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he dataflow model of execution offers attractive properties for parallel pro- 
cessing. First, it is asynchronous: Because it bases instruction execution on 
operand availability, synchronization of parallel activities is implicit in the 

dataflow model. Second, it is self-scheduling: Except for data dependencies in the p r e  
gram, dataflow instructions do not constrain sequencing; hence, the dataflow graph 
representation of a program exposes all forms of parallelism, eliminating the need to 
explicitly manage parallel execution. For high-speed computations, the advantage of 
the dataflow approach over the control-flow method stems from the inherent paral- 
lelism embedded at the instruction level. This allows efficient exploitation of fine-grain 
parallelism in application programs. 

Due to its simplicity and elegance in describing parallelism and data dependencies, 
the dataflow execution model has been the subject of many research efforts. Since the 
early 197Os, a number of hardware prototypes have been built and evaluated,’ and dif- 
ferent designs and compiling techniques have been simulated? The experience gained 
from these efforts has led to progressive development in dataflow computing. How- 
ever, a direct implementation of computers based on the dataflow model has been 
found to be an arduous task. 

Studies from past dataflow projects revealed some inefficiencies in dataflow com- 
puting? For example, compared to its control-flow counterpart, the dataflow model’s - 
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fine-grained approach to parallelism incurs more overhead in instruction cycle exe- 
cution. The overhead involved in detecting enabled instructions and constructing re- 
sult tokens generally results in poor performance in applications with low degrees of 
parallelism. Another problem with the dataflow model is its inefficiency in handling 
data structures (for example, arrays of data). The execution of an instruction involves 
consuming tokens at the input arcs and generating result tokens at the output arcs. 
Since tokens represent scalar values, the representation of data structures (collections 
of many tokens) poses serious problems. 

In spite of these shortcomings, we’re seeing renewed interest in dataflow comput- 
ing. This revival is facilitated by a lack of developments in the conventional parallel- 
processing arena, as well as by changes in the actual implementation of the dataflow 
model. One important development, the emergence of an efficient mechanism to 
detect enabled nodes, replaces the expensive and complex process of matching tags 
used in past projects. Another change is the convergence of the control-flow and 
dataflow models of execution. This shift in viewpoint allows incorporation of con- 
ventional control-flow thread execution into the dataflow approach, thus alleviating 
the inefficiencies associated with the pure-dataflow method. Finally, some researchers 
suggest supporting the dataflow concept with appropriate compiling technology and 
program representation instead of specific hardware. This view allows implementa- 
tion on existing control-flow processors. These developments, coupled with experi- 
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mental evidence of the dataflow ap- 
proach’s success in exposing substantial 
parallelism in application programs, have 
motivated new research in dataflow com- 
puting? However, issues such as program 
partitioning and scheduling and resource 
requirements must still be resolved be- 
fore the dataflow model can provide the 
necessary computing power to meet to- 
day’s and future demands. 

Past dataflow 
architectures 

Three classic dataflow machines were 
developed at MIT and the University of 
Manchester: the Static Dataflow Ma- 
chine? the Tagged-Token Dataflow Ar- 
chitecture (TfDA),’ and the Manchester 
Machine? These machines - including 
the problems encountered in their design 
and their major shortcomings - pro- 
vided the foundation that has inspired 
many current dataflow projects. 

Static versus dynamic architectures. In 
the abstract dataflow model, data values 

are carried by tokens. These tokens travel 
along the arcs connecting various in- 
structions in the program graph. The arcs 
are assumed to be FIFO queues of un- 
bounded capacity. However, a direct im- 
plementation of this model is impossible. 
Instead, the dataflow execution model 
has been traditionally classified as either 
static or dynamic. 

Static. The static dataflow model was 
proposed by Dennis and his research 
group at MIT? Figure 1 shows the gen- 
eral organization of their Static Dataflow 
Machine. The activity store contains in- 
struction templates that represent the 
nodes in a dataflow graph. Each instruc- 
tion template contains an operation code, 
slots for the operands, and destination 
addresses (Figure 2). To determine the 
availability of the operands, slots contain 
presence bits. The update unit is respon- 
sible for detecting instructions that are 
available to execute. When this condition 
is verified, the unit sends the address of 
the enabled instruction to the fetch unit 
via the instruction queue. The fetch unit 
fetches and sends a complete operation 
packet containing the corresponding op- 

Definitions 

Dataflow execution model. In the dataflow execution model, an instruction 
execution is triggered by the availability of data rather than by a program counter. 

Static dataflow execution model. The static approach allows at most one 

only when all of the tokens are available on its input arc and no tokens exist on 
any of its output arcs. 

Dynamic dataflow execution model. The dynamic approach permits activa- 
tion of several instances of a node at the same time during runtime. To distin- 

node, a tag associated with each token 
lar token was generated. An actor is con- 
contain a set of tokens with identical tags. 

ing scheme, any computation is completely 
described by a pointer to an instruction (IP) and a pointer to an activation frame 
(FP). A typical instruction pointed to by an IP specifies an opcode, an offset in 
the activation frame where the match will take place, and one or more displace- 
ments that define the destination instructions that will receive the result token(s). 
The actual matching process is achieved by checking the disposition of the slot 
in the frame. If the slot is empty, the value of the token is written in the slot and 
its presence bit is set to indicate that the slot is full. If the slot is already full, the 
value is extracted, leaving the slot empty, and the corresponding instruction is 
executed. 

Thread. Within the scope of a dataflow environment, a thread is a sequence 
of statically ordered instructions such that once the first instruction in the thread 
is executed, the remaining instructions execute without interruption (synchro- 
nization occurs only at the beginning of the thread). Multithreading implies the 
interleaving of these threads. Interleaving can be done in many ways, that is, on 
every cycle, on remote reads, and so on. 

of a node to be enabled for firing. A dataflow actor can be executed 

code, data, and destination list to one of 
the operation units and clears the pres- 
ence bits. The operation unit performs 
the operation, forms result tokens, and 
sends them to the update unit. The up- 
date unit stores each result in the appro- 
priate operand slot and checks the pres- 
ence bits to determine whether the 
activity is enabled. 

Dynamic. The dynamic dataflow 
model was proposed by Arvind at MIT1 
and by Gurd and Watson at the Univer- 
sity of Manchester? Figure 3 shows the 
general organization of the dynamic 
dataflow model. Tokens are received by 
the matching unit, which is a memory 
containing a pool of waiting tokens. The 
unit’s basic operation brings together to- 
kens with identical tags. If a match exists, 
the corresponding token is extracted 
from the matching unit, and the matched 
token set is passed to the fetch unit. If no 
match is found, the token is stored in the 
matching unit to await a partner. In the 
fetch unit, the tags of the token pair 
uniquely identify an instruction to be 
fetched from the program memory. Fig- 
ure 4 shows a typical instruction format 
for the dynamic dataflow model. It con- 
sists of an operational code, a literalkon- 
stant field, and destination fields. The in- 
struction and the token pair form the 
enabled instruction, which is sent to the 
processing unit. The processing unit exe- 
cutes the enabled instructions and pro- 
duces result tokens to be sent to the 
matching unit via the token queue. 

Centralized or distributed. Dataflow ar- 
chitectures can also be classified as cen- 
tralized or distributed, based on the orga- 
nization of their instruction memories.’ 
The Static Dataflow Machine and the 
Manchester Machine both have central- 
ized memory organizations. MIT’s dy- 
namic dataflow organization is a multi- 
processor system in which the instruction 
memory is distributed among the process- 
ing elements. The choice between central- 
ized or distributed memory organization 
has a direct effect on program allocation. 

Comparison. The major advantage of 
the static dataflow model is its simplified 
mechanism for detecting enabled nodes. 
Presence bits (or a counter) determine 
the availability of all required operands. 
However, the static dataflow model has 
a performance drawback when dealing 
with iterative constructs and reentrancy. 
The attractiveness of the dataflow con- 
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cept stems from the possibility of concur- 
rent execution of all independent nodes if 
sufficient resources are available, but 
reentrant graphs require strict enforce- 
ment of the static firing rule to avoid non- 
determinate behavior.’ (The static firing 
rule states that a node is enabled for firing 
when a token exists on each of its input 
arcs and no token exists on its output arc.) 
To guard against nondeterminacy, extra 
arcs carry acknowledge signals from con- 
suming nodes to producing nodes. These 
acknowledge signals ensure that no arc 
will contain more than one token. 

The acknowledge scheme can trans- 
form a reentrant code into an equivalent 
graph that allows pipelined execution of 
consecutive iterations, but this transfor- 
mation increases the number of arcs and 
tokens. More important, it exploits only 
a limited amount of parallelism, since the 
execution of consecutive iterations can 
never fully overlap - even if no loop- 
carried dependencies exist. Although this 
inefficiency can be alleviated in case of 
loops by providing multiple copies of the 
program graph, the static dataflow model 
lacks the general support for program- 
ming constructs essential for any modern 
programming environment (for example, 
procedure calls and recursion). 

The major advantage of the dynamic 
dataflow model is the higher perfor- 
mance it obtains by allowing multiple to- 
kens on an arc. For example, a loop can 
be dynamically unfolded at runtime by 
creating multiple instances of the loop 
body and allowing concurrent execution 
of the instances. For this reason, current 
dataflow research efforts indicate a trend 
toward adopting the dynamic dataflow 
model. However, as we’ll see in the next 
section, its implementation presents a 
number of difficult problems. 

Lessons learned. Despite the dynamic 
dataflow model’s potential for large-scale 
parallel computer systems, earlier expe- 
riences have identified a number of short- 
comings: 

overhead involved in matching to- 

resource allocation is a complicated 
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kens is heavy, 

process, 
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trivial. 

Detection of matching tokens is one of 
the most important aspects of the dynamic 

I 

Figure 1. The basic organization of the 
static dataflow model. 

Opcode 

Destination s, 

Destination s, 

Figure 2. An instruction template for 
the static dataflow model. 

dataflow computation model. Previous ex- 
periences have shown that performance 
depends directly on the rate at which the 
matching mechanism processes  token^.^ 
To facilitate matching while considering 
the cost and the availability of a large-ca- 
pacity associative memory, h i n d  pro- 
posed a pseudoassociative matching 
mechanism that typically requires several 
memory accesses,l but this increase in 
memory accesses severely degrades the 
performance and the efficiency of the un- 
derlying dataflow machines. 

A more subtle problem with token 
matching is the complexity of allocating 
resources (memory cells). A failure to 
find a match implicitly allocates memory 
within the matching hardware. In other 
words, mapping a code-block to a pro- 
cessor places an unspecified commitment 
on the processor’s matching unit. If this 
resource becomes overcommitted, the 
program may deadlock. In addition, due 
to hardware complexity and cost, one 
cannot assume this resource is so plenti- 
ful it can be wasted. (See Culler and 
Arvind4 for a good discussion of the re- 
source requirements issue.) 

A more general criticism leveled at 
dataflow computing is instruction cycle in- 
efficiency. A typical dataflow instruction 
cycle involves (1) detecting enabled nodes, 
(2) determining the operation to be per- 

queue 

Enabled 
tokens instructions 

I 
Figure 3. The general organization of 
the dynamic datafiow model. 

s: ODCOde I 
Literalkonstant 
Destination s, I ... 
Destination s, 

Figure 4. An instruction format for the 
dynamic dataflow model. 

formed, (3) computing the results, and (4) 
generating and communicating result to- 
kens to appropriate target nodes. Even 
though the characteristics of this instruc- 
tion cycle may be consistent with the pure- 
dataflow model, it incurs more overhead 
than its control-flow counterpart. For ex- 
ample, matching tokens is more complex 
than simply incrementing a program 
counter. The generation and communica- 
tion of result tokens imposes inordinate 
overhead compared with simply writing 
the result to a memory location or a regis- 
ter. These inefficiencies in the pure- 
dataflow model tend to degrade perfor- 
mance under a low degree of parallelism. 

Another formidable problem is the 
management of data structures. The 
dataflow functionality principle implies 
that all operations are side-effect free; 
that is, when a scalar operation is per- 
formed, new tokens are generated after 
the input tokens have been consumed. 
However, absence of side effects implies 
that if tokens are allowed to carry vec- 
tors, arrays, or other complex structures, 
an operation on a structure element must 
result in an entirely new structure. Al- 
though this solution is theoretically ac- 
ceptable, in practice it creates excessive 
overhead at the level of system perfor- 
mance. A number of schemes have been 
proposed in the literature: but the prob- 
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Table 1. Architectural features of current datanow systems. 

Category General Characteristics Machine Key Features 

Pure- Implements the traditional 
dataflow dataflow instruction cycle. 

0 Direct matching of tokens 

Macro- 
dataflow dataflow circular pipeline and 

an advanced control pipeline. 

Integration of a token-based 

Direct matching of tokens. 

Hybrid Based on conventional control- 
flow processor, i.e., sequential 
scheduling is implicit by the 
RISC-based architecture. 
Tokens do not cany data, 
only continuations. 

0 Provides limited token matching 
capability through special synchro- 
nization primitives (i.e., JOIN). 
Message handlers implement inter- 
processor communication. 
Can use both conventional and data- 
flow compiling technologies. 

Monsoonl.2 

Epsilon-23 

EM-44 

P-RIS6 

*T6 

Threaded 
Abstract 
Machinel 

Direct matching of tokens using rendezvous slots 

Associates three temporary registers with 

Sequential scheduling implemented by 

in the frame memory (ETS model). 

each thread of computation. 

recirculating scheduling paradigm using 
a direct recirculation path (instructions are 
annotated with special marks to indicate that 
the successor instruction is IP+l). 
Multiple threads supported by FORK and 
implicit JOIN. 

A separate match memory maintains match 
counts for the rendezvous slots, and each 
operand is stored separately in the frame 
memory. 
Repeat unit is used to reduce the overhead of 
copying tokens and to represent a thread of 
computation (macroactor) as a linked-list. 

store values within a thread. 
Use of a register file to temporarily 

Use of macroactors based on the strongly 
connected arc model, and the execution of 
macroactors using advanced control pipeline. 
Use of registers to reduce the instruction cycle 
and the communication overhead of 
transferring tokens within a macroactor. 
Special thread library functions, FORK and NULL, 
to spawn and synchronize multiple threads. 

Support for multithreading using a 
token queue and circulating continuations. 
Context switching can occur on every cycle 
or when a thread dies due to LOADS or JOINS. 

Overhead is reduced by off-loading 
the burden of message handling and 
synchronization to separate coprocessors. 

Placing all synchronization, scheduling, 
and storage management responsibility under 
compiler control, e.g., exposes the token queue 
(i.e., continuation vector) for scheduling threads. 

message handlers as inlets to each code-block. 
Having the compiler produce specialized 

1. D.E. Culler and G.M. Papadopoulos, “The Explicit Token Store,”J. Parallel & Distributed Computing, Vol. 10,1990, pp. 289-308. 

2. G.M. Papadopoulos and K.R. Traub, “Multithreading: A Revisionist View of Dataflow Architectures,” Proc. 18th Annual Int ‘1 Symp. 
Computer Architecture, IEEE CS Press, Los Alamitos, Calif., Order No. 2146,1991, pp. 342-351. 

3. V.G. Grafe and J.E. Hoch, “The Epsilon-2 Multiprocessor System,” J. Parallel & Distributed Computing, Vol. 10,1990, pp. 309-318. 

4. S. Sakai et al., “An Architecture of a Dataflow Single-Chip Processor,” Proc. 16th Annual Int’l Symp. Computer Architecture, IEEE CS Press, 
Los Alamitos, Calif., Order No. 1948 (microfiche only), 1989, pp. 46-53. 

5. R.S. Nikhil and Arvind, “Can Dataflow Subsume von Neumann Computing?” Proc. 16th Annual Int‘l Symp. Computer Architecture, 
IEEE CS Press, Los Alamitos, Calif., Order No. 1948 (microfiche only), 1989, pp. 262-272. 

6. R. S .  Nikhil, G.M. Papadopoulos, and Arvind, “*T: A Multithreaded Massively Parallel Architecture,” Proc. 19th Annual Int’l Symp. 
Computer Architecture, IEEE CS Press, Los Alamitos, Calif., Order No. 2941 (microfiche only), 1992, pp. 156-167. 

7. D.E. Culler et al., “Fine-Grain Parallelism with Minimal Hardware Support: A Compiler-Controlled Threaded Abstracted Machine,” 
Proc. Fourth Int‘l Con$ Architectural Support for Programming Languages and Operating Systems, 1991. 
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Figure 5. Organization of a pure-dataflow processing element. Figure 6. Organization of a hybrid processing element. 

lem of efficiently representing and ma- 
nipulating data structures remains a dif- 
ficult challenge. 

Recent architectural 
developments 

Table 1 lists the features of six ma- 
chines that represent the current trend in 
dataflow architecture: MIT’s Monsoon, 
Sandia National Labs’ Epsilon-2, Elec- 
trotechnical Labs’ EM-4, MIT’s P-RISC, 
MIT’s *T, and UC Berkeley’s TAM 
(Threaded Abstract Machine). Each pro- 
posal provides a different perspective on 
how parallel processing based on the 
dataflow concept can be realized; how- 
ever, they share the goal of alleviating the 
inefficiencies associated with the 
dataflow model of computation. From 
these efforts, a number of innovative so- 
lutions have emerged. 

Three categories. The dataflow ma- 
chines currently advanced in the litera- 
ture can be classified into three cate- 
gories: pure-dataflow, macro-dataflow, 
and hybrid. 

Figure 5 shows a typical processing el- 
ement (PE) based on the pure-dataflow 
organization. It consists of an execution 
pipeline connected by a token queue. 

(The processing unit contains an ALU 
and a target address calculation unit for 
computing the destination address(es). It 
may also contain a set of registers to tem- 
porarily store operands between instruc- 
tions.) The pure-dataflow organization is 
a slight modification of an architecture 
that implements the traditional dataflow 
instruction cycle. The major differences 
between the current organizations and 
the classic dynamic architectures are (1) 
the reversal of the instruction fetch unit 
and the matching unit and (2) the intro- 
duction of frames to represent contexts. 
These changes are mainly due to the im- 
plementation of a new matching scheme. 
Monsoon and Epsilon-2 are examples of 
machines based on this organization. 

The hybrid organization departs more 
radically from the classic dynamic archi- 
tectures. Tokens carry only tags, and the 
architecture is based on conventional 
control-flow sequencing (see Figure 6). 
Therefore, architectures based on this or- 
ganization can be viewed as von Neu- 
mann machines that have been extended 
to support fine-grained dataflow capa- 
bility. Moreover, unlike the pure- 
dataflow organization where token 
matching is implicit in the architecture, 
machines based on the hybrid organiza- 
tion provide a limited token-matching ca- 
pability through special synchronization 
primitives. P-RISC, *T, and TAM can be 

categorized as hybrid organizations. 
The macro-dataflow organization, 

shown in Figure 7, is a compromise be- 
tween the other two approaches. It uses 
a token-based circular pipeline and an 
advanced control pipeline (a look-ahead 
control that implements instruction 
prefetching and token prematching to 
reduce idle times caused by unsuccessful 
matches). The basic idea is to shift to a 
coarser grain of parallelism by incorpo- 
rating control-flow sequencing into the 
dataflow approach. E M 4  is an example 
of a macro-dataflow organization. 

Token matching. One of the most im- 
portant developments to emerge from 
current dataflow proposals is a novel and 
simplified process of matching tags - di- 
rect matching. The idea is to eliminate 
the expensive and complex process of as- 
sociative search used in previous dynamic 
dataflow architectures. In a direct match- 
ing scheme, storage (called an activation 
frame) is dynamically allocated for all the 
tokens generated by a code-block. The 
actual location used within a code-block 
is determined at compile time; however, 
the allocation of activation frames is de- 
termined during runtime. For example, 
“unfolding” a loop body is achieved by 
allocating an activation frame for each 
loop iteration. The matching tokens gen- 
erated within an iteration have a unique 
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slot in the activation frame in which they 
converge. The actual matching process 
simply checks the disposition of the slot 
in the frame memory. 

In a direct matching scheme, any com- 
putation is completely described by a 
pointer to an instruction (IP) and a 
pointer to an activation frame (FP). The 
pair of pointers, <FP.IP>, is called a con- 
tinuation and corresponds to the tag part 
of a token. A typical instruction pointed 
to by an IP specifies an opcode, an offset 
in the activation frame where the match 
will take place, and one or more dis- 
placements that define the destination in- 
structions that will receive the result to- 
ken(s). Each destination is also 
accompanied by an input port (lefthight) 
indicator that specifies the appropriate 
input arc for a destination actor. 

To illustrate the operations of direct 
matching in more detail, consider the to- 
ken-matching scheme used in Monsoon. 
Direct matching of tokens in Monsoon is 
based on the Explicit Token Store (ETS) 
model.' Figure 8 shows an ETS code- 
block invocation and its corresponding 
instruction and frame memory. When a 
token arrives at an actor (for example, 
ADD), the IP part of the cdntinuation 
points to the instruction that contains an 
offset r as well as displacement(s) for the 
destination instruction(s). Matching is 
achieved by checking the disposition of 
the slot in the frame memory pointed to 
by FP + r. If the slot is empty, the value of 
the token is written in the slot, and its 
presence bit is set to indicate that the slot 
is full. If the slot is already full, the value 
is extracted, leaving the slot empty, and 

FP+2 

Presence bits 

Figure 7. Organization of a macro-datatlow processing element. program execution. 

the corresponding instruction is exe- 
cuted. The result token(s) generated 
from the operation is communicated to 
the destination instruction(s) by updat- 
ing the IP according to the displace- 
ment(s) encoded in the instruction. For 
example, execution of the ADD operation 
produces two result tokens <FP.IP + 1, 
3 . 5 5  and <FP.IP + 2, 3.%bL. 

In one variation to the matching 

I 

Direct matching 
schemes used in pure- 
dataflow and macro- 

dataflow organizations 
are implicit in the 

architecture. 

scheme, EM-4 maintains a simple one- 
to-one correspondence between the ad- 
dress of an instruction and the address of 
its rendezvous slot (Figure 9). This is 
achieved by allocating an operand seg- 
ment - analogous to an activation frame 
- that contains the same number of 
memory words as the template segment 
that contains the code-block. In addition, 
the operand segment is bound to a tem- 
plate segment by storing the correspond- 
ing segment number in the first word of 
the operand segment. The token's con- 
tinuation contains only an FP and an off- 
set. These values are used to determine 

the unique location in the operand seg- 
ment (called an entry point) to match to- 
kens and then to fetch the corresponding 
instruction word. 

In the Epsilon-2 dataflow multipro- 
cessor, a separate storage (match mem- 
ory) contains rendezvous slots for in- 
coming tokens (see Table 1, reference 3). 
Similar to Monsoon, an offset encoded 
in the instruction word is used to deter- 
mine the match-memory location to 
match tokens. However, unlike the Mon- 
soon, each slot is associated with a match 
count that is initialized to zero. As tokens 
arrive, the match count is compared with 
the value encoded in the opcode. If the 
match count is less than the value en- 
coded in the opcode, the match count is 
incremented and stored back in the 
match memory. Otherwise, the node is 
considered enabled, and the match count 
is reinitialized to zero. The instruction 
word also specifies offsets in the frame 
memory where the actual operands re- 
side. Therefore, in contrast to the scheme 
used in Monsoon or EM-4, the opcode 
specifies two separate frame locations for 
the operands. 

Direct matching schemes used in the 
pure-dataflow and macro-dataflow orga- 
nizations are implicit in the architecture. 
In other words, the token-matching 
mechanism provides the full generality 
of the dataflow model of execution and 
therefore is supported by the hardware. 
Architectures based on the hybrid orga- 
nization, on the other hand, provide a 
limited direct matching capability 
through software implementation using 
special JOIN instructions. P-RISC is an ex- 
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ample of such an architecture 
(Table 1, reference 5). P- 
RISC is based on a conven- 
tional RISC-type architec- 
ture, which is extended to 
support fine-grain dataflow 
capability. To synchronize 
two threads of computations, 
a JOIN x instruction toggles 
the contents of the frame lo- 
cation FP + x. If the frame lo- 
cation FP + x is empty, no 
continuation is produced, and 
the thread dies. If the frame 
location is full, it produces a 
continuation <FP.IP + 1>. 
Therefore, a JOIN instruction 
implements the direct match- 
ing scheme and provides a 
general mechanism for syn- 
chronizing two threads of 
computations. Note that the 

Operand segment 

FP 

offset 

Figure 9. The EM-4’s direct matching scheme. 

JOIN operation can be generalized to sup- 
port n-way synchronization; that is, the 
frame location x is initialized to n - 1 and 
different JOIN operations decrement it un- 
til it reaches zero. JOIN instructions are 
used in *T and TAM to provide explicit 
synchronization. 

Convergence of dataflow and von 
Neumann models. Dataflow architec- 
tures based on the original model pro- 
vide well-integrated synchronization at a 
very basic level - the instruction level. 
The combined dataflowlvon Neumann 
model groups instructions into larger 
grains so that instructions within a grain 
can be scheduled in a control-flow fash- 
ion and the grains themselves in a 
dataflow fashion. This convergence com- 
bines the power of the dataflow model 
for exposing parallelism with the execu- 
tion efficiency of the control-flow model. 
Although the spectrum of dataflowlvon 
Neumann hybrid is very broad, two key 
features supporting this shift are sequen- 
tial scheduling and use of registers to 
temporarily buffer the results between 
instructions. 

Sequential scheduling. Exploiting a 
coarser grain of parallelism (compared 
with instruction-level parallelism) allows 
use of a simple control-flow sequencing 
within the grain. This is in recognition of 
the fact that data-driven sequencing is 
unnecessarily general and such flexible 
instruction scheduling comes at a cost of 
overhead required to match tokens. 
Moreover, the self-scheduling paradigm 
fails to provide an adequate program- 

ming medium to encode imperative op- 
erations essential for execution of oper- 
ating system functions (for example, re- 
source management).4 In addition, the 
instruction cycle can be further reduced 
by using a register file to temporarily 
store operands in a grain, which elimi- 
nates the overhead involved in con- 
structing and transferring result tokens 
within a grain. 

The combined model 
groups instructions 
into larger grains 
for control-flow 

scheduling of instruc- 
tions but dataflow 

scheduling of grains. 

There are contrasting views on merg- 
ing the two conceptually different execu- 
tion models. The first is to extend existing 
conventional multiprocessors to provide 
dataflow capability (hybrid organiza- 
tion). The idea here is to avoid a radical 
departure from existing programming 
methodology and architecture in favor of 
a smoother transition that provides incre- 
mental improvement as well as software 
compatibility with conventional machines. 
The second approach is to incorporate 
control-flow sequencing into existing 
dataflow architectures (pure- or macro- 

dataflow organization). For the 
sake of presentation, we side- 
step discussion of the first ap- 
proach, since sequential 
scheduling is implicit in hybrid 
architectures, and focus on the 
second. 

Control-flow sequencing can 
be incorporated into the 
dataflow model in a couple 
ways. The first method is a sim- 
ple recirculate scheduling 
paradigm. Since a continuation 
is completely described by a 
pair of pointers <FP.IP>, 
where IP represents a pointer 
to the current instruction, the 
successor instruction is simply 

<FP.IP + 1>. In addition to this 
simple manipulation, the hard- 
ware must support the immedi- 
ate reinsertion of continuations 

into the execution pipeline. This is 
achieved by using a direct recirculation 
path (see Figure 5) to bypass the token 
queue. 

One potential problem with the recir- 
culation method is that successor contin- 
uations are not generated until the end 
of the pipeline (“Form token unit” in Fig- 
ure 5). Therefore, execution of the next 
instruction in a computational thread will 
experience a delay equal to the number 
of stages in the pipe. This means that the 
total number of cycles required to exe- 
cute a single thread of computation in a 
k-stage pipeline will be k times the num- 
ber of instructions in the thread. On the 
other hand, the recirculation method al- 
lows interleaving up to k independent 
threads in the pipeline, effectively mask- 
ing long and unpredictable latency due 
to remote loads. 

The second technique for implement- 
ing sequential scheduling uses the 
macroactor concept. This scheme groups 
the nodes in a dataflow graph into 
macroactors. The nodes within a 
macroactor are executed sequentially; 
the macroactors themselves are sched- 
uled according to the dataflow model. 
The EM-4 dataflow multiprocessor im- 
plements macroactors based on the 
strongly connected arc model (Table 1, 
reference 4). This model categorizes the 
arcs of a dataflow graph as normal or 
strongly connected. A subgraph whose 
nodes are connected by strongly con- 
nected arcs is called a strongly connected 
block (SCB). An SCB is enabled (fired) 
when all its input tokens are available. 
Once an SCB fires, all the nodes in the 
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block are executed exclusively by means 
of the advanced control pipeline. 

Epsilon-2 uses a unique architectural 
feature - the repeat unit - to imple- 
ment sequential scheduling (Table 1, ref- 
erence 3). The unit generates repeat to- 
kens, which efficiently implement data 
fanouts in dataflow graphs and signifi- 
cantly reduce the overhead of copying to- 
kens. The unit represents a thread of 
computation as a linked list and uses reg- 
isters to buffer the results between in- 
structions (see Figure 10). To generate a 
repeat token, it adds the repeat offset en- 
coded in the instruction word to the cur- 
rent token’s instruction pointer. Thus, the 
repeat unit can prioritize instruction ex- 
ecution within a grain. 

Register use. Inefficient communica- 
tion of tokens among nodes was a major 
problem in past dataflow architectures. 
The execution model requires combin- 
ing result values with target addresses to 
form result tokens for communication to 
successor nodes. Sequential scheduling 
avoids this overhead whenever locality 
can be exploited, registers can be used to 
temporarily buffer results. 

The general method of incorporating 
registers in the dataflow execution 
pipeline is illustrated in Figure 11. A set 
of registers is associated with each com- 
putational grain, and the instructions in 
the grain are allowed to refer to these 
registers as operands. For example, 
Monsoon employs three temporary reg- 
isters (called T registers) with each com- 
putational thread. The T registers, com- 
bined with a continuation and a value, 
are called computation descriptors 
(CDs). A CD completely describes the 
state of a computational thread. Since 
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Figure 10. 
Linked-list rep- 
resentation of a 
dataflow graph 
using the repeat 
unit (d and r 
represent the 
repeat offsets). 

the number of active CDs can be large, 
only threads occupying the execution 
pipeline are associated with T registers. 
As long as a thread does not die, its in- 
structions can freely use its registers. 
Once a thread dies, its registers may be 
committed to a new thread entering the 
pipeline; therefore, the register values 
are not necessarily preserved across 
grain boundaries. All current architec- 
tures use registers but, unlike Monsoon, 
do not fix the number of registers asso- 
ciated with each computational grain. 
Therefore, proper use of resources re- 
quires a compile-time analysis. 

Multithreading 
Architectures based on the dataflow 

model offer the advantage of instruction- 
level context switching. Since each datum 
carries context-identifying information 
in a continuation or tag, context switching 
can occur on a per-instruction basis. 
Thus, these architectures tolerate long, 
unpredictable latency resulting from split 
transactions. (This refers to message- 
based communication due to remote 
loads. A split transaction involves a read 
request from processor A to processor B 
containing the address of the location to 
be read and a return address, followed by 
a response from processor B to processor 
A containing the requested value.) 

Combining instruction-level context 
switching with sequential scheduling 
leads to another perspective on dataflow 
architectures - multithreading. In the 
context of multithreading, a thread is a 
sequence of statically ordered instruc- 
tions where once the first instruction is 
executed, the remaining instructions ex- 

Token in 
I Execution Dimline 

$. 
Token out 

Figure 11. Use of a register file. 

ecute without interruption? A thread de- 
fines a basic unit of work consistent with 
the dataflow model, and current dataflow 
projects are adopting multithreading as 
a viable method for combining the fea- 
tures of the dataflow and von Neumann 
execution models. 

Supporting multiple threads. Basically, 
hybrid dataflow architectures can be 
viewed as von Neumann machines ex- 
tended to support fine-grained interleav- 
ing of multiple threads. As an illustration 
of how this is accomplished, consider P- 
RISC, which is strongly influenced by Ian- 
nucci’s dataflowlvon Neumann hybrid ar- 
chitecture? P-RISC is a RISC-based 
architecture in the sense that, except for 
loadktore instructions, instructions are 
frame-to-frame (that is, register-to-regis- 
ter) operations that operate within the PE 
(Figure 6). The local memory contains in- 
structions and frames. Notice that the P- 
RISC executes three address instructions 
on data stored in the frames; hence, “to- 
kens” carry only continuations. The in- 
struction-fetch and operand-fetch units 
fetch appropriate instructions and 
operands, respectively, pointed to by the 
continuation. The functional unit per- 
forms general RISC operations, and the 
operand store is responsible for storing re- 
sults in the appropriate slots of the frame. 

For the most part, P-RISC executes in- 
structions in the same manner as a con- 
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ventional RISC. An arithmeticllogic in- 
struction generates a continuation that is 
simply <FP.IP + 1>. However, unlike ar- 
chitectures based on the pure-dataflow 
organization, 1P represents a program 
counter in the conventional sense and is 
incremented in the instruction-fetch 
stage. For a JUMP x instruction, the con- 
tinuation is simply <FP.x>. To provide 
fine-grained dataflow capability, the in- 
struction set is extended with two special 
instructions - FORK and JOIN - used to 
spawn and synchronize independent 
threads. These are simple operations ex- 
ecuted within the normal processor 
pipeline, not operating system calls. A 
FORK instruction is a combination of a 
JUMP and a fall-through to the next in- 
struction. Executing a FORK label has two 
effects. First, the current thread continues 
to the next instruction by generating a 
continuation of the form <FP.IP + 1>. 
Second, a new thread is created with the 
same continuation as the current contin- 
uation except that the “ I P  is replaced by 
“label” (that is, <FP.label>). JOIN, on the 
other hand, is an explicit synchronization 
primitive that provides the limited direct- 
matching capability used in other 
dataflow machines. FORK and JOIN opera- 
tions are illustrated in Figure 12. 

In addition to FORK and JOIN, a special 
START message initiates new threads and 
implements interprocessor communica- 
tion. The message of the form 

<START, value, FP.IP, d> 

writes the value in the location FP + d 
and initiates a thread described by FP.IP. 
START messages are generated by LOAD 

and STORE instructions used to implement 
I-structure reads and procedure calls, re- 

Figure 13. Organization of a *T processor node. 

spectively. For example, the general form 
of a synchronizing memory read, such as 
I-structure, is LOAD x ,  d, where an address 
a in frame location FP + x is used to load 
data onto frame location FP + d. Execut- 
ing a LOAD instruction generates an out- 
going message (via the loadlstore unit) 
of the form 

<I-READ, U ,  FP.IP, d> 

where a represents the location of the 
value to be read and d is the offset rela- 
tive to FP. This causes the current thread 
to die. Therefore, a new continuation is 
extracted from the token queue, and the 
new thread will be initiated. On its return 
trip from the I-structure memory, an in- 
coming START message (via the start unit) 
writes the value at location FP + d and 
continues execution of the thread. A pro- 
cedure is invoked in a similar fashion 
when the caller writes the arguments into 
the callee’s activation frame and initiates 
the threads. This is achieved by the in- 
struction 

START, dv, &PIP, dd 

which reads a value v from FP + dv, a con- 
tinuation <FP.IP> from FP+dFPIP, and 
an offset d from FP + dd. Executing this 
instruction sends a START message to an 
appropriate processing element and ini- 
tiates a thread. 

P-RISC supports multithreading in one 
of two ways. In the first method, as long as 
a thread does not die due to LOADS or 
JOINS, it is executed using the von Neu- 
mann scheduling IP + 1. When a thread 
dies, a context switch is performed by ex- 
tracting a token from the token queue, 
The second method is to extract a token 

from the token queue every pipeline cycle. 
*T, a successor to P-RISC, provides 

similar extensions to the conventional in- 
struction set (Table 1, reference 6). How- 
ever, to improve overall performance, the 
thread-execution and the message-han- 
dling responsibilities are distributed 
among three asynchronous processors. 
The general organization of *T is shown 
in Figure 13. A *T node consists of the 
data processor, the remote-memory re- 
quest coprocessor, and the synchroniza- 
tion coprocessor, which all share a local 
memory. The data processor executes 
threads by extracting continuations from 
the token queue using the NEXT instruc- 
tion. It is optimized to provide excellent 
single-thread performance. The remote- 
memory request coprocessor handles in- 
coming remote LOADISTORE requests. For 
example, a LOAD request is processed by 
a message handler, which (1) accesses the 
local memory and (2) sends a START mes- 
sage as a direct response without dis- 
turbing the data processor. On the other 
hand, the synchronization coprocessor 
handles returning LOAD responses and 
JOIN operations. Its responsibility is to (1) 
continually queue messages from the net- 
work interface; (2) complete the unfin- 
ished remote LOADS by placing message 
values in destination locations and, if 
necessary, performing JOIN operations; 
and (3) place continuations in the token 
queue for later pickup and execution by 
the data processor. 

In contrast to the two hybrid projects 
discussed thus far, TAM provides a con- 
ceptually different implementation of the 
dataflow execution model and multi- 
threading (Table 1, reference 7). In 
TAM, the execution model for fine-grain 
interleaving of multiple threads is sup- 
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Figure 14. A 
Threaded Ab- 
stract Machine 
(TAM) activa- 
tion. 

.......................... 

......................... 

ported by an appropriate compilation 
strategy and program representation, not 
by elaborate hardware. In other words, 
rather than viewing the execution model 
for fine-grain parallelism as a property 
of the machine, all synchronization, 
scheduling, and storage management is 
explicit and under compiler control. 

Figure 14 shows an example of a TAM 
activation. Whenever a code-block is in- 
voked, an activation frame is allocated. 
The frame provides storage for local vari- 
ables, synchronization counters, and a 
continuation vector that contains ad- 
dresses of enabled threads within the 
called code-block. Thus, when a frame is 
scheduled, threads are executed from its 
continuation vector, and the last thread 
schedules the next frame. 

TAM supports the usual FORK opera- 
tions that cause additional threads to be 
scheduled for execution. A thread can be 
synchronized using SYNC (same as JOIN) 

operations that decrement the entry 
count for the thread. A conditional flow 
of execution is supported by a SWITCH op- 
eration that forks one of two threads 
based on a Boolean input value. A STOP 

(same as NEXT) operation terminates the 
current thread and causes initiation of an- 
other thread. TAM also supports inter- 
frame messages, which arise in passing 
arguments to an activation, returning re- 
sults, or split-phase transactions, by 
associating a set of inlets with each code- 
block. Inlets are basically message han- 
dlers that provide an external interface. 

As can be seen, TAM’S support for 
multithreading is similar to that of the 
other hybrid machines discussed. The 
major difference is that thread scheduling 
in P-RISC and *T is local and implicit 
through the token queue. In TAM, 

thread scheduling is explicit and under 
compiler control. 

In contrast to P-RISC, *T, and TAM, 
Monsoon’s multithreading capability is 
based on the pure-dataflow model in the 
sense that tokens not only schedule in- 
structions but also carry data. Monsoon 
incorporates sequential scheduling, but 
with a shift in viewpoint about how the 
architecture works. It uses presence bits 
to synchronize predecessorlsuccessor in- 
structions through rendezvous points in 
the activation frame. To implement the 
recirculate scheduling paradigm, instruc- 
tions that depend on such scheduling are 
annotated with a special mark to indicate 
that the successor instruction is IP + 1 .  
This allows each instruction within a 
computation thread to enter the execu- 
tion pipeline every k cycles, where k is 
the number of stages in the pipe. The ac- 
tual thread interleaving is accomplished 
by extracting a token from the token 
queue and inserting it into the execution 
pipeline every clock cycle. Thus, up to k 
active threads can be interleaved through 
the execution pipeline. 

New threads and synchronizing 
threads are introduced by primitives sim- 
ilar to those used in hybrid machines - 

bell generates two continuations, <FP.la- 
bell> and <FP.IP + b. An implicit JOIN 

instruction of the form 

FORK and JOIN. For example, a FORK la- 

label2 [FP + offset]: instruction 

indicates the threads’ rendezvous slot is 
at frame location [FP + offset]; therefore, 
the instruction will not execute until both 
continuations arrive. FORK and JOIN oper- 
ations are illustrated in Figure 15. 

Although FORK and JOIN can be viewed 

FORK labdl 

FP.label2, v i  / 
FP.label2, vr 

FP.label1, labell VI)( 

FP.labell+l , 
vl+M 

[FP+off set]: 

.labell, vr 

FP.label2, 
Vl+M 

Figure 15. Application of FORK and 
JOIN constructs and equivalent dataflow 
actor in Monsoon. 

as thread-spawning and thread-synchro- 
nizing primitives, these operations can 
also be recognized as instructions in the 
dataflow execution model. For example, 
a FORK instruction is similar to but less 
general than a COPY operation used in the 
pure-dataflow model. JOIN operations are 
implemented through the direct match- 
ing scheme. For example, consider the 
dataflow actor shown in Figure 15, which 
receives two input tokens, evaluates the 
sum, and generates two output tokens. 
The operation of this actor can be real- 
ized by a combination of instructions of 
the form 

labell[FP + offset]: 
ADD vl, vr I I  FORK laben, 

where II represents the combination of an 
ADD and a FORK. In a pure-dataflow or- 
ganization (including Monsoon), the ex- 
ecution pipeline handles token matching, 
arithmetic operation, and token forming. 
Therefore, instructions that appear to be 
distinctively multithreaded in fact can be 
viewed as part of the more traditional 
dataflow operations. 

In EM-4, an SCB is thought of as a se- 
quential, uninterruptable thread of con- 
trol. Therefore, the execution of multi- 
ple threads can be implemented by 
passing tokens between SCBs. This is 
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achieved by having thread library func- 
tions that allow parallelism to be ex- 
pressed explicitly? For example, a master 
thread spawns and terminates a slave 
thread using functions FORK and NULL, re- 
spectively. The general format for the 
FORK function is given as 

FORK(PE, func, n, argl, . . . , argn), 

where PE specifies the processing ele- 
ment where the thread was created, and 
n represents the number of arguments in 
the thread. This function causes the fol- 
lowing operations: (1) allocate a new 
operand segment on the processing ele- 
ment and link it to the template segment 
specified by the token’s address portion, 
(2) write the arguments into the operand 
segment, (3) send the NULL routine’s ad- 
dress as a return address for the newly 
created thread, and (4) continue the ex- 
ecution of the current thread. Once exe- 
cution completes, the new thread termi- 
nates by executing a NULL function. 

Using the FORK and NULL functions, a 
master thread can distribute the work 
over a number of slave threads to com- 
pute partial results. The final result is col- 
lected when each slave thread sends its 
partial result to the master thread. Mul- 
tithreading is achieved by switching 
among threads whenever a remote LOAD 

operation occurs. However, since each 
thread is an SCB (that is, an uninterrupt- 
able sequence of instructions), interleav- 
ing of threads on each cycle is not al- 
lowed. 

Partitioning programs to threads. An 
important issue in multithreading is the 
partitioning of programs to multiple se- 
quential threads. A thread defines the ba- 
sic unit of work for scheduling - and 
thus a computation’s granularity. Since 
each thread has an associated cost, it di- 
rectly affects the amount of overhead re- 
quired for synchronization and context 
switching. Therefore, the main goal in 
partitioning is maximizing parallelism 
while minimizing the overhead required 
to support the threads. 

A number of proposals based on the 
control-flow model use multithreading as 
a means of tolerating high-latency mem- 
ory operations, but thread definitions 
vary according to language characteris- 
tics and context-switching criteria. For 
example, the multiple-context schemes 
used in Weber and Gupta9 obtain threads 
by subdividing a parallel loop into a num- 
ber of sequential processes, and context 

switching occurs when a main memory 
access is required (due to a cache miss). 
As a consequence, the thread granularity 
in these models tends to be coarse, 
thereby limiting the amount of paral- 
lelism that can be exposed. On the other 
hand, non-strict functional languages for 
dataflow architectures, such as Id, com- 
plicate partitioning due to feedback de- 
pendencies that may only be resolved dy- 
namically. These situations arise because 
of the possibility of functions or arbitrary 
expressions returning results before all 
operands are computed (for example, I- 
structure semantics). Therefore, a more 
restrictive constraint is placed on parti- 
tioning programs written in non-strict 
languages. 

Iannucci’ has outlined several impor- 
tant issues to consider in partitioning pro- 

Thread definitions 
vary according to 

language characteris- 
tics and context- 

switching criteria. 

grams: First, a partitioning method 
should maximize the exploitable paral- 
lelism. In other words, the attempt to 
aggregate instructions does not imply re- 
stricting or limiting parallelism. Instruc- 
tions that can be grouped into a thread 
should be the parts of a code where little 
or no exploitable parallelism exists. Sec- 
ond, the longer the thread length, the 
longer the interval between context 
switches. This also increases the locality 
for better utilization of the processor’s 
resources. Third, any arc (that is, data de- 
pendency) crossing thread boundaries 
implies dynamic synchronization. Since 
synchronization operations introduce 
hardware overhead and/or increase pro- 
cessor cycles, they should be minimized. 
Finally, the self-scheduling paradigm of 
program graphs implies that execution 
ordering cannot be independent of pro- 
gram inputs. In other words, this dynamic 
ordering behavior in the code must be 
understood and considered as a con- 
straint on partitioning. 

A number of thread partitioning algo- 
rithms convert dataflow graph represen- 
tation of programs into threads based on 
the criteria outlined above. Schauser et 

al.6 proposed a partitioning scheme based 
on dual graphs. A dual graph is a directed 
graph with three types of arcs: data, con- 
trol, and dependence. A data arc repre- 
sents the data dependency between pro- 
ducer and consumer nodes. A control arc 
represents the scheduling order between 
two nodes, and a dependence arc speci- 
fies long latency operation from message 
handlers (that is, inlets and outlets) send- 
ingheceiving messages across code-block 
boundaries. 

The actual partitioning uses only the 
control and dependence edges. First, the 
nodes are grouped as dependence sets 
that guarantee a safe partition with no 
cyclic dependencies. A safe partition has 
the following characteristics6: (1) no out- 
put of the partition needs to be produced 
before all inputs are available; (2) when 
the inputs to the partition are available, 
all the nodes in the partition are exe- 
cuted; and (3) no arc connects a node in 
the partition to an input node of the same 
partition. The partitions are merged into 
larger partitions based on rules that gen- 
erate safe partitions. Once the general 
partitioning has been completed, a num- 
ber of optimizations are performed in an 
attempt to reduce the synchronization 
cost. Finally, the output of the partitioner 
is a set of threads wherein the nodes in 
each thread are executed sequentially 
and the synchronization requirement is 
determined statically and only occurs at 
the beginning of a thread. 

Future prospects 
To predict whether dataflow comput- 

ing will have a legitimate place in a world 
dominated by massively parallel von 
Neumann machines, consider the suit- 
ability of current commercial parallel ma- 
chines for fine-grain parallel program- 
ming. Studies on TAM show that it is 
possible to implement the dataflow exe- 
cution model on conventional architec- 
tures and obtain reasonable performance 
(Table 1, reference 7). This has been 
demonstrated by compiling Id90 pro- 
grams to TAM and translating them, first 
to TLO, the TAM assembly language, and 
finally to native machine code for a vari- 
ety of platforms, mainly CM-5.1° How- 
ever, TAM’S translation of dataflow 
graph program representation to control- 
flow execution also shows a basic mis- 
match between the requirements for fine- 
grain parallelism and the underlying 
architecture. Fine-grain parallel pro- 
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gramming models dynamically create 
parallel threads of control that execute 
on data structures distributed among pro- 
cessors. Therefore, efficient support for 
synchronization, communication, and dy- 
namic scheduling becomes crucial to 
overall performance. 

One major problem of supporting fine- 
grain parallelism on commercial parallel 
machines is communication overhead. In 
recent years, the communication perfor- 
mance of commercial parallel machines 
has improved significantly." One of the 
first commercial message-passing multi- 
computers, Intel's iPSC, incurs a com- 
munication overhead of several millisec- 
onds, but current parallel machines, such 
as KSRl, Paragon, and CM-5, incur a 
one-way communication overhead of just 
25 to 86 microseconds." Despite this im- 
provement, the communication overhead 
in these machines is too high to efficiently 
support dataflow execution. This can be 
attributed to the lack of integration of the 

- for example, by off-loading message 
handling to coprocessors, as in *T - may 
reduce this even more. 

With the advent of multithreading, fu- 
ture dataflow machines will no doubt 
adopt a hybrid flavor, with emphasis on 
improving the execution efficiency of 
multiple threads of computations. Ex- 
periments on TAM have already shown 
how implementation of the dataflow ex- 
ecution model can be approached as a 
compilation issue. These studies also in- 
dicate that considerable improvement is 
possible through hardware support, 
which was the original goal of dataflow 
computer designers - to build a special- 
ized architecture that allows direct map- 
ping of dataflow graph programs onto the 
hardware. Therefore, the next generation 
of dataflow machines will rely less on 
very specialized processors and empha- 
size incorporating general mechanisms 

TAM alleviates this problem to some ex- 
tent by relegating the responsibilities of 
scheduling and storage management to 
the compiler. For example, continuation 
vectors that hold active threads are im- 
plemented as stacks, and all frames hold- 
ing enabled threads are linked in a ready 
queue. However, both hardware and 
software methods discussed are based on 
a naive, local scheduling discipline with 
no global strategy. Therefore, appropri- 
ate means of directing scheduling based 
on some global-level understanding of 
program execution will be crucial to the 
success of future dataflow architectures.12 

Another related problem is the alloca- 
tion of frames and data structures. When- 
ever a function is invoked, a frame must be 
allocated; therefore, how frames are allo- 
cated among processors is a major issue. 
Two extreme examples are a random al- 
location on any processor or local alloca- 
tion on the processor invoking the func- 
tion. The proper selection of an allocation 

I 

network interface as part of hardware 
functionality. That is, individual proces- 

strategy will greatly affect the balance of 
the computational load. The distribution 

sors offer high execution performance on of data structures among the processors is 
sequential streams of computations, but The Of closely linked to the allocation of frames. 
communication and synchronization threading &Den& For example, an allocation policy that dis- 

U 1  
among processors have substantial over- 
head.l03l1 

In comparison, processors in current 

on rapid support of 
context switching- 

tributes a-large data structure among the 
processors may experience a large num- 
ber of remote messages, which will require 

dataflow machines-communicate by exe- 
cuting message handlers that directly 
move data in and out of preallocated stor- 
age. Message handlers are short threads 
that handle messages entirely in user 
mode, with no transfer of control to the 
operating system. For example, in Mon- 
soon, message handlers are supported by 
hardware: A sender node can format and 
send a message in exactly one cycle, and 
a receiver node can process an incoming 
message by storing its value and per- 
forming a JOIN operation in one or two cy- 
cles. In hybrid-class architectures, mes- 
sage handlers are implemented either by 
specialized hardware, as in P-RISC and 
*T, or through software (for example, in- 
terrupt or polling) as part of the processor 
pipeline execution. The most recent hy- 
brid-class prototype under development 
at MIT and Motorola, inspired by the con- 
ceptual *T design at MIT, uses processor- 
integrated networking that directly inte- 
grates communication into the MC88110 
superscalar RISC microprocessor." Pro- 
cessor-integrated networking efficiently 
implements the message-passing mecha- 
nism. It provides a low communication 
overhead of 100 nanoseconds, and over- 
lapping computation with communication 

to support fine-grain parallelism into ex- 
isting sequential processors. The major 
challenge, however, will be to strike a bal- 
ance between hardware complexity and 
performance. 

Despite recent advances toward de- 
veloping effective architectures that sup- 
port fine-grain parallelism and tolerate 
latency, some challenges remain. One of 
these challenges is dynamic scheduling. 
The success of multithreading depends 
on rapid support of context switching. 
This is possible only if threads are resi- 
dent at fast but small memories (that is, at 
the top level of the storage hierarchy), 
which limits the number of active threads 
and thus the amount of latency that can 
be tolerated. All the architectures de- 
scribed - Monsoon, Epsilon-2, EM-4, P- 
RISC, and *T - rely on a simple 
dataflow scheduling strategy based on 
hardware token queues. The generality 
of the dataflow scheduling makes it diffi- 
cult to execute a logically related set of 
threads through the processor pipeline, 
thereby removing any opportunity to uti- 
lize registers across thread boundaries. 

more threads to mask the delays. On the 
other hand, allocating data structures lo- 
cally may cause one processor to serve a 
large number of accesses, limiting the en- 
tire system's performance. Therefore, the 
computation and data must be studied in 
unison to develop an effective allocation 
methodology. 

he eventual success of dataflow 
computers will depend on their T programmability. Traditionally, 

they've been programmed in languages 
such as Id and SISAL (Streams and It- 
erations in a Single Assignment Lan- 
guage)* that use functional semantics. 
These languages reveal high levels of 
concurrency and translate onto dataflow 
machines and conventional parallel ma- 
chines via TAM. However, because their 
syntax and semantics differ from the im- 
perative counterparts such as Fortran 
and C, they have been slow to gain ac- 
ceptance in the programming commu- 
nity. An alternative is to explore the use 
of established imperative languages to 
program dataflow machines. However, 
the difficulty will be analyzing data de- 
pendencies and extracting parallelism 
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from source code that contains side ef- 
fects. Therefore, more research is still 
needed to develop compilers for con- 
ventional languages that can produce 
parallel code comparable to that of par- 
allel functional languages. H 
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