘Interfered by PU’ (IP) or ‘Not Interfered by
PU’ (NIP) set, all the SUs can bemanaged to either stop (even
though SUs belonging to the NIP set can access the channels)
or perform spectrum sensing (even though SUs belonging to
the IP set can actually stop spectrum sensing to save energy).
Thus, efficiency of these schemes decrease in terms of both
energy consumption and spectrum utilization. Meanwhile,
the mobility of the PU changes the IP and NIP sets quickly,
thus the proposed scheme considers this dynamic process.
The main contributions of the proposed HMM-based CSS
method can be summarized as follows:

• In order to track the activity of the PU in an
energy-restricted CR network, an Interference Zone (IZ)
is defined to denote the area in which a PU exists.
An energy-restricted CR network can be divided into
several IZs so that the PU’s activity within an IZ will
be tracked by labeling SUs that are interfered by the PU.

• In order to predict the PU’s existence, an HMM-
based prediction algorithm is applied. Spectrum sensing
results from SUs in the various IZs are combined at the
Fusion Center (FC) using a fusion rule for modeling a

specific HMM. Then, a forward algorithm is employed
to predict the existence of a PU in the next time slot.
Based on the prediction, the SUs that are interfered by
PUs will be prevented from spectrum sensing to save
energy.

• To reduce unnecessary energy consumption during spec-
trum sensing, a prediction-based spectrum sensing node
selection algorithm is proposed. The algorithm selects
SUs that have both high remaining energy and detection
probability from the NIP set according to prediction for
cooperative spectrum sensing. Based on the majority-
rule, the final decision for cooperative spectrum sensing
is made at the FC and then shared with other SUs.

The rest of the paper is organized as follows. The related
work is discussed in Section II. Section III describes the
system model. The proposed HMM-based Cooperative Spec-
trum Sensing scheme is presented in Section III. Section IV
provides simulation results of the proposed scheme and
Section V concludes the paper.

II. RELATED WORK
The main idea of cooperative spectrum sensing is to improve
the spectrum sensing performance by exploiting the spatial
diversity in the observations of SUs. SUs through the cooper-
ation can share their spectrum sensing information, and thus
determine the status of the licensed channel more accurately
than the individual decisions.
Monemian et al. proposed a cooperative method for detect-

ing spectrum sensing SUs, which groups SUs into several
sensing clusters based on local and global detection proba-
bilities [12]. The SUs that have lower detection probabilities
can be grouped with the SUs that have higher detection prob-
abilities as long as the global detection accuracy is satisfied.
The optimal solution is obtained by choosing the group that
leads to theminimum average energy consumption (including
energy consumed for spectrum sensing and transmission),
and performing spectrum sensing and sharing the information
with other SUs until all the live clusters can no longer meet
the detection accuracy. Ergul and Akan proposed a two-stage
sensing method [13]. The first stage involves a fast and coarse
sensing to find the channels that are more likely to be avail-
able, but the results are inaccurate. In the second stage, a more
accurate fine sensing scheme is used for the final decision.
Ren et al. proposed a method to improve the energy effi-

ciency by choosing theminimumnumber of SUs for spectrum
sensing [14]. The energy efficiency of collaborative spectrum
sensing can be further improved by adaptively isolating the
SUs from spectrum sensing. In order to guarantee energy
efficiency and sensing accuracy in Ad-hoc Cognitive Radio
Networks, Usman et al. proposed a three-stage method. In the
first stage, each SU starts as a cluster head and then grouped
with neighbor SUs into a cluster. A group of SUs that covers
an area with minimum overlap are clustered into a subset in
the second stage. In the last stage, only one subset of the
cluster is selected for spectrum sensing while the rest of the
subsets in the cluster are put into sleep mode.
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Nguyen and Shin proposed a prediction-and-sensing-based
spectrum sharing model for cognitive radio networks [15].
The time slot structure consists of two phases: the prediction
and spectrum sensing phase and the data transmission phase.
In the first phase, SUs and a secondary Base Station (BS)
independently perform predictions for the availability of local
licensed spectrum. A fusion center combines the prediction
results from both SUs and the secondary BS, and then makes
a decision about the licensed spectrum state. Finally, only
the BS performs spectrum sensing based on the prediction
results and shares the sensing results with SUs. Xing et al.
modeled the spectrum sensing process as a Non-Stationary
HMM (NSHMM), where the channel state transition prob-
ability is a function of the time interval [16]. The parame-
ters for the model include expected duration of the channel
states and the spectrum sensing accuracy. These parame-
ters are estimated via Bayesian inference, and then used to
evaluate the channel quality based on the prediction results.
Finally, SUs select the channel that is expected to remain
idle for a long time to sense and access spectrums. Yin et al.
proposed the channel availability vector to characterize the
state information of licensed channels [17]. The sensing
time can be decreased by figuring out the best channel to
sense.
In recent years, the application of artificial intelligence

has it made possible to combine machine learning and the
CR technology, and a large number of machine learning
algorithms have been applied to the study of energy efficient
spectrum sensing [18]–[21]. For example, basic HMM-based
prediction methods were proposed to predict the next state of
channels in [22], [23]. This is achieved by exploiting historic
spectrum sensing outputs and having SUs sense only the
channels that are predicted to be unoccupied rather than all
the channels. Another HMM-based predictor was proposed
in [24], but it only deals with deterministic traffic scenarios
and thus it is not applicable in a real environment. Unlike
most of the existing work where predictions on whether or
not the next slot is available for SU transmission, Saad et al.
presented a HMM-based spectrum prediction that accurately
predicts the spectrum occupancy for several time slots in the
future [25].
Based on analyzing the features of the existing machine

learning based spectrum sensing schemes discussed above,
it is clear that none of these considered the challenges of
spatiotemporal interference characteristics between SUs and
PUs in energy-restricted CR networks. In these schemes,
if most of the SUs are predicted to not interfere with a
PU, the FC will manage all the SUs to perform spectrum
sensing. In fact, some SUs that will interfere with a PU can
stop spectrum sensing during next time slot to save energy.
Thus, the energy efficiency of the above schemes is actually
reduced. Also, if most of the SUs are predicted to interfere
with a PU, all the SUs will be managed not to perform
spectrum sensing even though some SUs will not interfere
with the PU. Thus, the spectrum utilization is decreased.
Therefore, the proposed HMM-based CSS considers the two

situations and thereby optimizes both energy efficiency and
spectrum utilization.

III. SYSTEM MODEL
This section describes the Cooperative Spectrum Sensing
model and the background information on the conventional
HMM-based modeling method. Then, the details of the pro-
posed modeling method using HMM for TDMA-based net-
works is presented.

A. COOPERATIVE SPECTRUM SENSING MODEL
This paper considers a cooperative cognitive radio network
consisting of k SUs, m PUs, and one Fusion Center (FC).
The FC is an information sharing, data storage, and decision
making center with unrestricted energy. The network operates
in a TDMAmanner, where at the beginning of each time slot,
SUs detect the status of a channel (i.e., idle/busy) via energy
detection technology with a predefined threshold [26]. The
spectrum sensing can be formulated as a binary hypothesis
testing, where hypothesis H0 and H1 indicate that PU is
absent and present, respectively. The received signal at an SU,
y(n), in the channel being sensed can be expressed as [9]:

y (n) =
(
g (n) H0

↵s (n) + g (n) H1
(1)

where g(n) is the additive white Gaussian noise with mean
zero and variance � 2

w, ↵ is the channel gain, and s(n) is the
sample of PU’s signal. Based on this, the channel state is
determined as follows [23]:

H0 :
XN

n=0
|y(n)|2 < �

H1 :
XN

n=0
|y(n)|2 � � (2)

where � is the predefined threshold and N is the number
of samples. After determining the channel status, SUs send
the sensing results ‘0’/‘1’, which indicates the channel is
idle/busy, to the FC. Note that the channel status is assumed
to be stable within a time slot. Furthermore, EiT and Eir
are defined as the total energy consumed and the remaining
energy, respectively, by SUi during spectrum sensing at time
T . EiT is composed of EiS and E

i
t , which represent the energy

consumed by SUi to perform spectrum sensing and transmit
the result to the FC, respectively. Then, the FC analyzes the
sequence of sensing results from SUs to build an HMM for
predicting the channel status (idle/busy).
In order to better understand this process, the following two

subsections provide backgrounds on the conventional HMM
method and the proposed scheme.

B. HIDDEN MARKOV MODEL
The process of spectrum sensing shown in Fig. 1 can be
modeled as an HMM to differentiate between two types
of events – observed events (i.e., observations) and hidden
events (i.e., hidden states). The hidden states are considered
to have generated the observations. The observation ot is
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FIGURE 1. The process of spectrum sensing.

FIGURE 2. The hidden Markov process of cognitive radio network.

obtained from the true state qt of the channel by SU. A con-
ventional HMM for cognitive radio network has a hidden
space Q =

�
q0 = 0, q1 = 1

 
, where q0 and q1 indicate

that the true state of a channel is idle and busy, respectively,
and an observation space O =

�
o0 = 0, o1 = 1

 
, where o0

and o1 indicate that the sensing result of a channel is idle
and busy, respectively. However, since spectrum sensing is
imperfect, its accuracy (i.e., detection probability pd and false
alarm detection probability pf ) has a significant influence
on the observation output as shown in Fig. 2. The detection
probability, pd , indicates when a busy state is detected and
the channel is actually busy, while the false alarm probability,
pf , represents when the channel is detected to be busy but it is
actually idle. Thus, its emission (or output) probability matrix
B can be defined as

B =

b00 b01
b10 b11

�
, (3)

where bij indicates that the observation is i when the true
channel state is j. Moreover, B can be further calculated as

B =

1 � pf 1 � pd

pf pd

�
. (4)

Markov state transition chain A can be represented by the
following matrix:

A =

a00 a01
a10 a11

�
, (5)

where aij indicates the probability of transitioning from state i
to state j. The initial state distribution probability ⇡ is defined
as

⇡ =
⇥
⇡0 ⇡1

⇤
, (6)

FIGURE 3. Model of an example CRN.

where ⇡i represents the probability that the initial state of
channel is i (i =

⇥
0 1

⇤
).

C. NETWORK MODEL
The assumption of the proposed HMM-based CSS scheme
is that a PU’s activity will not affect all the SUs, which is
different from conventional HMM-based CSS schemes such
as those proposed in [14]–[17], [27]. The mobility of PUs is
unknown, and thus the location of the PU could be considered
as hidden states Q =

�
q1, q2, . . . qM

 
. These states can be

interpreted as IZs as shown in Fig. 3, where the entire network
area is subdivided into 8 different IZs, and thus the HMM
model has 8 different hidden states. More specifically, for
example, when PU1 moves to IZ4, it only interferes with SU1
and other SUs (i.e., SU2 or SU3) can access the PU’s channel
normally (PU is assumed occupy a single licensed channel)
In order to obtain the observations O =

�
o1, o2, . . . on

 
,

the proposed scheme schedules SUs to send binary results
‘0’/‘1’ to the FC using a common channel after spectrum
sensing. The FC then combines the binary results into a
sequence Xt . For example, the observation sequence Xt =⇥
1 0 1

⇤
indicates the sensing result of SU1, SU2, and SU3 is

‘1’, ‘0’, and ‘1’ at time t , respectively.
As shown in Fig. 4, the transition probabilities for the pro-

posed scheme
⇥
A = a1,1a1,2 . . . a1,M . . . aM ,M

⇤
are denoted

by aij, which represents the probability that the PU moves
from IZi to IZj and satisfies the condition

XM

j=1
aij = 1. (7)

Using [⇡ = ⇡1, ⇡2, . . . ,⇡M ] to denote the initial distri-
bution, where ⇡i denotes the probability of being in state i
(i.e., IZi), M is the number of hidden states, and

XM

i=1
⇡i = 1 (8)

The emission probability of observationOn in state i is a joint
probability. For example, if the PU appears in Fig. 2 in IZ1 at
time t and the sequence Xt =

⇥
1 0 0

⇤
if SU detects cor-

rectly, then the binary sequence ‘100’ can be encoded into a
decimal number ‘4’ to indicate that the network has observed
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FIGURE 4. The proposed hidden Markov process.

FIGURE 5. Flowchart of the proposed scheme.

the PU in IZ4. The probabilities of detection and false alarm
for SUi are denoted as pid . The emission probability is

b1(Xt = 4) = P1(ot = 1|qt = 1) ·
P2(ot = 0|qt = 0) · P3(ot = 0|qt = 0) (9)

P1 (ot = 1|qt = 1) equals the detection probability of SU1,
and

P2 (ot = 0|qt = 0) = 1 � p2f (10)

P3 (ot = 0|qt = 0) = 1 � p3f (11)

Finally, the joint probability can be calculated as

b1(Xt = 4) = p1d (1 � p2f )(1 � p3f ). (12)

IV. THE PROPOSED SCHEME
The flowchart for the proposed HMM-based Cooperative
Spectrum Sensing scheme is shown in Fig. 5. The SUs sense
the licensed channels at the beginning of each time slot. After
spectrum sensing, each SU determines whether a PU exists
according to a predefined threshold and sends its observation
to the FC node. Then, the FC encodes all the sensing results
into a combination sequence X(t) as mentioned in Section III
to build the HMM-based prediction model. The objective
of the prediction model is to anticipate the next state based
on the past history of observations. Based on the prediction,
the SUs can be classified into either the IP or NIP set. The SUs
belonging to the IP set will stop spectrum sensing during next

time slot. In order to decrease the energy consumption during
spectrum sensing, some SUs will be selected to perform
cooperative spectrum sensing and their sensing results will
be transmitted to the FC. The FC will use a majority-rule to
determine the channel status.

A. HMM-BASED PREDICTION
The prediction stage consists of two phases: training and
prediction. In the training phase, the parameters �(A,B, ⇡)
are adjusted based on the result of spectrum sensing using
the Baum-Welch algorithm, which can be considered as
an expectation-maximization (EM) algorithm. The steps
involved in training an HMM is shown in Algorithm 1 and
explained below:

Algorithm 1 Baum-Welch Algorithm
Input: Observation sequence O =

�
o1, o2, . . . , on

 
, initial-

ization of HMM parameters �0
repeat
Update �k with �k�1

until P(O|�k ) <= P(O|�k�1)
Output: HMM parameters �(A,B, ⇡)

Step 1: Initialize the Hidden Markov model’s parameters
�0 and compute the probabilities of observation occurrences
for the given parameters.
Step 2: �k is estimated based on the observation sequence

and the initial parameters of the kth iteration (�k�1).
Step 3: If P(O|�k ) > P(O|�k�1), then repeat Step 2.

Otherwise, terminate the procedure and �k�1 becomes the
optimal parameters of the model.
After these steps, the following parameters can be

obtained: the initial state probabilities [⇡ = ⇡1, ⇡2, . . . ,⇡M ],
the transition probabilities

⇥
A = a1,1a1,2 . . . a1,M . . . aM ,M

⇤
,

and the optimal emission probabilities [B = b1(X1) . . .
bM (Xn)]. These parameters are then used in the predic-
tion phase. Given a combination of observation sequence
[X = X1,X2, . . . ,Xn], a forward recursion algorithm is
employed to calculate the maximum likelihood to pre-
dict the future state. A forward variable ↵i(t) = p(X1,
X2, . . .XT , qT = qi|�) is defined as the probability of having
observed the sequence {X1,X2, . . . ,XT } while being in state
i at time T . The algorithm involves the following three steps:
Step 1: Initialization:

↵i(1) = a1,ibi(X1), 1  i  M (13)

Step 2: Recursion:
↵i(T + 1) = p(X1,X2, . . . ,XT+1, q(T + 1) = qi|�) (14)

= bi(XT+1)
XM

j=1
↵j(T )aji (15)

Step 3: State prediction:
It (t + 1) denotes the future state i at time t + 1, which can

be calculated by

It (t + 1) =
X

XT+1
[bi(XT+1)

XM

j=1
↵j(T )aji] (16)
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Finally, the most likely state at time t + 1 can be obtained
using the following equation:

It+1 = argmax
i2{1,2,...,M}

Ii(t + 1) (17)

B. COOPERATIVE SPECTRUM SENSING
After predicting the most likely state for t + 1, the FC will
inform the SUs that will interfere with a PU to stop sensing
channels at the beginning of the next time slot to save energy.
The SUs that are predicted to not be affected will be grouped
into the NIP set. For further enhancing the energy efficiency,
some SU nodes will be selected from the NIP set for spectrum
sensing. This is achieved as follows:
1) Each SU belonging to the NIP set will evaluate its

remaining energy by

Ei,tr = Ei,t�1
r � Eis � Eit , (18)

where Ei,tr is the remaining energy of SUi at time t .
Thus, SUs in the NIP set can be sorted by remaining
energy in decreasing order.

2) n (for 1  n  N , where N is the number of SUs
in the NIP set) SUs can be selected from the NIP set to
build a cooperative spectrum sensing set, and the global
detection probability of a such set can be calculated as:

pgd =
Y

i=1,2,...,N

pid , (19)

where pid is the detection probability of SUi.
3) The cooperative spectrum sensing set can be selected

by:

argmax
i=1,2,...,N

X
Ei,tr , s.t. (pgd � ⌘), (20)

where ⌘ is the predefined threshold.
4) Finally, SUs in the selected cooperative spectrum sens-

ing set will perform spectrum sensing and send the
sensing results to the FC. Based on the sensing results,
the FC uses the majority-rule to determine whether the
PU is active to improve accuracy:

State =
(
busy

X
i
I{Oi=1} �

X
i
I{Oi=0}

idle
X

i
I{Oi=1} <

X
i
I{Oi=0}

(21)

where I{O} is the indicator function, which is equal to
0 if O is true and 1 otherwise, and Oi is the sensing
result of SUi.

Based on this, different SUs can be grouped according to
different states for spectrum sensing. Compared with other
schemes that only select some SUs with high detection proba-
bility for spectrum sensing, the proposed scheme can alleviate
the life-cycle termination caused by continuous sensing of
some SUs.

FIGURE 6. Energy consumption of network (with transition
probability 0.5).

V. SIMULATION AND ANALYSIS
This section evaluates the performance of proposed HMM-
based Cooperative Spectrum Sensing scheme in terms of
energy consumption and spectrum utilization through simu-
lation study. The transition probability, RiT , is defined as the
frequency the state of channel for PUi changes from unoccu-
pied to occupied. RiT can be used as a metric for PU activity,
thus the simulations are performed in different licensed chan-
nels with RiT from 0.2 to 0.8. The simulation environment
consists of 10 SUs deployed within a 50m⇥ 50mmonitoring
area. In order to fully establish the state of the HMM, each SU
is assumed to have an overlapping communication area with
at least one other SU. Furthermore, both energy consumed
by an SU during the spectrum sensing phase and the traffic
throughput per transmission are normalized to one for visual
comparison.
Prediction methods based on majority-rule [15] and ‘‘ALL

NODES’’ are used for comparison. In the former method,
if more than 50% of SUs’ prediction results of the chan-
nel status is busy, all SUs will stop performing spectrum
sensing during next time slot. In the latter method, all SUs
perform spectrum sensing every time slot without any coop-
erative and prediction-based methods. The length of the
observation is set to 150, and the simulations run for over
12,000 rounds.
Fig. 6 compares energy consumption of the proposed

method against the other two methods when RiT is set to
0.5. As can be seen, energy consumptions of the proposed
scheme and the majority-rule method are lower than the
‘‘ALL NODE’’ method. This is because the ‘‘ALL NODE’’
method performs spectrum sensing every time slot resulting
in higher energy consumption. Meanwhile, the energy effi-
ciency of the proposed method is better than the majority rule
method where all the SUs either perform spectrum sensing or
not during each time slot. If the result of the majority rule is
to sense the spectrum, but there are still many SUs affected
by the PU, the energy consumption will increase. In contrast,
the proposed scheme can manage SUs belonging to the IP set
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FIGURE 7. Spectrum utilization of network (with transition
probability 0.5).

FIGURE 8. Energy consumption with different transition probability.

to not perform spectrum sensing during the next time slot,
thereby decreasing energy consumption.
Changes in the frequency of spectrum sensing will

inevitably affect spectrum utilization. Fig. 7 shows that the
proposed scheme outperforms the majority rule method in
terms of spectrum utilization. The reason is that all SUs are
prevented from performing spectrum sensing causing SUs
that did not detect a PU to lose transmission opportunities.

Fig. 8 shows how the energy consumption varies as a
function of the transition rate. The energy consumption of the
majority rule and proposed schemes decrease as the transi-
tion rate increases. The reason is as PUs’ activity increases
SUs’ transmission opportunities decrease. When RiT exceeds
approximately 0.5, the energy consumption of the majority
rule method becomes lower than that of the proposed scheme.
However, Fig. 9 shows that as the transition probability
increases, the spectrum utilization of the proposed scheme
averages around 0.75, while the spectrum utilization of the
majority rule method decreases. The reason is that the pro-
posed scheme can still schedule some SUs to perform spec-
trum sensing while most SUs are predicted to interfere with
PUs, thus some level spectrum utilization can be maintained.

FIGURE 9. Spectrum utilization with different transition probability.

FIGURE 10. Throughout-energy rate with different transition probability.

Meanwhile, the majority rule method will force all the
SUs to stop spectrum sensing, thus the spectrum utilization
decreases. Although this approach reduces energy consump-
tion, it also reduces spectrum utilization. This relationship
can be defined using the throughput-energy rate, which is
given as

Pn
i=0 Throughput

i
Pn

i=0 E
i
T

, (22)

where n is the number of SUs performing spectrum sensing
and transmission, and

Throughputi =
(
1 transmission of SUi is present
0 transmission of SUi is absent

(23)

In other words, high throughput and low energy consump-
tion will result in higher throughput-energy rate and thus
better network performance.
Fig. 10 shows that the proposed scheme has a higher

throughput-energy rate compared with the majority rule
method, which means the proposed scheme can achieve
higher throughput with the same energy consumption. There-
fore, the proposed scheme reduces energy consumption and
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improves spectrum utilization. In particular, when the transi-
tion probability of PUs increases, which indicates increased
activity of PUs, the better network performance can be main-
tained where the proposed scheme has average 15% improve-
ment in throughput-energy rate compared with the majority
rule method.

VI. CONCLUSION
This paper introduced a spectrum prediction algorithm based
onHMM for a cognitive radio network, where SUs have over-
lapping communication areas. By combining observations
from multiple SUs and setting the states to zones affected
by the PUs, the prediction problem of a network can be
addressed as an N -state HMM problem (for N>2) compared
with just 2 states in traditional schemes. Moreover, coop-
erative spectrum sensing is performed by scheduling SUs
with the same future state, thereby improving the detection
accuracy. A simulation study was performed to verify the
performance of the proposed method in different environ-
ments. However, our experiments are still not sufficient. As a
future work, due to the higher complexity of the Baum-Welch
algorithm, a more detailed analysis on the multi-SU envi-
ronment will be performed. At the same time, the prediction
performance of our network structuremodel will be improved
using different algorithms.

REFERENCES
[1] T. Qiu, R. Qiao, and D. Wu, ‘‘EABS: An event-aware backpres-

sure scheduling scheme for emergency Internet of Things,’’ IEEE
Trans. Mobile Comput., vol. 17, no. 1, pp. 72–84, Jan. 2018.
doi: 10.1109/TMC.2017.2702670.

[2] T. Qiu, X. Wang, C. Chen, M. Atiquzzaman, and L. Liu, ‘‘TMED:
A spider-Web-like transmission mechanism for emergency data in vehic-
ular ad hoc networks,’’ IEEE Trans. Veh. Technol., vol. 67, no. 9,
pp. 8682–8694, Sep. 2018.

[3] B. A. Fette, Cognitive Radio Technology, 2nd ed. 2009.
[4] J. Mitola and G. Q. Maguire, Jr., ‘‘Cognitive radio: Making software radios

more personal,’’ IEEE Pers. Commun., vol. 6, no. 4, pp. 13–18, Apr. 1999.
[5] E. Axell, G. Leus, E. G. Larsson, and H. V. Poor, ‘‘State-of-the-art and

recent advances spectrum sensing for cognitive radio,’’ IEEE Signal Pro-
cess. Mag., vol. 29, no. 3, pp. 101–116, May 2012.

[6] V. M. Patil and S. R. Patil, ‘‘A survey on spectrum sensing algorithms
for cognitive radio,’’ in Proc. Int. Conf. Adv. Hum. Mach. Interact. (HMI),
Mar. 2016, pp. 1–5.

[7] H. Sun, A. Nallanathan, C.-X. Wang, and Y. Chen, ‘‘Wideband spectrum
sensing for cognitive radio networks: A survey,’’ IEEE Wireless Commun.,
vol. 20, no. 2, pp. 74–81, Apr. 2013.

[8] Z. Qu, Y. Xu, and S. Yin, ‘‘A novel clustering-based spectrum sensing in
cognitive radio wireless sensor networks,’’ in Proc. 3rd Int. Conf. Cloud
Comput. Intell. Syst., Nov. 2014, pp. 695–699.

[9] A. Bhowmick, K. Yadav, S. D. Roy, and S. Kundu, ‘‘Throughput of an
energy harvesting cognitive radio network based on prediction of primary
user,’’ IEEE Trans. Veh. Technol., vol. 66, no. 9, pp. 8119–8128, Sep. 2017.

[10] H. Eltom, S. Kandeepan, Y. C. Liang, B. Moran, and R. J. Evans,
‘‘HMM based cooperative spectrum occupancy prediction using hard
fusion,’’ in Proc. IEEE Int. Conf. Commun. Workshops (ICC), May 2016,
pp. 669–675.

[11] A. H. Chowdhury, Y. Song, and C. Pang, ‘‘Accessing the hidden
available spectrum in cognitive radio networks under GSM-based pri-
mary networks,’’ in Proc. IEEE Int. Conf. Commun. (ICC), May 2017,
pp. 1–6.

[12] M. Monemian, M. Mahdavi, and M. J. Omidi, ‘‘Optimum sensor selection
based on energy constraints in cooperative spectrum sensing for cognitive
radio sensor networks,’’ IEEE Sensors J., vol. 16, no. 6, pp. 1829–1841,
Mar. 2016.

[13] O. Ergul and O. B. Akan, ‘‘Cooperative coarse spectrum sensing for
cognitive radio sensor networks,’’ in Proc. IEEE Wireless Commun. Netw.
Conf. (WCNC), Apr. 2014, pp. 2055–2060.

[14] J. Ren, Y. Zhang, Q. Ye, K. Yang, K. Zhang, and X. S. Shen, ‘‘Exploiting
secure and energy-efficient collaborative spectrum sensing for cognitive
radio sensor networks,’’ IEEE Trans. Wireless Commun., vol. 15, no. 10,
pp. 6813–6827, Oct. 2016.

[15] V.-D. Nguyen and O.-S. Shin, ‘‘Cooperative prediction-and-sensing-based
spectrum sharing in cognitive radio networks,’’ IEEE Trans. Cogn. Com-
mun. Netw., vol. 4, no. 1, pp. 108–120, Mar. 2018.

[16] X. Xing, T. Jing, Y. Huo, H. Li, and X. Cheng, ‘‘Channel quality prediction
based on Bayesian inference in cognitive radio networks,’’ in Proc. IEEE
INFOCOM, Apr. 2013, pp. 1465–1473.

[17] S. Yin, D. Chen, Q. Zhang, and S. Li, ‘‘Prediction-based throughput
optimization for dynamic spectrum access,’’ IEEE Trans. Veh. Technol.,
vol. 60, no. 3, pp. 1284–1289, Mar. 2011.

[18] H. Rong, T. Ma, M. Tang, and J. Cao, ‘‘A novel subgraphK+-isomorphism
method in social network based on graph similarity detection,’’ Soft Com-
put., vol. 22, no. 8, pp. 2583–2601, 2018.

[19] T. Ma et al., ‘‘LED: A fast overlapping communities detection algorithm
based on structural clustering,’’ Neurocomputing, vol. 207, pp. 488–500,
Sep. 2016.

[20] Y. Lv et al., ‘‘An efficient and scalable density-based clustering algorithm
for datasets with complex structures,’’Neurocomputing, vol. 171, pp. 9–22,
Jan. 2016.

[21] T. Ma et al., ‘‘KDVEM:A k-degree anonymity with vertex and edge
modification algorithm,’’Computing, vol. 97, no. 12, pp. 1165–1184, 2015.

[22] G. S. Negi and V. K. Kakar, ‘‘Prediction model based hybrid routing
protocol for cognitive radio ad-hoc network,’’ in Proc. Int. Conf. Emerg.
Trends Comput. Commun. Technol. (ICETCCT), Nov. 2017, pp. 1–5.

[23] E. Chatziantoniou, B. Allen, and V. Velisavljevi¢, ‘‘An HMM-based
spectrum occupancy predictor for energy efficient cognitive radio,’’ in
Proc. IEEE 24th Annu. Int. Symp. Pers. Indoor Mobile Radio Commun.
(PIMRC), Sep. 2013, pp. 601–605.

[24] C. Park, S. Kim, S. M. Lim, and M. S. Song, ‘‘HMM based channel
status predictor for cognitive radio,’’ in Proc. Asia–Pacific Microw. Conf.,
Dec. 2007, pp. 1–4.

[25] A. Saad, B. Staehle, and R. Knorr, ‘‘Spectrum prediction using hidden
Markov models for industrial cognitive radio,’’ in Proc. IEEE 12th Int.
Conf. Wireless Mobile Comput., Netw. Commun. (WiMob), Oct. 2016,
pp. 1–7.

[26] H. Urkowitz, ‘‘Energy detection of unknown deterministic signals,’’ Proc.
IEEE, vol. 55, no. 4, pp. 523–531, Apr. 1967.

[27] M. Usman, D. Har, and I. Koo, ‘‘Energy-efficient infrastructure sensor
network for ad hoc cognitive radio network,’’ IEEE Sensors J., vol. 16,
no. 8, pp. 2775–2787, Apr. 2016.

ZILONG JIN received the B.E. degree in computer
engineering from the Harbin University of Science
and Technology, China, in 2009, and the M.S.
and Ph.D. degrees in computer engineering from
Kyung Hee University, South Korea, in 2011 and
2016, respectively. He is currently an Assistant
Professor with the School of Computer and Soft-
ware, Nanjing University of Information Science
and Technology, China. His research interests
include wireless sensor networks, mobile wireless

networks, and cognitive radio networks.

KAN YAO received the B.E. degree in network
engineering from the Binjiang College, Nanjing
University of Information Science and Technol-
ogy, Nanjing, China, in 2015. He is currently pur-
suing theM.S. degreewith the School of Computer
and Software, Nanjing University of Informa-
tion Science and Technology, China. His research
interests include wireless sensor networks, mobile
wireless networks, and cognitive radio networks.

VOLUME 7, 2019 64953

http://dx.doi.org/10.1109/TMC.2017.2702670


Z. Jin et al.: Channel Status Learning for CSS in Energy-Restricted CR Networks

BEN LEE received the B.E. degree in electri-
cal engineering from the Department of Electrical
Engineering, State University of New York, Stony
Brook, in 1984, and the Ph.D. degree in computer
engineering from the Department of Electrical and
Computer Engineering, Pennsylvania State Uni-
versity, in 1991. He is currently a Professor and
the Associate Head of the School of Electrical
Engineering and Computer Science, Oregon State
University. His research interests include multime-

dia streaming, wireless networks, embedded systems, computer architecture,
multithreading and thread-level speculation, and parallel and distributed
systems. He is an Adjunct Faculty Member of the Korea Advanced Institute
of Science and Technology. He was a recipient of the Loyd Carter Award
for Outstanding and Inspirational Teaching, in 1994, the Alumni Professor
Award for Outstanding Contribution to the College and the University from
the OSU College of Engineering, in 2005, and the HKN Innovation Teaching
Award from Eta Kappa Nu, School of Electrical Engineering and Computer
Science, in 2008. He is currently the General Chair of the 17th Annual
IEEE Consumer Communications and Networking Conference. He has
been on the program committees and organizing committee for numerous
international conferences, including the IEEE International Conference on
Pervasive Computing and Communications (PerCom) and the IEEE Con-
sumer Communications and Networking Conference (CCNC).

JINSUNG CHO received the B.S., M.S., and
Ph.D. degrees in computer engineering from
Seoul National University, South Korea, in 1992,
1994, and 2000, respectively. He was a Visiting
Researcher with the IBM T. J. Watson Research
Center, in 1998, and a Researcher with Samsung
Electronics, from 1999 to 2003. He is currently a
Professor with the Department of Computer Engi-
neering, Kyung Hee University, South Korea. His
research interests include mobile system security,

embedded security, the IoT security, and sensor and body networks.

LEJUN ZHANG received the M.S. degree in com-
puter science and technology from the Harbin
Institute of Technology and the Ph.D. degree in
computer science and technology from Harbin
EngineeringUniversity. He is currently a Professor
with Yangzhou University, China. His research
interests include computer networks, social net-
work analysis, and information security.

64954 VOLUME 7, 2019


