
Received June 2, 2020, accepted June 13, 2020, date of publication June 18, 2020, date of current version June 30, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3003378

VTIM: Video Title Identification Using
Open Metadata
JUHYUNG SONG1, SUYEONG LEE 2, BAEKJUN KIM2, SOONUK SEOL 3,
BEN LEE4, AND MYUNGCHUL KIM 1,2, (Member, IEEE)
1Graduate School of Information Security, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
2School of Computing, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
3School of Electrical, Electronics and Communication Engineering, Korea University of Technology and Education (KOREATECH), Cheonan 31253, South
Korea
4School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA

Corresponding author: Myungchul Kim (mck@kaist.ac.kr)

ABSTRACT Video-streaming applications are very popular these days. Existing studies of video streaming
have attempted to identify video titles of users usingmachine learning techniques to identify specific patterns
of video packets transmitted over the network. However, these studies have limitations when applied to actual
environments where the network is congested or there are multiple users in the same network. This paper
proposes Video Title Identification using open Metadata (VTIM), which identifies video titles by analyzing
storyboards and Media Presentation Description (MPD) of MPEG-DASH in connection with video packets
transmitted over the network. Attack was carried out using VTIM on 13,291 videos selected from actual
video-streaming environment of YouTube. Our experiments show that VTIM is able to identify video titles
with 100% accuracy at nearly thirty times faster than existingmethods based onmachine learning techniques.
The paper also proposes and evaluates a countermeasure against VTIM.

INDEX TERMS Information security, network security, video surveillance.

I. INTRODUCTION
According to a forecast by Cisco, video traffic has grown on
average of 33% annually and is expected to account for 82%
of the Internet traffic worldwide by 2022 [1]. As of October
2018, more than 47% of worldwide video traffic stems from
video-streaming applications [2], such as YouTube [3] and
Netflix [4]. Currently, YouTube and Netflix use Moving Pic-
ture Experts Group-Dynamic Adaptive Streaming over HTTP
(MPEG-DASH) [5], which provides smooth user viewing
experience and efficient video delivery over the network
using HTML5 based web applications.

Video-streaming applications are categorized into progres-
sive download and adaptive streaming methods depending on
how videos are delivered to users [6]. The former method
involves downloading an entire video file from a video server
to a client in a single request, while the latter method divides
a video into ‘‘chunks’’ and periodically downloads the nec-
essary video chunks for a predetermined period. Since the
former method receives an entire video from the server at the
initial playback time, even portions of the video that users

The associate editor coordinating the review of this manuscript and

approving it for publication was Vicente Alarcon-Aquino .

will end up not watching, the server will become more loaded
compared to the latter method where only the video chunks
required for the current video playback point are received.
Therefore, the adaptive streaming approach is more widely
used. These approaches include Apple’s HTTP Live Stream-
ing (HLS), Microsoft’s Smooth Streaming, Adobe’s HTTP
Dynamic Streaming, and MPEG-DASH. Transmitting video
data between a server and a client creates a unique traffic
pattern that distinguishes each video according to the size and
the number of video packets. If this unique traffic pattern can
be identified, the video title that a user is watching can then be
known. Currently, video-streaming applications apply Secure
Socket Layer (SSL)/Transport Layer Security (TLS) encryp-
tion technology over the HTTPS protocol when servers and
clients send and receive data [7], [8]. Despite the application
of secure encryption technology, identification of video titles
is still possible because encrypted packets also create unique
traffic patterns. The identification of video titles is important
for some reasons: (1) invasion of privacy in video streaming
application [14], (2) harmful video censorship techniques
[15], (3) employee-monitoring solutions, and (4) Quality of
Experience (QoE) assessments in video streaming applica-
tion for network operators [16]. Identifying video titles that

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 113567

https://orcid.org/0000-0001-9569-2860
https://orcid.org/0000-0002-0312-2332
https://orcid.org/0000-0001-8077-0053
https://orcid.org/0000-0002-9843-9219


J. Song et al.: VTIM

TABLE 1. Comparison of machine learning based video title identification methods.

users are watching can leak personal information such as a
person’s political and sexual orientation and entertainment
preference. In addition, video title identification is important
to detect and isolate harmful videos such as child pornogra-
phy from the Internet. Similarly, in workplaces, employee-
monitoring solutions are used to reduce employees’ non-work
related activities so as to improve employee work productiv-
ity. Another application is for network operators to predict
QoE and to provision resources proactively.

A number of studies [9]–[13] have been conducted to
identify video titles watched by clients and they use mainly
machine learningmethods to distinguish video traffic features
that change over time. In another study, a technique called
dynamic time warping was used to measure the similarity
between video fingerprints or signatures calculated using
video packet length [17]. However, these studies are inade-
quate in real-world applications because they assume that the
network condition is stable such that the same traffic pattern is
always reproduced for the streaming of one video. However,
traffic patterns of videos will not be unique when the network
is congested because the size and the number of video packets
depend on the state of the network. Moreover, these studies
assume that an attacker and a user are on the same network
path. This assumption makes it difficult to identify the unique
traffic pattern of a video when multiple users watching it at
the same time due to nested video packets.

Based on the aforementioned discussion, video title iden-
tification commonly exploits video traffic patterns using
machine learning methods. In contrast, this paper proposes
Video Title Identification using open Metadata (VTIM),
which exploits open metadata from the storyboard that
summarizes video playback scenes located within the video
webpage’s source codes [18] and the Media Presentation
Description (MPD) of MPEG-DASH that provides the nec-
essary information for video playback of the client. Once a
video is uploaded to a video server, metadata, such as MPDs
and storyboards, are generated and do not change until the
video is modified or deleted. Therefore, videos are identified
by first collecting and parsing storyboards and MPDs from
a real environment and then associating them with packets
obtained during video downloading. Finally, we introduce a
novel video title identification attack by exploiting Common
Vulnerabilities and Exposures (CVE). Themain contributions
of this paper are as follows:

• VTIMcan identify video titles using openmetadata from
storyboards andMPDs with respect to video traffic. This
is in contrast to usingmachine learning techniques based
on network video traffic features.

• VTIM can identify titles of videos in a real-world setting
such as YouTube, which encrypts video traffic to protect
users’ privacy information and obfuscates video web-
page’s source codes to prevent illegal copying of videos.

• VTIM was implemented and demonstrated in a real-
world environment with a representative video set from
YouTube. Our study shows that video titles can be identi-
fied significantly faster than previous methods and with
100% accuracy.

• A countermeasure is also proposed and implemented
against VTIM.

This paper is organized as follows. Section II introduces
the related work. Section III describes the vulnerabilities on
the storyboard and MPEG-DASH. Section IV presents our
attack model and attack procedures. Section V describes the
modules used in VTIM. Section VI explains our experimental
environment and the results of the attack. Section VII pro-
poses a countermeasure against the attack and Section VIII
presents experimental results on the countermeasure. Finally,
Section IX concludes the paper and discusses possible future
work.

II. RELATED WORK
Existing methods for identifying video titles using video
traffic features are based on machine learning techniques that
learn the unique traffic patterns of MPEG-DASH video pack-
ets over HTTPS [9]–[13]. As shown in Table 1, we compared
existing methods according to three criteria: the number of
videos, classifiers in machine learning, and the accuracy of
the experiments.

Dubin et al. [9] created a new video traffic feature called
bit-per-peak to represent the peak value of the video packet
size according to the video playback time on YouTube and
learned it using machine learning algorithms such as the
Support Vector Machine (SVM) [19] and nearest-neighbor
[20] algorithms. Their study showed that if the network
becomes congested and the packet loss rate increases by up
to 6%, the accuracy of video pattern identification decreases
significantly to less than 80%. To prevent a drop in accuracy,
the number of streams that captured each video packet had
to be increased. In order to increase the accuracy to 95% or
more, the packet loss rate needed to be less than 3% and at
least five streams were required for each video. Also, it took
a month to collect 10,000 streams during the experiment.

Schuster et al. [10] calculated the byte size and the average
length of all packets, including downstream and upstream
packets for both downstream and upstream between the video
server and the client. When the packet size and length were

113568 VOLUME 8, 2020



J. Song et al.: VTIM

learned through convolutional neural networks [21], the train-
ing time to identify 20 video titles took 94 seconds.

Miller et al. [11] measured the number of response packets
from a web server to a client and the number of request pack-
ets from the client to the web server. The former measurement
is defined as a positive integer and the latter is a negative one.
They paired positive values with negative values to identify
unique patterns of video through logistic regression [22] and
hiddenMarkovmodels [23]. However, an average of 4.3 links
were required per URL for each video’s webpage to learn
patterns leading to large computational overhead.

Xie et al. [12] attempted to analyze video scenes and
unique traffic patterns when quick-scene action movies were
played. Based on the two video themes of romance and action
movies, video packets were grouped according to size and a
traffic feature called the byte code distribution was created.
However, their study did not include identification tests of
videos in a real environment. Their method is also difficult
to apply in a real-world environment because video pack-
ets must be captured every three seconds through machine
learning algorithms such as SVM, Back-Propagation Neural
Networks (BPNN) [24] or C4.5 Decision Tree [25].

Pan and Cheng [13] undertook related work by analyzing
YouTube video traffic for QoE assessments. They collected
server and client IP addresses and trained by unique traffic
patterns with C4.5 Decision Tree [25], Random Forest [26],
Bayes networks [27] and AdaBoost [28] to classify video
packets. The experiment result shows 97.57% accuracy in
classifying video packets. In order to verify the experiment
result from machine learning techniques, a debugger analyz-
ing unique traffic patterns was developed with aMan-In-The-
Middle Attack (MITM) [29] tool such as Fiddler [30].

In summary, the work of [9]–[13] provides the method
to predict the unique traffic patterns of video packets using
machine learning techniques, and to identify the video titles
without decryption of video packets. In contrast to the afore-
mentioned related work that relied on machine learning
techniques and traffic features to identify video titles, the
proposed VTIM uses open metadata contained in storyboards
and MPDs. Therefore, it offers the following advantages:

• VTIM can identify the title of a video not only when
video resolution degrades but also in the event that sev-
eral videos of the same resolution are played at the same
time. This contradicts existing studies that did not take
into account simultaneous video playback by multiple
users and network congestion.

• VTIM can significantly reduce the time needed to
collect video streams and identify the related video
titles.

III. STORYBOARD AND MPEG-DASH
This section explains the video webpage’s source codes and
storyboard, discusses the vulnerabilities of storyboard and
MPEG-DASH, and the limitations of existing methods that
rely on traffic patterns in MPEG-DASH.

A. VIDEO WEBPAGE’S SOURCE CODES
In YouTube, a video webpage hides the source codes of the
website using obfuscation to protect its intellectual prop-
erty rights (e.g., JavaScript codes handling events such
as video playback and shutdown and displaying advertise-
ments). However, the URLs of storyboard and MPD in the
video webpage’s source codes are not obfuscated. This is
the starting point of our work. Even when video traffic is
encrypted by HTTPS, it is possible to identify video titles by
collecting metadata such as the MPD and storyboard, which
are not obfuscated in the video webpage’s source code.

B. STORYBOARD
When a video is uploaded to YouTube, it is fragmented into
several video chunks, called segments, where each segment
represents a single image frame during video playback. A
storyboard represents a sequence of images where each image
tiles several image frames so that an entire video can be
viewed at a glance. The storyboard supports two types of
resolutions, 800 × 350 and 800 × 315 pixels (p) depending
on the image size, and can be viewed in the application’s
playback bar. The storyboard displays the playback screen
that the user wants to watch without moving the actual
playback position in the user’s video. This reduces the time
needed for a user to move to a desired playback point. Then,
YouTube videos have multiple storyboards because YouTube
summarizes the videos according to the video playback time,
with longer videos having more storyboards. For instance,
a video with a playback time of 1 minute 50 seconds has
approximately seven storyboards, and typically two resolu-
tions of storyboards.

C. VULNERABILITY ON THE STORYBOARD
The storyboards of a video are delivered from the server to
the client when the video is being played or when the user
is moving the playback point on the playback bar. The sto-
ryboards discussed in the present work are limited to the
former type. The file sizes of storyboards do not change
even when the video’s resolution changes. Therefore, they
can be used as a feature to identify the video title. To obtain
the file sizes of the storyboards, the video webpage’s source
codes are parsed. Thus, the file sizes of storyboards can be
obtained and used to identify the title of a video without
having to de-obfuscating the video webpage’s source codes.
Note that with the exception of parsing the file sizes of the
storyboards, obfuscation of the videowebpage’s source codes
can also be undone by an attacker [31]. However, this requires
a considerable amount of time to analyze the source codes,
which is not suitable as an actual attack.

D. MPEG-DASH
As shown in Figure 1, MPEG-DASH consists of a DASH
server and a DASH client. The video playback process con-
sists of the following ten steps: (1) The user uploads the video
to the DASH server through a video-streaming application.

VOLUME 8, 2020 113569



J. Song et al.: VTIM

FIGURE 1. MPEG-DASH video playback process.

(2) The DASH server encodes the uploaded video into an
MPDwith the audio segment and video segment in the related
repository. (3)When a user requests a video, the DASH server
obtains the corresponding MPD from its repository. (4) The
DASH server delivers the MPD to the DASH client.

(5) MPD Parser in the DASH client parses and inter-
prets the MPD and informs Segment Scheduler of the video
segment playback information. The DASH client also has
Bandwidth Estimator that measures bandwidth and R-buffer
[32], which is a playback buffer. The measured bandwidth is
then passed to Video Quality Adapter, which gives Segment
Scheduler a resolution that can be played back. R-buffer
Monitor tracks the remaining buffer capacity and provides
this information to Segment Scheduler. (6) Segment Sched-
uler requests to the DASH server video segments based on
the analyzed information, resolution, and remaining buffer
capacity.

(7) The DASH server prepares the requested video and
audio segments in its repository. (8) The DASH server
retrieves the video and audio segments from the repository.
(9) The DASH server delivers video and audio segments to
the DASH client. Finally, Video Player in the DASH client
plays the received segments.

E. LIMITATIONS OF THE RELATED WORK ON USING
TRAFFIC PATTERNS OF MPEG-DASH
The DASH server delivers video segments to the client with
respect to the video playback time. In the process of deliv-
ering video segments, a unique traffic pattern is generated
for each video according to the request time of the video
and audio segments and the duration of the responding traf-
fic. This traffic pattern is referred to as the ON-OFF peri-
ods, where ON refers to when video segments are received

FIGURE 2. ON-OFF pattern of the received video segments.

and OFF refers to when no video segments are received
[33]. Figure 2 shows a typical ON-OFF pattern when the
client receives video segments from the DASH server. Earlier
studies [9]–[12] identify video titles using machine learning
techniques such as SVM, BPNN and C4.5 Decision Tree
to such traffic patterns with a network protocol analyzer
such as Wireshark [34]. However, these approaches have the
following limitations:

• When network congestion occurs at the DASH client,
the resolution of the video watched by the user will
dynamically change [35]. When the video resolu-
tion changes, the ON-OFF pattern is distorted by a
large spike due to retransmission packets as shown in
Figure 3. If a spike occurs in the ON-OFF pattern even
once, it cannot be used to identify the video title.

• When multiple users on the same campus network
simultaneously play the same video, ON-OFF patterns
overlap in terms of the packet arrival time and thus they
cannot be used to identify the video title. Figure 4 and

113570 VOLUME 8, 2020



J. Song et al.: VTIM

FIGURE 3. ON-OFF pattern distortion caused by retransmission of a
packet.

FIGURE 4. ON-OFF pattern distortion during simultaneous playback of
two 360p videos.

Figure 5 shows two different cases of the same resolution
video being played simultaneously: one at 360p and the
other at 1080p. The only difference between Figure 4
and Figure 5 is the resolution. As can be seen, no clear
ON-OFF pattern is created when the videos are played
simultaneously, regardless of their resolution.

Therefore, identifying video titles in real-world situations
is challenging using only video traffic features.

F. VULNERABILITY OF MPEG-DASH
The MPD in MPEG-DASH has open metadata information
so that video resolution can be dynamically switched for
smooth playback. As shown in Figure 6, each video has an
MPD written in the XML format. The topmost level of MPD
has one or more Periods, each containing the total duration
of a section of a video. At the next level, each Adaptation
Set tag has a MIME-type information a DASH client uses
to determine what type of segment has been downloaded. In
addition, these tags provide information about the language
support for the video and have only one audio Adaptation Set
tag and one video Adaptation Set tag in general supporting
only a single language.

FIGURE 5. ON-OFF pattern distortion during simultaneous playback of
two 1080p videos.

The Representation tags, which are subtags of the Adap-
tation Set, contain the video’s height and ID and are used to
distinguish supported resolutions. The number of resolutions
supported is as many as the number of Representation tags,
and each one has open metadata information for a single
resolution. Depending on the network condition, the video
player dynamically switches to the Representation tag of the
selected resolution. Moreover, the resolution can be manually
changed by the user.

Each Representation tag contains subtags. For example, A
SegmentList tag inside the Representation 7 and 8 tags consist
of Initialization Segment and SegmentURL media. The Ini-
tialization Segment has segment’s playback information. The
SegmentURL media is used to convert the segment into the
playback range so that it can be played out by the video player.
The SegmentURLmedia is composed of duration represented
in time units and segment range represented in byte units.
The following examples show how segment duration can be
defined:

<SegmentURL media =‘‘sq/1/dur/3.05’’
= Playtime 0∼3.05 seconds

<SegmentURL media =‘‘sq/2/dur/3.05’’>
= Playtime 3.06∼6.1 seconds

This example indicates that after the first segment is played
for 3.05 seconds, the second segment is also played for 3.05
seconds from the next playback point. On the other hand, the
segment range can be defined as follows:

<SegmentURL media =‘‘range/1214-26315’’/>
= 26315 – 1214 + 1
= 25,102 bytes

<SegmentURL media =‘‘range/26316-44327’’/>
= 44327 – 26316 + 1
= 18,012 bytes

The above example indicates that the first segment is 25,102
bytes and the second segment plays is 18,012 bytes. More-
over, the second segment is played after the first segment is
played.

VOLUME 8, 2020 113571



J. Song et al.: VTIM

FIGURE 6. Structure of the MPD.

Currently, YouTube users can download a video up to
approximately six hours with unlimited access to user rights
during a single request. The segment duration and range infor-
mation provided by SegmentURL media is open metadata.
Therefore, an attacker can analyze the MPD to retrieve the
segment sizes and then identify the video title.

IV. OVERVIEW OF THE ATTACK
A. ATTACK MODEL
The attack model consists of an attacker and multiple victims
on the same campus network. Victims use Internet-connected
devices such as PCs and mobile phones to watch videos
using YouTube. YouTube is the most popular video streaming
application in the world [36]. In addition, compared to video
streaming applications (e.g., Netflix and Vimeo), it is easy
to collect multiple videos for experiments and automatically
encode and upload videos onto YouTube. Accordingly, there
is no video that cannot be played back. This helps to reduce
the time needed to collect the videos when experimenting
with them. Furthermore, the attack model assumes that the
attacker is authorized to set up a necessary proxy to engage in
further attacks. The resolution of a video can be degraded or
upgraded in real time depending on the state of the network.
The attacker creates a proxy to eavesdrop on the victims’
video traffic using a MITM tool. In other words, the attacker
sniffs a communication channel by relaying the video traffic
between the DASH server and the victims, which is done by
MITM. In this situation, the following two assumptions are
made about the attacker:
• The attacker and victims access the same video set from
the DASH server. In other words, the list of video titles
that the attacker and victims can select is identical. The
attacker looks up the Video ID to identify the title of the
video from the video set. For example, YouTube URLs
have a Video ID that identifies the title of the video and
a Playlist ID that allows users to create video groups that
match their subject of interest.

• The attacker can capture and analyze video traffic of
multiple victims on the same path to distinguish indi-
vidual video packets from multiple users.

A YouTube video can be deleted or changed at any time.
Thus, the attacker tracks the change in the video set when-
ever a video is added, changed, or deleted. For example, the
attacker can detect that a new video was added when it finds
that video packets do not correspond to any of the video
segments in the video set.

B. ATTACK PROCEDURE
The attack procedure consists of the following four steps: (1)
Download the storyboard and MPD, (2) Parse the MPD and
extract the segment duration and range, (3) Set up a proxy on
the victim to capture video traffic, and (4) Identify the video
title of victims.

1) STEP 1. DOWNLOAD STORYBOARD AND MPD
The attacker searches the video webpage’s source codes for
the storyboard’s URL and MPD’s URL using keywords. The
file is then downloaded into the attacker’s device, and the
procedure moves to Step 2.

However, if keywords that identify the MPD cannot be
found, then the attacker uses the storyboard’s URL only. As
mentioned in Section III-A, the storyboard’s URL in video
webpage’s source codes are not obfuscated and open to public
thus they can still be downloaded. The attacker then obtains
the storyboard’s file sizes and logs this information to a file,
then proceeds to Step 4. If the storyboard’s URL is also not
found, the attacker will not be able to identify the video.

2) STEP 2. PARSE MPD AND EXTRACT SEGMENT DURATION
AND RANGE
In the case of an MPD which was downloaded in Step 1, the
attacker parses its content. As mentioned in Section III-F, the
MPDfile contains a Representation tag for each video resolu-
tion. Therefore, the attacker obtains the segment information

113572 VOLUME 8, 2020



J. Song et al.: VTIM

of the SegmentURL media. If the segment information is
represented by the segment duration, the video corresponding
to the MPD in the video set should be encoded as .m4s
format used inMPEG-DASH. Then, the segment sizes can be
obtained by analyzing their file sizes from the encoded video.
If the segment duration is not available, the attacker calculates
the segment range as the segment size. After all segment
durations and ranges have been converted to segment sizes,
they are sorted in ascending order from the lowest resolution
(144p video) to the highest resolution (1080p video) and
saved in a file.

3) STEP 3. SET UP A PROXY ON THE VICTIM TO CAPTURE
VIDEO TRAFFIC
The following attack scenario in this case can be exploited.
Initially, the attacker must use Fiddler to capture video traffic
encrypted by the HTTPS protocol from the victim. If the
attacker attempts to use Fiddler on the victim, a proxy must
have been previously set up on the victim. The specified
proxy set-up procedures are as follows. The attacker sends
emails which contain a notice of a campus blackout schedule
to multiple victims on the campus network. In the emails,
there are several document files that include malware (e.g.,
CVE-2019-0561 [37] and CVE-2014-2781 [38]) that create
pop-up the alarmmessages. Immediately after the documents
are opened, alarm messages will pop-up with messages such
as ‘‘Will you allow usage of a proxy to improve the Inter-
net speed of the campus network?’’ and ‘‘Will you refer
to the embedded scripts to use the proxy?’’. When a vic-
tim agrees to a proxy setting, it executes a command to
disable the victim’s firewall with the victim’s administrator
rights and then downloads ‘‘BusyBox’’ [39]. ‘‘BusyBox’’
supports a telnet service that facilitates communication with
the attacker’s server without the victim’s awareness as well as
a TFTP service that transfers files between the attacker and
the victim. The attacker then exploits ‘‘BusyBox’’ to allow
the victim’s PC to connect to the telnet servicewith the pre-set
attacker server’s IP, account ID and PASSWORD. In addition,
the attacker uses the TFTP service of ‘‘BusyBox’’ to send
the victim’s SSL certificate to the attacker’s server. Finally,
when a telnet connection is established, the LAN interface
on the attacker’s server is already set to the promiscuous
setting such that when the victim watches the video, the
victim’s video packets can be passed from the attacker’s
server.

4) STEP 4. IDENTIFY THE VIDEO TITLE OF VICTIMS
In the case of a storyboard which was obtained in Step 1,
the attacker collects storyboards from the video traffic of
the victims and identifies the video titles by searching the
file that stores the storyboard file sizes. Finally, with video
titles that have identical storyboard file sizes, the attacker
identifies the video title by comparing the pixel values from
the storyboard by attacker and those from the storyboard that
captured from the victim’s video traffic. Otherwise, if the
MPDwas collected, the attacker converts segment duration of

theMPD into segment size. Storyboard file sizes and segment
sizes are compared with the size of captured segments in the
video traffic watched by the victim for a specified period. The
attacker counts the number of matches and identifies the vic-
tim’s video title by selecting video with the highest number
matches. If neither the storyboard nor the MPD is obtained,
the attacker cannot obtain the file size of the storyboard and
MPD, so the attacker exits without performing video title
identification.

V. THE PROPOSED VTIM
The VTIM architecture in Figure 7 is devised with a detailed
diagram of each module, which is required to preprocess the
storyboards and MPDs and then to identify the video title.
The figure shows the organization of the proposedVTIM con-
sisting of two major modules: Storyboard Preprocessing and
MPD Preprocessing. The Storyboard Preprocessing module
consists of Selector that chooses either storyboards or MPDs,
Storyboard Downloader that downloads storyboards, and
Writer for sorting file sizes obtained from storyboards and
MPDs. The MPD Preprocessing module includes Selector
and MPD Downloader that downloads MPDs, Analyzer that
parses MPDs, Calculator and Writer for analyzing MPDs.
Finally, Identifier identifies video titles by comparing the vic-
tim’s video packets with file sizes obtained from Storyboard
preprocessing and MPD preprocessing.

A. SELECTOR
The Selector determines whether storyboards or MPDs are
available in a video webpage’s source codes. If both are avail-
able, the storyboards will be downloaded from DASH server
(see Section V-B) at first. This is because storyboards are
more approachable information for identifying victims’ video
titles compared to MPDs since storyboards are provided to
public for all videos and MPDs are provided to public for
some videos. Therefore, storyboards have higher priority for
video title identification than MPDs. MPDs are only used if
they are the only information available in the videowebpage’s
source codes.

B. STORYBOARD DOWNLOADER AND MPD
DOWNLOADER
If storyboards were selected by the Selector, the Story-
board Downloader searches the video webpage’s source
codes for the storyboard’s URL with keywords such as
‘https://i9.ytimg.com/sb/’ and ‘PlayerStoryboardSpecRen-
der’ using Selenium Framework [40]. It also collects the
URLs pointing to storyboard for each video webpage,
downloads two types of storyboard images (800 × 350
and 800 × 315 p). Then, the Storyboard Downloader
delivers storyboards to the Writer. On the other hand, if
an MPD was selected by the Selector, the MPD Down-
loader searches for keywords ‘MPD’ and ‘manifest’ in
the video webpage’s source codes using the ‘jQuery’
library [41] to parse the MPD’s URL and then downloads
the MPD.

VOLUME 8, 2020 113573



J. Song et al.: VTIM

FIGURE 7. Overview of VTIM.

C. ANALYZER, CALCULATOR AND WRITER
The Analyzer parses MPD files collected by theMPDDown-
loader and searches for segment duration and range informa-
tionwithin SegmentURLmedia, as discussed in Section III-F.
In order to identify the video title, both the segment durations
and ranges should be converted to segment sizes. Then, the
Analyzer converts segment durations into segment sizes using
the Bento 4 MPEG-DASH tool [42] for video transcoding,
which re-encodes downloaded videos stored in the video
set into video segments. On the other hand, the Calculator
converts segment ranges into segment sizes. Afterwards, the
Writer sorts segment sizes and storyboards according to the
order of videos in the video set and writes segment sizes and
storyboard file sizes to a file. TheWriter delivers the file and
storyboards to the Identifier.

D. IDENTIFIER
The Identifier distinguishes a victim’s video whether story-
boards or MPDs were recorded in the file. If storyboards
were recorded, it will check whether the file sizes of the
storyboards in the file and that of the victim’s video traffic
are identical. The Identifier identifies the titles of the videos
by selecting the videos with the highest number of matches in
the attacker’s video set as shown Algorithm 1. The Identifier
then checks if the pixel values of the storyboards from the
identified video title match those of the storyboards from
the victim’s video traffic exactly. The video title can thus be
found in attacker’s video set when matching the pixel-values
of storyboards.

If MPDs were recorded, the Identifier determines whether
file sizes of video segments stored in the file are equal to
the segment sizes of the victim’s video traffic. Then, the
Identifier identifies the video title by selecting the video with

the highest number of matches in the attacker’s video set
as shown in Algorithm 1. Algorithm 1 has two functions
to find the VideoID. The FindVsize function compares the
victim’s video segment size obtained from Fiddler with file
sizes obtained from the Writer. The FindVideoID function
returns the VideoID and VideoURL of the video set, which
are the output of the FindVsize function, and stores them in
a file.

VI. EXPERIMENTAL ENVIRONMENT AND RESULTS
This section describes the experimental environment and ana-
lyzes the results of VTIM.

A. EXPERIMENTAL ENVIRONMENT
1) ATTACKER AND VICTIMS
In order to carry out the attack on the same network path,
both the attacker and victims are connected to the same
campus network. The Internet speed of the campus net-
work is 33.68 Mbps for downloading and 31.72 Mbps for
uploading, which was measured using TestMy.net [43]. The
attacker’s device is a laptop with an Intel i5-8700K CPU at
3.6 GHz running the Windows 10 (64-bit) operating system.

Victims are also connected to the same campus network
via wired/wireless connections. The attacker and victims use
a router on the same campus network, and the video packets
for victims’ devices pass through Fiddler running on the
attacker. Since Fiddler acts as a proxy and creates its HTTPS
certificate, the attacker is able to intercept victims’ video
packets over HTTPS through Fiddler. Despite the advantages
mentioned above, Fiddler cannot identify the video title or
video ID from the video packets of the victims because the
video packets do not contain the video title or video ID. Fid-
dler [44] captures video packets over the HTTP and HTTPS

113574 VOLUME 8, 2020



J. Song et al.: VTIM

TABLE 2. Videos collected from VTIM.

Algorithm 1 Algorithm for Finding Video ID
Input: File size fromWriter (Fsize)

Segment or Storyboard size from Fiddler (Vsize)
Index of video set (Idx)
Counter variable matching Vsize (Counter)
List of matching results (Result)

Output: ID of the video the victim is watching (VideoID)
1: function FindVsize(Fsize, Vsize, Idx)
2: Make an empty dictionary (Result)
3: for len(Vsize) do
4: for len(Fsize) do
5: if Vsize in Fsize then
6: if not Vsize in Result.keys() then
7: Add a new key Idx matching

on Vsize with value 1
8: else
9: Result[Idx]← Result[Idx]+ 1
10: end if
11: end if
12: end for
13: end for
14: Make a new list Final from Result

having Idx as key and Counter as value
15: Final ← Sorted(Final) in descending order
16: Make an empty ordered dictionaryOrderedResult
17: for data in Final do
18: if not Counter in OrderedResult.keys() then
19: Add a new key Counter with Idx
20: else
21: OrderedResult[Counter].append(Idx)
22: end if
23: return OrderedResult
24: end for
25: end function
26: function FindVideoID(OrderedResult)
27: for order in OrderedResult.keys() do
28: Make an empty list videoURL
29: for videoorder in OrderedResult[order] do
30: videoURL.extend(VideoIDwith videoorder)
31: end for
32: Save videoURL and VideoID in a file
33: return VideoID
34: end for
35: end function
36: OrderedResult ← FindVsize(Fsize,Vsize,Idx)
37: FindVideoID (OrderedResult)

protocols only in the application layer while Wireshark can
capture video packets over HTTP in all layers. On the other

TABLE 3. The network condition of experimental environment.

hand, the attacker cannot capture video packets over HTTPS
using Wireshark because it cannot act as a proxy for the
MITM.

In this experiment, the desktop and mobile phone of vic-
tims were used for the experiment. The specifications were
as follows: a desktop with an Intel Core i5-8600k CPU
at 3.6 GHz running the Windows 10 (64-bit) operating sys-
tem, an iPhone XS (iOS 13.1.3) as the mobile phone and
the Chrome browser (version 78.0.3904.87) for victims to
watch YouTube videos. In our experiments, four victims are
watching videos on a campus network, with the videos play-
ing for exactly three seconds. The experiments were iterated
75,000 times with 11,772 videos for the storyboard cases.
The experiments were then iterated 250,000 times with 1,519
videos for the MPD cases. The average playback time of the
videos is approximately twominutes. In addition, the network
condition of the experimental environment is described in
Table 3. To experiment with network congestion, multiple
HTTP request packets were sent to the victims using JMeter
[45]. For the victims, it was necessary to ensure a sustain-
able Internet speed for video playback, even with network
congestion. Note that the sustainable Internet speed in our
experimental environment is the throughput Internet speed at
which the victims experience resolution degradation of the
video [46].

2) VIDEO COLLECTION
The video set was collected from YouTube. As shown in
Table 2, the video set is composed of five themes: Game,
Movie, Cartoon, Music, and News. Since we used youtube-dl
[47], which is an open-source YouTube video crawling tool,
the video set was collected automatically. In addition, because
the number of videos downloaded depends on YouTube’s
algorithm, it is not in our control domain. However, given
that the proposed VTIM does not rely on the category of the
video, we concluded that an uneven distribution of categories
does not degrade the validity or reliability of our research.
Videos were categorized according to whether they can be
preprocessed using file sizes of storyboards and MPDs for

VOLUME 8, 2020 113575



J. Song et al.: VTIM

the purpose of identifying their titles. The number of videos
preprocessed using file sizes of storyboards is 11,772, which
is 88.6% of the total number of videos, and the number of
videos preprocessed using file sizes of MPDs is 1,519, which
is 11.4% of the total number of videos. Furthermore, our
video set is released to the public so that it can be used
in additional research. The URLs of the video set are also
recorded in the Appendix.

Table 2 shows that the number of storyboards collected dur-
ing preprocessing of 11,772 videos is 50,334. This is because
a storyboard summarizes only part of a video’s playback, and
thus there are multiple storyboards per video. On the other
hand, the number of MPDs collected during preprocessing
of 1,519 videos is 1,519. Since there is only a single MPD
for a video, the number of MPDs collected is as many as the
number of videos. In addition, when we download the videos
from YouTube, storyboards and MPDs are downloaded as
jpeg files and segments, respectively. In order to determine
the file sizes which are used directly for a comparison with
the victim’s video, they should be preprocessed appropriately.
As shown in Figure 7, the attacker processes the downloaded
YouTube videos into multiple segments using MPEG-DASH
Encoder [42], which is open-source software used to pre-
process a video into video segments in the MPEG-DASH
format. Then, the attacker preprocesses storyboards and video
segments to obtain storyboard file sizes and video segment
sizes, respectively, from the DASH server and stores them in
files. Then, the attacker identifies video titles by comparing
the storyboard file sizes and the video segment sizes obtained
from VTIM with video packets of the victim.

The following subsections discuss accuracy, precision, and
processing time of the proposed VTIM.

B. ACCURACY AND PRECISION
Accuracy is a measure of whether an attacker is correct when
attempting to identify a victim’s video title [48], and precision
is a measure of whether the proposed VTIM is consistent
when it repeatedly identifies the video title [48]. They are
expressed as follows:

Accuracy =
TruePositive+ TrueNegative

Positive+ Negative

Precision =
TruePositive

TruePositive+ FalsePositive

where Positive means the attack was successful, Negative
means the attack was unsuccessful, TruePositive is an out-
come where the proposed VTIM correctly predicts Positive
and FalsePositive is an outcome where the proposed VTIM
incorrectly predicts Positive.

C. TEST CASES FOR MEASURING ACCURACY AND
PRECISION OF STORYBOARDS
To identify the video title, considerations for following two
test cases are as follows: stable Internet speed and simul-
taneous viewing of video by multiple users. To measure
the accuracy and precision of storyboards in aforementioned

experimental situations, two test cases were generated as
follows:

1) Identify the victim’s video title based on 2 storyboard
file sizes and calculate its accuracy and precision

2) Identify the title of the video when two victims con-
currently play the same video at the same time and
calculate its accuracy and precision

The accuracy and precision were measured in the proposed
VTIMwith two test cases under the condition that two victims
are watching the same videos simultaneously. In the first case,
the accuracy and precision were measured when the Internet
speed was stable. In the second case, the attacker receives
multiple video packets from the victims, and two victims are
watching the same video at the same time. The two victims’
video packets are identified by the attacker.

As mentioned in Section VI-A2, there were 50,334 story-
boards collected from 11,772 videos. The number of story-
boards is used to define the total probability space to find the
title of video using Algorithm 1.

Let event IK as an event which is finding the title of video.
Then, event IK is an exclusive event which means each video
title identification experiment does not affect other experi-
ments. The total probability space can be calculated accord-
ing to the Law of Total Probability from Bayes Theorem [49].
The K value corresponding to the total number of events
IK was calculated by measuring the number of storyboards.
The calculated K value was 50,333, indicating that if the
total number of experiments exceeds 50,333, redundancy in
the experiments would occur. To consider experiments with
redundant file sizes of test cases in an actual environment, the
above two test cases were run 75,000 time each to capture the
storyboard file sizes from the victims’ video packets for three
seconds. Of the 75,000 experiments in each test case, 15,000
experiments with redundant file sizes were prepared andmea-
sured. In other words, 15,000 experiments with redundant
file sizes were collected from 5,000 new videos on YouTube.
Note that different videos were tested in each experiment.

The result for the first test case shows that the proposed
VTIM performs with 99.94% accuracy and 99.93% precision
when identifying victims’ video titles. The result for the
second test case shows that the VTIM identifies the victims’
video titles with 99.88% accuracy and 99.86% precision.
In addition, when the confidence interval of 11,772 videos
processed by storyboards is calculated, the storyboard file
sizes are between 302 and 161,686. As the number of videos
processed by storyboards increases, the probability of the
redundancy of the storyboard file sizes increases. The fre-
quency of redundant storyboard file sizes wasmeasured using
the Cumulative Distribution Function (CDF) in Figure 8.
In Figure 8, the x-axis corresponds to storyboard file size,

and the y-axis corresponds to the cumulative probability of
the frequency of a certain storyboard file size. The slope of
the curve is gentle.

Figure 9 shows a histogram of the number of file size
frequencies. In other words, there are identical file sizes

113576 VOLUME 8, 2020



J. Song et al.: VTIM

FIGURE 8. CDF from a distribution of storyboard file sizes.

FIGURE 9. Histogram from a distribution of storyboard file sizes.

for different storyboards. Redundancy in the storyboard file
sizes occurs because these file sizes are distributed between
0 and 160,000 in these test cases. However, to complement
the redundancy of storyboard file sizes, the video titles are
identified by both comparing the file sizes of each storyboard
and analyzing the pixel values from the storyboards. Finally,
the results for these test cases show that the proposed VTIM
performs with 100% accuracy and precision when identifying
victims’ video titles. Since a set of open metadata such as
storyboard file sizes and MPD segment sizes in each video
is unique and the open metadata are transmitted regardless of
the network situation, high accuracy and high precision can
be observed.

D. STORYBOARD PROCESSING TIME
The Storyboard processing time is expressed as follows:

T StoryboardTotal = T StoryboardPreprocess + T
Storyboard
Run ,

where T StoryboardPreprocess refers to the total execution time for Selec-

tor and Storyboard Downloader and T StoryboardRun is the sum
of the video packet capture time and the video identification
time of Identifier. Note that preprocessing needs to run only
once for the repetitive identification of a video title. For an
analysis of the relationship among T StoryboardPreprocess , T

Storyboard
Run ,

and the number of videos, Figure 10 representing Table 5
shows the average execution time as the number of videos

FIGURE 10. Storyboard preprocessing time and runtime.

doubles. In order to reliably collect enough segments that can
be comparedwith preprocessed data, the video packet capture
time was set to three seconds. The reason for increasing the
number of videos is to check the processing time using thread
parallelism in the proposed VTIM when processing multiple
videos.

E. TEST CASES FOR THE ACCURACY AND PRECISION OF
MPDs
To identify the video title, considerations for following three
test cases are as follows: stable Internet speed, video res-
olution conversion, and simultaneous viewing of video by
multiple users. To measure the accuracy and precision of
using MPDs in aforementioned experimental situations, the
following three test cases were generated:

1) Identify the victim’s video title with captured video
segment sizes using Algorithm 1 and calculate its accu-
racy and precision;

2) Identify the title of the video when resolution changes
occur (e.g., 144p→240p, 240p→360p, 360p→480p,
480p→720p, 720p→1080p, and 1080p→144p) and
calculate its accuracy and precision; and

3) Identify the title of the video and calculate its accuracy
and precision when two victims play the same video at
the same time.

In the first case, the accuracy and precision were measured
when the Internet speed was stable. In the second case, a high
rate of HTTP request packets (e.g., 300,000 packets/sec) was
generated and sent to the victim’s device to instigate network
congestion, and the Internet speed is degraded. Subsequently,
the accuracy and precision were measured. In the third case,
the attacker receives multiple video packets from the victims,
and two victims are watching the same video at the same time.
The two victims’ video packets are identified by the attacker.
Note that the second and third cases were not considered in
the existing methods [9]–[13].

In VTIM, the number of segments for each video reso-
lution is measured during MPD Preprocessing. In order to
measure the accuracy and precision correctly, repeated exper-
iments should be considered. Repeated experiment means

VOLUME 8, 2020 113577



J. Song et al.: VTIM

FIGURE 11. CDF from a distribution of segment sizes.

that captured video segment sizes of the experiment should
be equal to other experiments’. Repeated experiments can
bias the result that degrades the measurement [50]. Thus,
the total probability space is calculated according to Bayes’
Theorem [49] by using the total number of video segments of
each resolution that video supported and the non-redundant
segment sizes. The calculated total probability space was
218,847, which means that if the total number of experiments
exceeds 218,847 the redundancy of the experiments would
occur. To consider experiments with redundant segment sizes
of test cases in an actual environment, 250,000 experiments
were then created for each of the three test cases. Of 250,000
experiments in each test case, 50,000 experiments with redun-
dant segment sizes were prepared and measured. In other
words, 50,000 experiments with redundant segment sizes
were collected from 5,000 new videos on YouTube.

The result for the first test case shows that the proposed
VTIM performs with 99.97% accuracy and 99.96% precision
when identifying the victims’ video titles. In addition, the
result for the second test case shows that the VTIM identi-
fies victims’ video titles with 99.94% accuracy and 99.93%
precision. Lastly, the result for the third test case shows
that the VTIM has 99.97% accuracy and 99.96% precision
when identifying victims’ video titles. In addition, in the
real-world, the segment sizes can overlap with each other
as the number of videos processed by the MPDs increases
because the number for segment sizes are between 1,136
and 4,365,324 in these test cases. Thus, the frequency of the
occurrence of redundant segment sizes was analyzed as the
CDF in Figure 11 and Figure 12.

In Figure 11, the x-axis corresponds to the segment size
and the y-axis corresponds to the cumulative probability of
the frequency of a certain segment size. Since the slope of
the graph is rapid between 0 and 200,000 ranges, it can be
observed that the segment sizes are distributed intensively.
Figure 12 shows a histogram of the number of segment sizes
frequencies. The segment sizes are concentrated between 0
and 1,000,000. These segment sizes have a resolution of less
than 480p on average because, in the video set, low-quality
videos such as 480p are supported more often than high-
quality videos such as 1080p, and there are more low-quality
videos than high-quality videos.

FIGURE 12. Histogram from a distribution of segment sizes.

FIGURE 13. MPD preprocessing time and runtime.

F. MPD PROCESSING TIME
The MPD processing time is expressed as follows:

TMPDTotal = TMPDPreprocess + T
MPD
Run ,

where TMPDPreproces is the sum of the execution time for Selector,
MPD Downloader, Analyzer, Calculator and Writer, while
TMPDRun is the sum of execution time for video packet captur-
ing and identification. The preprocessing runs only once to
identify video titles. For an analysis of the relationship among
TMPDPreprocess, T

MPD
Run , and the number of MPDs, Figure 13 rep-

resenting Table 6 shows their average execution time as the
number of MPDs doubles. Again, the reason for increasing
the number of MPDs is to check the concurrent processing
performance of the proposed VTIM. Note that TMPDPreprocess
for VTIM, which is corresponding to the training time for
machine learning techniques of paper [10], is approximately
thirty times faster than the outcomes in the aforementioned
study.

G. ACCURACY COMPARISON OF VTIM WITH EXISTING
METHODS
VTIM was also assessed experimentally with the open video
sets in earlier papers [10] and [13]. The results of these exper-
iments are presented in Table 4, indicating that the accuracy
of VTIM exceeds those of existing methods.

113578 VOLUME 8, 2020



J. Song et al.: VTIM

TABLE 4. Accuracy comparison of VTIM with existing methods.

VII. COUNTERMEASURE
This section presents techniques that can be used to mitigates
the proposed VTIM.

A. ANYONE CAN DOWNLOAD THE STORYBOARD AND
MPD
Even if the video webpage’s source codes have been obfus-
cated, the keywords ‘https://i9.ytimg.com/sb/’ and ‘Player-
StoryboardSpecRender’ pointing to storyboards are open.
To prevent downloading of storyboards, YouTube service
providers must obfuscate the storyboard’s URLs in the video
webpage’s source codes or restrict user access by blocking
storyboard download requests.

For MPDs, video segment downloads via BaseURL are
already blocked except for the user that is watching the video.
However, an attacker can request and download an MPD
from the DASH server using MPD’s URL because there is
no user access restriction for downloading MPDs. So, it is
also necessary to restrict user access so that an attacker cannot
download MPDs.

B. LEAKAGE OF STORYBOARD FILE SIZES
The storyboard file sizes are open between the DASH server
and the client. To prevent an attacker from knowing the story-
board file sizes, it must either be padded with random lengths
or be encrypted. When padding or encryption is performed,
the file sizes change and an attacker cannot identify the title
of the video.

C. LEAKAGE OF SEGMENT NUMBER AND SEGMENT
INFORMATION OF MPDs
The number of segments and the segment information refer-
ring to segment duration and range are leaked through the
representation tag of an MPD. Therefore, it is necessary to
insert a pseudo segment into an MPD so that the number
and segment information of a video are not known, meaning
that only the video player that plays the video can interpret
the segment information. Therefore, segment durations and
ranges must also be encrypted based on a specific numerical
value of the video segment using a cipher key previously
transmitted between the DASH client and the DASH server.

D. UPLOADING OF FRAGMENTED VIDEO CAUSES
INFORMATION LEAKAGE
A video is encoded and fragmented during the process of
uploading to a DASH server. When the video is downloaded,
an attacker can decode the internally fragmented video to
separate the fragments into actual video chunks and obtain
their size. Therefore, to prevent the actual video segment sizes

from being obtained by the proposed VTIM, YouTube needs
to be modified to download the non-fragmented video.

VIII. EVALUATION ON THE COUNTERMEASURE
This section presents the evaluation of the encryption of
storyboards and MPDs and the restriction of user access
discussed in Section VII.

A. ENCRYPTION AND DECRYPTION OF STORYBOARD AND
MPD
TLS is used for encrypted communication between theDASH
server and the client on YouTube. TLS performs two crucial
functions during sending and receiving encrypted video pack-
ets, which are key exchange and video packet encryption and
decryption. The key exchange algorithm used on YouTube is
based on Elliptic Curve Diffie-Hellman (ECDH) [51], which
is an asymmetric encryption algorithm. When ECDH is used
as the key exchange algorithm on YouTube, the primary
elliptical curves are secp256r1 curve [52] and Curve25519
[53]. YouTube selects one of the two elliptical curves to
create a cipher key. Using the cipher key, YouTube also
applies Advanced Encryption Standard (AES)-128 [54] and
AES-256 [54], which are symmetric encryption algorithms,
to encrypt and decrypt video packets. Compared to AES-256,
AES-128 has smaller cipher key and less number of rounds.
Therefore, the execution time of encryption and decryption
with AES-128 are relatively fast. The encryption algorithm
used on YouTube was modified so that the DASH server and
the client exchange cipher keys using ECDH, and the DASH
server applies either AES-128 or AES-256 encryption to the
exchanged cipher keys to transmit the storyboard and MPD
to the DASH client.

Based on the analysis of communication during the playing
of the videos, encryption and decryption processes for the
storyboards and the MPDs are added to prevent leakages of
the storyboards and MPDs. Figure 14 shows the encryption
and decryption process of storyboards and MPDs in TLS
consisting of the following five steps: (1) The DASH client
generates its private key and computes the public key for
an ECDH, which is the cipher key that will be used in
AES-128 and AES-256. (2) The DASH client requests the
storyboard and MPD with its public key to the DASH server.
(3) The DASH server generates its private key and calculates
its public key. Then, the DASH server calculates a shared
secret and encrypts the storyboard and MPD using AES-128
or AES-256. (4) The DASH server sends the encrypted sto-
ryboard and MPD with its public key to the DASH client.
(5) The DASH client calculates the shared secret using the
public key of the DASH server, and uses it for AES-128 and
AES-256 to decrypt the storyboard and MPD.

Since the shared secret calculated by the DASH client and
the DASH server is not mutually exchanged, an attacker who
does not obtain it through the MITM cannot access the open
metadata of the video titles. In addition, when the storyboards
and MPDs are encrypted by the DASH server, an attacker
will not be able to access their open metadata to identify

VOLUME 8, 2020 113579



J. Song et al.: VTIM

FIGURE 14. Encryption and decryption of the storyboard and MPD.

video titles by analyzing their file sizes. This is because
padding is applied during the encryption process of AES-128
or AES-256 to protect the open metadata. In the case of an
MPD, the MPD itself can be encrypted or open metadata of
video in MPD can be encrypted with AES-128 or AES-256;
therefore, it cannot be used by an attacker identify video titles.
The open metadata of the MPD can be encrypted as follows:

Before encryption:

<SegmentURL media =‘‘range/1214-26315’’/>
<SegmentURL media =‘‘sq/1/dur/3.05’’>

After AES-128 or AES-256 encryption:

<SegmentURL media =‘‘range/enz9Ldda + . . . ’’/>
<SegmentURL media =‘‘sq/1/dur/enMmda . . .’’>

As mentioned in Section III-F, ‘range/’ of SegmentURL
media in MPD indicates the segment range, and ‘dur/’ indi-
cates the segment duration. These metadata on segment range
and duration are open. Therefore, the open metadata of an
MPD must be parsed and encrypted using AES-128 and
AES-256, or the MPD file itself can be encrypted. In order
to defend against the proposed VTIM, our experiments are
performed as follows:

• Measure the accuracy of VTIMwhen the storyboard and
MPD are encrypted.

• Measure the processing time for ECDH used for the
cipher key exchange.

• Measure the processing time to encrypt and decrypt the
storyboard and MPD.

The reason for measuring the processing time to encrypt
and decrypt a storyboard and MPD is to determine the delay
time of the DASH server when the proposed method is
applied. In this experiment, the DASH server is equippedwith
Intel Xeon E5-2630 v4 @ 2.20 GHz CPU, 64GB of main
memory, which runs Ubuntu 16.04.6 LTS with Linux 4.15.0
(64-bit).

B. MEASURE THE ACCURACY OF VTIM WHEN THE
STORYBOARD AND MPD ARE ENCRYPTED
VTIM cannot preprocess encrypted storyboard and MPD.
Therefore, the accuracy becomes zero for both of them. The
attacker can bypass the encryption of the storyboard andMPD
by obtaining the cipher key and performing a brute-force
attack. To defend against the former method, ECDH is used
to exchange the cipher key between the DASH server and the
client for AES-128 or AES-256 encryption of storyboard and
MPD. If asymmetric ECDH is applied to the countermeasure,
the attacker cannot obtain the cipher key [55]. The counter-
measure for the latter is to use proven safety AES-128 or
AES-256 to prevent the attacker from performing brute-force
attacks. This is because brute-force attack against AES-128
and AES-256 are not practical due to the long processing
time [56].

C. MEASURE THE PROCESSING TIME FOR ECDH USED
FOR THE CIPHER KEY EXCHANGE
When the storyboard and MPD are encrypted, the DASH
server and the client exchange a cipher key over ECDH to

113580 VOLUME 8, 2020



J. Song et al.: VTIM

TABLE 5. Processing time by the VTIM module in the storyboard test case.

TABLE 6. Processing time by the VTIM module in the MPD test case.

TABLE 7. Processing time to generate cipher keys.

TABLE 8. Processing time to encrypt and decrypt the storyboard.

protect open metadata against ciphertext stealing [57]. The
ECDH uses secp256r1 curve and Curve25519 to generate
a key suitable for AES-128 and AES-256. As Table 7, the
processing time required is measured for the DASH server
and the client to generate private keys and compute public
keys and shared secrets. Note that the processing time is
proportional to the number of videos. Since the processing
time of the two elliptic curves are relatively similar, both
elliptic curves are appropriate for encrypting storyboards and
MPDs.

D. MEASURE THE PROCESSING TIME TO ENCRYPT AND
DECRYPT THE STORYBOARD AND MPD
The processing time for encryption and decryption was
measured for storyboard and MPD. The encryption
and decryption algorithms for storyboard and MPD use
AES-128 and AES-256 by applying a cipher key generated
from ECDH.

As Table 8, the processing time is measured to encrypt
and decrypt storyboards as the number of videos doubled.
The table also shows that AES-128 has faster encryption
and decryption speed than AES-256. The faster encryption

and decryption time reduces the response time of the DASH
server resulting in better service for users watching videos.

As Table 9, the processing time is measured for encrypting
and decrypting MPDs. This processing time consists of two
parts: (1) parsing, encrypting, and decrypting open metadata
of the MPD and (2) encrypting and decrypting the MPD
itself. In the first part, an encryption area is determined by
parsing the MPD. The encryption area is limited to segment
duration and segment range in the MPD. This is because
other metadata such as video encoding format should be
preserved as plaintext because they can be referenced by the
user before decrypting. The first part is slower than the second
part because of the time required for parsing, encrypting and
decrypting open metadata in MPD. The reason for the rapid
increase in the processing time from 128 videos in Table 9 is
that there are many high-quality movie and game videos with
long playback time. In general, videowith long playback time
has large file size. Then, the relationship between file sizes
of MPDs and processing time of encrypting and decrypting
MPD should also be analyzed.

In summary, either secp256r1 curve orCurve25519 is suit-
able as the key exchange algorithm, andAES-128 is sufficient

VOLUME 8, 2020 113581



J. Song et al.: VTIM

TABLE 9. Processing time to encrypt and decrypt the MPD.

for encrypting and decrypting open metadata of storyboard
and MPD.

IX. CONCLUSIONS AND FUTURE WORKS
This paper proposed VTIM as a method to identify the video
titles of multiple victims on a network using the open meta-
data of the storyboard and MPD of MPEG-DASH. VTIM
was implemented and tested via experiments using a video set
collected from an actual environment. Our evaluation results
show that VTIM has greater accuracy in shorter processing
times compared to existing methods, even under real network
conditions. To the best of our knowledge, this is the first
work that exploits the vulnerability of open metadata such
as storyboards and MPDs to identify video titles under real
network conditions, i.e., network congestion.

As future work, VTIM will be expanded to a variety of
video streaming applications such as Netflix and Vimeo as
well as to experiment with more videos. In addition, an attack
method that can identify video titles even when storyboards
and MPDs are encrypted will be investigated. In addition,
experiments with video title identification are planned for
employee-monitoring solutions, QoE assessments in video
streaming applications for network operators, and off-path
attacks in which the attacker and victims are on different
networks.

APPENDIX
In this appendix, we open URLs of video sets used in the
experiments of VTIM. The video URLs are organized as
follows; 1) video URLs used for preprocessing (including
13,291 videos) and 2) video URL used for testing (including
5,000 videos).

1) video URLs used for preprocessing (including 13,291
videos)
• https://www.youtube.com/playlist?list=PLyFnTK
gb8Q2WPqqF_WNoFw3wYVUPsc81i

• https://www.youtube.com/playlist?list=PLyFnTK
gb8Q2VeuDUz3pP-TnLhrgRikGra

• https://www.youtube.com/playlist?list=PLyFnTK
gb8Q2XNK2Nwk5yiIag2TjITmxTI

• https://www.youtube.com/playlist?list=PLYHgBO
4XGofkGlkHyo6sMxdWTlwEox6YO

2) video URL used for testing (including 5,000 videos)
• https://www.youtube.com/playlist?list=PLYHgBO
4XGofmUs5Qr1H_uBUJeSv3nt7ux

REFERENCES
[1] Cisco. (2019). Cisco Visual Networking Index: Forecast and Trends,

2017–2022 White Paper. [Online]. Available: https://www.cisco.com/
c/en/us/solutions/collateral/service-provider/visual-networking-index-
vni/white-paper-c11-741490.html#_Toc532256803

[2] Sandvine. (2018). The Global Internet Phenomena Report. [Online].
Available: https://www.sandvine.com/hubfs/downloads/phenomena/2018-
phenomena-report.pdf

[3] YouTube. (2019). YouTube Live Streaming API Document: Delivering
Live YouTube Content Via DASH. [Online]. Available: https://developers.
google.com/youtube/v3/live/guides/encoding-with-dash

[4] S. Lederer, ‘‘Why YouTube Netflix use MPEG-DASH HTML5,’’ BIT-
MOVIN, San Francisco, CA, USA, Tech. Rep., 2015.

[5] I. Sodagar, ‘‘The MPEG-DASH standard for multimedia streaming
over the Internet,’’ IEEE MultiMedia, vol. 18, no. 4, pp. 62–67,
Apr. 2011.

[6] T. Stockhammer, ‘‘Dynamic adaptive streaming over HTTP–: Standards
and design principles,’’ in Proc. ACM Conf. Multimedia Syst., 2011,
pp. 133–144.

[7] Google. (2019). Google Transparency Report HTTPS Encryption
Web. [Online]. Available: https://transparencyreport.google.com/https/
overview

[8] R. Stewart, S. Long, D. Gallatin, A. Gutarin, and E. Livengood, ‘‘Protect-
ing Netflix viewing privacy at scale,’’ NETFLIX, Los Gatos, CA, USA,
Tech. Rep., 2016.

[9] R. Dubin, A. Dvir, O. Pele, and O. Hadar, ‘‘I know what you saw last
minute—Encrypted HTTP adaptive video streaming title classification,’’
IEEE Trans. Inf. Forensics Security, vol. 12, no. 12, pp. 3039–3049,
Dec. 2017.

[10] R. Schuster, V. Shmatikov, and E. Tromer, ‘‘Beauty and the burst: Remote
identification of encrypted video streams,’’ in Proc. 26th USENIX Secur.
Symp. (USENIX Security), 2017, pp. 1357–1374.

[11] B. Miller, L. Huang, A. D. Joseph, and J. D. Tygar, ‘‘I know why you went
to the clinic: Risks and realization of HTTPS traffic analysis,’’ in Privacy
Enhancing Technologies. Cham, Switzerland: Springer, 2014.

[12] Y. Xie, H. Deng, L. Peng, and Z. Chen, ‘‘Accurate identification of Internet
video traffic using byte code distribution features,’’ in Proc. Int. Conf.
Algorithms Archit. Parallel Process., 2018, pp. 46–58.

[13] W. Pan and G. Cheng, ‘‘QoE assessment of encrypted YouTube adap-
tive streaming for energy saving in smart cities,’’ IEEE Access, vol. 6,
pp. 25142–25156, 2018.

[14] S. Chen, R. Wang, X. Wang, and K. Zhang, ‘‘Side-channel leaks in Web
applications: A reality today, a challenge tomorrow,’’ in Proc. IEEE Symp.
Secur. Privacy, May 2010, pp. 191–206.

[15] G. Aceto and A. Pescapé, ‘‘Internet censorship detection: A survey,’’
Comput. Netw., vol. 83, pp. 381–421, Jun. 2015.

[16] C. Gutterman, K. Guo, S. Arora, X. Wang, L. Wu, E. Katz-Bassett,
and G. Zussman, ‘‘Requet: Real-time QoE detection for encrypted
YouTube traffic,’’ in Proc. 10th ACM Multimedia Syst. Conf., Jun. 2019,
pp. 48–59.

[17] J. Gu, J. Wang, Z. Yu, and K. Shen, ‘‘Walls have ears: Traffic-based
side-channel attack in video streaming,’’ in Proc. IEEE Conf. Comput.
Commun., Apr. 2018, pp. 1538–1546.

[18] D. Pope, G. Urgun, and A. Wheat, ‘‘Visual seeking for iPlayer,’’ BBC,
London, U.K., Tech. Rep., 2019.

[19] C. Cortes and V. Vapnik, ‘‘Support-vector networks,’’ in Machine Learn-
ing. Norwell, MA, USA: Kluwer, 1995.

[20] T. Cover and P. Hart, ‘‘Nearest neighbor pattern classification,’’ IEEE
Trans. Inf. Theory, vol. IT-13, no. 1, pp. 21–27, Jan. 1967.

113582 VOLUME 8, 2020



J. Song et al.: VTIM

[21] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, ‘‘Large-scale video classification with convolutional neural
networks,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2014,
pp. 1725–1732.

[22] M. Scott, Applied Logistic Regression Analysis. Newbury Park, CA, USA:
Sage, 2001.

[23] L. E. Baum, T. Petrie, G. Soules, and N.Weiss, ‘‘Amaximization technique
occurring in the statistical analysis of probabilistic functions of Markov
chains,’’ Ann. Math. Statist., vol. 41, no. 1, pp. 164–171, 1970.

[24] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, ‘‘Learning rep-
resentations by back-propagating errors,’’ Nature, vol. 323, no. 6088,
pp. 533–536, Oct. 1986.

[25] J. R. Quinlan, C4.5: Programs for Machine Learning. San Mateo, CA,
USA: Morgan Kaufmann, 1993.

[26] J. Li, S. Zhang, Y. Xuan, and Y. Sun, ‘‘Identifying skype traffic by random
forest,’’ in Proc. Int. Conf. Wireless Commun., Netw. Mobile Comput.,
Sep. 2007, pp. 2841–2844.

[27] S.Mahadevan and R. Rebba, ‘‘Validation of reliability computational mod-
els using Bayes networks,’’ Rel. Eng. Syst. Saf., vol. 87, no. 2, pp. 223–232,
2005.

[28] R. E. Schapire, ‘‘Explaining AdaBoost,’’ in Empirical Inference. Berlin,
Germany: Springer, 2013.

[29] F. Callegati, W. Cerroni, and M. Ramilli, ‘‘Man-in-the-middle attack to
the HTTPS protocol,’’ in IEEE Secur. Privacy, vol. 7, no. 1, pp. 78–81,
Jan./Feb. 2009.

[30] Progress Software Corporation. (2019). Telerik Fiddler: The Free Web
Debugging Proxy for Any Browser, System or Platform. [Online]. Avail-
able: https://www.telerik.com/fiddler

[31] P. Skolka, C.-A. Staicu, and M. Pradel, ‘‘Anything to hide? Studying
minified and obfuscated code in the Web,’’ in Proc. World Wide Web Conf.
(WWW), 2019, pp. 1735–1746.

[32] A. Mondal, S. Sengupta, B. R. Reddy, M. J. V. Koundinya,
C. Govindarajan, P. De, N. Ganguly, and S. Chakraborty, ‘‘Candid
with YouTube: Adaptive streaming behavior and implications on data
consumption,’’ in Proc. Netw. Oper. Syst. Support Digit. Audio Video,
2017, pp. 19–24.

[33] T. Kupka, P. Halvorsen, and C. Griwodz, ‘‘Performance of on-off traffic
stemming from live adaptive segmented HTTP video streaming,’’ in Proc.
37th Annu. IEEE Conf. Local Comput. Netw., Oct. 2012, pp. 401–409.

[34] The Wireshark Foundation. (2019). Wireshark: The Network Protocol
Analyzer. [Online]. Available: https://www.wireshark.org/

[35] T. De Pessemier, L. Martens, and W. Joseph, ‘‘Dynamic optimization of
the quality of experience during mobile video watching,’’ in Proc. IEEE
Int. Symp. Broadband Multimedia Syst. Broadcast., Jun. 2015, pp. 1–6.

[36] A. Dogtiev. (2019). Business of Apps: YouTube Revenue and Usage Statis-
tics. [Online]. Available: http://www.businessofapps.com/data/youtube-
statistics/#1

[37] The MITRE Corporation. (2019). CVE: Common Vulnerabilities
Exposures. [Online]. Available: https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2019-0561

[38] The MITRE Corporation. (2014). CVE: Common Vulnerabilities
Exposures. [Online]. Available: https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2014-2781

[39] N. Wells, ‘‘BusyBox: A Swiss army knife for linux,’’ Linux J., vol. 2000,
no. 78es, p. 10, 2000.

[40] Apache. (2019). Selenium: Web Browser Automation. [Online]. Available:
https://www.seleniumhq.org/

[41] A. K. Boduch, J. Chaffer, and K. Swedberg, Learning jQuery 3, 5th ed.
Birmingham, U.K.: Packt Publishing, 2017.

[42] Axiomatic Systems. (2019). Bento 4 MPEG-DASH Toolset. [Online].
Available: https://www.bento4.com/developers/dash/

[43] Terms&Privacy. (2019). TestMy.net:Web-Based Internet Speed Test Tools.
[Online]. Available: https://testmy.net/

[44] S. Simpkins, ‘‘Tools: Network packet tools and page performance,’’ in
Troubleshooting SharePoint: The Complete Guide to Tools, Best Practices,
PowerShell One-Liners, and Scripts. Berkeley, CA, USA: Apress, 2017.

[45] The Apache software Foundation. (2019). JMeter: Network Stress Testing
Tool. [Online]. Available: https://jmeter.apache.org/

[46] Google. (2019). System Requirements of YouTube. [Online]. Available:
https://support.google.com/youtube/answer/78358?hl=en

[47] YouTube-DL Developers. (2020). YouTube-DL: Video Downloader.
[Online]. Available: http://ytdl-org.github.io/youtube-dl/about.html

[48] B. Liu, Web Data Mining: Exploring Hyperlinks, Contents, and Usage
Data (Data-Centric Systems and Applications). New York, NY, USA:
Springer-Verlag, 2006.

[49] T. Leonard and J. S. J. Hsu, Bayesian Methods: An Analysis for Statis-
ticians and Interdisciplinary Researchers. Cambridge, U.K.: Cambridge
Univ. Press, 2001.

[50] G. H. Golub and U. V. Matt, ‘‘Generalized cross-validation for large-scale
problems,’’ J. Comput. Graph. Statist., vol. 6, no. 1, pp. 1–34, 1997.

[51] Certicom Research. (2000). SEC1: Elliptic Curve Cryptography. [Online].
Available: https://www.secg.org/SEC1-Ver-1.0.pdf

[52] Certicom Research. (2010). SEC2: Recommended Elliptic Curve Domain
Parameters. [Online]. Available: https://www.secg.org/sec2-v2.pdf

[53] D. J. Bernstein, ‘‘Curve25519: New Diffie–Hellman Speed Records,’’ in
Proc. Public Key Cryptogr., 2006, pp. 207–228.

[54] Announcing the Advanced Encryption Standard (AES), Federal Informa-
tion Processing Standards (NIST FIPS)-197, 2001.

[55] Y. Yusfrizal, A. Meizar, H. Kurniawan, and F. Agustin, ‘‘Key management
using combination of Diffie–Hellman key exchange with AES encryp-
tion,’’ in Proc. IEEE Int. Conf. Cyber IT Service Manage., Aug. 2018,
pp. 1–6.

[56] A. A. Hasib and A. A. M. M. Haque, ‘‘A comparative study of the
performance and security issues of AES and RSA cryptography,’’ in Proc.
Int. Conf. Converg. Hybrid Inf. Technol., 2008, pp. 505–510.

[57] P. Rogaway, M. Wooding, and H. Zhang, ‘‘The security of ciphertext
stealing,’’ in Proc. Fast Softw. Encryption, 2012, pp. 180–195.

JUHYUNG SONG received the B.S. degree from
the Korea University of Technology and Education
(KOREATECH), in 2018, and the M.S. degree
from the Graduate School of Information Security,
Korea Advanced Institute of Science and Tech-
nology (KAIST), in 2020. His research interests
include side-channel analysis of multimedia ser-
vices and applications.

SUYEONG LEE received the B.S. degree in com-
puter science and engineering from Sogang Uni-
versity, in 2019. He is currently pursuing the
M.S. degree with the Korea Advanced Institute of
Science and Technology (KAIST). His research
interests include the Internet, mobile computing,
and network security.

BAEKJUN KIM received the B.S. degree in com-
puter science from the Korea Advanced Institute of
Science and Technology (KAIST), Daejeon, South
Korea, in 2019, where he is currently pursuing the
M.S. degree. His research interests include cryp-
tography and network security.

VOLUME 8, 2020 113583



J. Song et al.: VTIM

SOONUK SEOL received the B.S. degree from
the Korea University of Technology and Educa-
tion (KOREATECH), in 1998, and the M.S. and
Ph.D. degrees in information and communica-
tion engineering from KAIST, in 2000 and 2004,
respectively. From 2004 to 2012, he worked as
a Senior Researcher with KT. He is currently an
Associate Professor with the School of Electri-
cal, Electronics, and Communication Engineering,
KOREATECH. His research interests include the

Internet of Things (IoT), wireless networking, QoS, and software testing.

BEN LEE received the B.E. degree in electri-
cal engineering from the Department of Electri-
cal Engineering, State University of New York
(SUNY), Stony Brook, in 1984, and the Ph.D.
degree in computer engineering from the Depart-
ment Electrical and Computer Engineering, Penn-
sylvania State University, in 1991. His research
interests include multimedia streaming, wireless
networks, embedded systems, computer architec-
ture, multithreading and thread-level speculation,

and parallel and distributed systems. He has been on the program com-
mittees and organizing committee for numerous international conferences,
including the 2005-2012 IEEEWorkshop on PervasiveWireless Networking
(PWN) and the IEEE International Conference on Pervasive Computing and
Communications (PerCom). He is currently on the Steering Committee for
CCNC. He received the Loyd Carter Award for Outstanding and Inspirational
Teaching, in 1994, theAlumni Professor Award for OutstandingContribution
to the College and the University from the OSU College of Engineering, in
2005, and the HKN Innovation Teaching Award from Eta Kappa Nu, School
of Electrical Engineering and Computer Science, in 2008. He was a TPC
Chair and a General Chair for the 15th and 17th Annual IEEE Consumer
Communications & Networking Conference (CCNC 2018 & 2020).

MYUNGCHUL KIM (Member, IEEE) received
the B.A. degree in electronics engineering from
Ajou University, in 1982, the M.S. degree in com-
puter science from the Korea Advanced Institute
of Science and Technology (KAIST), in 1984, and
the Ph.D. degree in computer science from The
University of British Columbia, Vancouver, BC,
Canada, in 1993. From 1984 to 1997, he was the
ManagingDirector of theKorea TelecomResearch
and Development Group, where he was in charge

of research and development of protocol and QoS testing on ATM/B-ISDN,
IN, PCS, and Internet. He is currently a Professor with the Faculty of
the School of Computing, KAIST. He has published over 150 conference
proceedings, book chapters, and journal articles in the areas of computer
networks, wireless mobile networks, protocol engineering, and network
security. His research interests include the Internet, protocol engineering,
mobile computing, and information security. He has served as a member
of program committees for numerous numbers of conferences. He has also
served as the Chair for the IWTCS’97 and the FORTE’01.

113584 VOLUME 8, 2020


