
and Multithreading
Ben Lee, Oregon State University

A.R. Hurson, Pennsylvania State University

he dataflow model of execution offers attractive properties for parallel pro-
cessing. First, it is asynchronous: Because it bases instruction execution on
operand availability, synchronization of parallel activities is implicit in the

dataflow model. Second, it is self-scheduling: Except for data dependencies in the p r e
gram, dataflow instructions do not constrain sequencing; hence, the dataflow graph
representation of a program exposes all forms of parallelism, eliminating the need to
explicitly manage parallel execution. For high-speed computations, the advantage of
the dataflow approach over the control-flow method stems from the inherent paral-
lelism embedded at the instruction level. This allows efficient exploitation of fine-grain
parallelism in application programs.

Due to its simplicity and elegance in describing parallelism and data dependencies,
the dataflow execution model has been the subject of many research efforts. Since the
early 197Os, a number of hardware prototypes have been built and evaluated,’ and dif-
ferent designs and compiling techniques have been simulated? The experience gained
from these efforts has led to progressive development in dataflow computing. How-
ever, a direct implementation of computers based on the dataflow model has been
found to be an arduous task.

Studies from past dataflow projects revealed some inefficiencies in dataflow com-
puting? For example, compared to its control-flow counterpart, the dataflow model’s -

Contrary to initial
expectations,

implementing dataflow
computers has

presented a
monumental challenge.

Now, however,
multithreading offers a
viable alternative for

building hybrid
architectures that

exploit parallelism.

August 1994

fine-grained approach to parallelism incurs more overhead in instruction cycle exe-
cution. The overhead involved in detecting enabled instructions and constructing re-
sult tokens generally results in poor performance in applications with low degrees of
parallelism. Another problem with the dataflow model is its inefficiency in handling
data structures (for example, arrays of data). The execution of an instruction involves
consuming tokens at the input arcs and generating result tokens at the output arcs.
Since tokens represent scalar values, the representation of data structures (collections
of many tokens) poses serious problems.

In spite of these shortcomings, we’re seeing renewed interest in dataflow comput-
ing. This revival is facilitated by a lack of developments in the conventional parallel-
processing arena, as well as by changes in the actual implementation of the dataflow
model. One important development, the emergence of an efficient mechanism to
detect enabled nodes, replaces the expensive and complex process of matching tags
used in past projects. Another change is the convergence of the control-flow and
dataflow models of execution. This shift in viewpoint allows incorporation of con-
ventional control-flow thread execution into the dataflow approach, thus alleviating
the inefficiencies associated with the pure-dataflow method. Finally, some researchers
suggest supporting the dataflow concept with appropriate compiling technology and
program representation instead of specific hardware. This view allows implementa-
tion on existing control-flow processors. These developments, coupled with experi-

27 0018-9162/94/ $4.00 8 1994 IEEE

mental evidence of the dataflow ap-
proach’s success in exposing substantial
parallelism in application programs, have
motivated new research in dataflow com-
puting? However, issues such as program
partitioning and scheduling and resource
requirements must still be resolved be-
fore the dataflow model can provide the
necessary computing power to meet to-
day’s and future demands.

Past dataflow
architectures

Three classic dataflow machines were
developed at MIT and the University of
Manchester: the Static Dataflow Ma-
chine? the Tagged-Token Dataflow Ar-
chitecture (TfDA),’ and the Manchester
Machine? These machines - including
the problems encountered in their design
and their major shortcomings - pro-
vided the foundation that has inspired
many current dataflow projects.

Static versus dynamic architectures. In
the abstract dataflow model, data values

are carried by tokens. These tokens travel
along the arcs connecting various in-
structions in the program graph. The arcs
are assumed to be FIFO queues of un-
bounded capacity. However, a direct im-
plementation of this model is impossible.
Instead, the dataflow execution model
has been traditionally classified as either
static or dynamic.

Static. The static dataflow model was
proposed by Dennis and his research
group at MIT? Figure 1 shows the gen-
eral organization of their Static Dataflow
Machine. The activity store contains in-
struction templates that represent the
nodes in a dataflow graph. Each instruc-
tion template contains an operation code,
slots for the operands, and destination
addresses (Figure 2). To determine the
availability of the operands, slots contain
presence bits. The update unit is respon-
sible for detecting instructions that are
available to execute. When this condition
is verified, the unit sends the address of
the enabled instruction to the fetch unit
via the instruction queue. The fetch unit
fetches and sends a complete operation
packet containing the corresponding op-

Definitions

Dataflow execution model. In the dataflow execution model, an instruction
execution is triggered by the availability of data rather than by a program counter.

Static dataflow execution model. The static approach allows at most one

only when all of the tokens are available on its input arc and no tokens exist on
any of its output arcs.

Dynamic dataflow execution model. The dynamic approach permits activa-
tion of several instances of a node at the same time during runtime. To distin-

node, a tag associated with each token
lar token was generated. An actor is con-
contain a set of tokens with identical tags.

ing scheme, any computation is completely
described by a pointer to an instruction (IP) and a pointer to an activation frame
(FP). A typical instruction pointed to by an IP specifies an opcode, an offset in
the activation frame where the match will take place, and one or more displace-
ments that define the destination instructions that will receive the result token(s).
The actual matching process is achieved by checking the disposition of the slot
in the frame. If the slot is empty, the value of the token is written in the slot and
its presence bit is set to indicate that the slot is full. If the slot is already full, the
value is extracted, leaving the slot empty, and the corresponding instruction is
executed.

Thread. Within the scope of a dataflow environment, a thread is a sequence
of statically ordered instructions such that once the first instruction in the thread
is executed, the remaining instructions execute without interruption (synchro-
nization occurs only at the beginning of the thread). Multithreading implies the
interleaving of these threads. Interleaving can be done in many ways, that is, on
every cycle, on remote reads, and so on.

of a node to be enabled for firing. A dataflow actor can be executed

code, data, and destination list to one of
the operation units and clears the pres-
ence bits. The operation unit performs
the operation, forms result tokens, and
sends them to the update unit. The up-
date unit stores each result in the appro-
priate operand slot and checks the pres-
ence bits to determine whether the
activity is enabled.

Dynamic. The dynamic dataflow
model was proposed by Arvind at MIT1
and by Gurd and Watson at the Univer-
sity of Manchester? Figure 3 shows the
general organization of the dynamic
dataflow model. Tokens are received by
the matching unit, which is a memory
containing a pool of waiting tokens. The
unit’s basic operation brings together to-
kens with identical tags. If a match exists,
the corresponding token is extracted
from the matching unit, and the matched
token set is passed to the fetch unit. If no
match is found, the token is stored in the
matching unit to await a partner. In the
fetch unit, the tags of the token pair
uniquely identify an instruction to be
fetched from the program memory. Fig-
ure 4 shows a typical instruction format
for the dynamic dataflow model. It con-
sists of an operational code, a literalkon-
stant field, and destination fields. The in-
struction and the token pair form the
enabled instruction, which is sent to the
processing unit. The processing unit exe-
cutes the enabled instructions and pro-
duces result tokens to be sent to the
matching unit via the token queue.

Centralized or distributed. Dataflow ar-
chitectures can also be classified as cen-
tralized or distributed, based on the orga-
nization of their instruction memories.’
The Static Dataflow Machine and the
Manchester Machine both have central-
ized memory organizations. MIT’s dy-
namic dataflow organization is a multi-
processor system in which the instruction
memory is distributed among the process-
ing elements. The choice between central-
ized or distributed memory organization
has a direct effect on program allocation.

Comparison. The major advantage of
the static dataflow model is its simplified
mechanism for detecting enabled nodes.
Presence bits (or a counter) determine
the availability of all required operands.
However, the static dataflow model has
a performance drawback when dealing
with iterative constructs and reentrancy.
The attractiveness of the dataflow con-

COMPUTER

cept stems from the possibility of concur-
rent execution of all independent nodes if
sufficient resources are available, but
reentrant graphs require strict enforce-
ment of the static firing rule to avoid non-
determinate behavior.’ (The static firing
rule states that a node is enabled for firing
when a token exists on each of its input
arcs and no token exists on its output arc.)
To guard against nondeterminacy, extra
arcs carry acknowledge signals from con-
suming nodes to producing nodes. These
acknowledge signals ensure that no arc
will contain more than one token.

The acknowledge scheme can trans-
form a reentrant code into an equivalent
graph that allows pipelined execution of
consecutive iterations, but this transfor-
mation increases the number of arcs and
tokens. More important, it exploits only
a limited amount of parallelism, since the
execution of consecutive iterations can
never fully overlap - even if no loop-
carried dependencies exist. Although this
inefficiency can be alleviated in case of
loops by providing multiple copies of the
program graph, the static dataflow model
lacks the general support for program-
ming constructs essential for any modern
programming environment (for example,
procedure calls and recursion).

The major advantage of the dynamic
dataflow model is the higher perfor-
mance it obtains by allowing multiple to-
kens on an arc. For example, a loop can
be dynamically unfolded at runtime by
creating multiple instances of the loop
body and allowing concurrent execution
of the instances. For this reason, current
dataflow research efforts indicate a trend
toward adopting the dynamic dataflow
model. However, as we’ll see in the next
section, its implementation presents a
number of difficult problems.

Lessons learned. Despite the dynamic
dataflow model’s potential for large-scale
parallel computer systems, earlier expe-
riences have identified a number of short-
comings:

overhead involved in matching to-

resource allocation is a complicated

the dataflow instruction cycle is inef-

*handling data structures is not

kens is heavy,

process,

ficient, and

trivial.

Detection of matching tokens is one of
the most important aspects of the dynamic

I

Figure 1. The basic organization of the
static dataflow model.

Opcode

Destination s,

Destination s,

Figure 2. An instruction template for
the static dataflow model.

dataflow computation model. Previous ex-
periences have shown that performance
depends directly on the rate at which the
matching mechanism processes token^.^
To facilitate matching while considering
the cost and the availability of a large-ca-
pacity associative memory, h i n d pro-
posed a pseudoassociative matching
mechanism that typically requires several
memory accesses,l but this increase in
memory accesses severely degrades the
performance and the efficiency of the un-
derlying dataflow machines.

A more subtle problem with token
matching is the complexity of allocating
resources (memory cells). A failure to
find a match implicitly allocates memory
within the matching hardware. In other
words, mapping a code-block to a pro-
cessor places an unspecified commitment
on the processor’s matching unit. If this
resource becomes overcommitted, the
program may deadlock. In addition, due
to hardware complexity and cost, one
cannot assume this resource is so plenti-
ful it can be wasted. (See Culler and
Arvind4 for a good discussion of the re-
source requirements issue.)

A more general criticism leveled at
dataflow computing is instruction cycle in-
efficiency. A typical dataflow instruction
cycle involves (1) detecting enabled nodes,
(2) determining the operation to be per-

queue

Enabled
tokens instructions

I
Figure 3. The general organization of
the dynamic datafiow model.

s: ODCOde I
Literalkonstant
Destination s, I ...
Destination s,

Figure 4. An instruction format for the
dynamic dataflow model.

formed, (3) computing the results, and (4)
generating and communicating result to-
kens to appropriate target nodes. Even
though the characteristics of this instruc-
tion cycle may be consistent with the pure-
dataflow model, it incurs more overhead
than its control-flow counterpart. For ex-
ample, matching tokens is more complex
than simply incrementing a program
counter. The generation and communica-
tion of result tokens imposes inordinate
overhead compared with simply writing
the result to a memory location or a regis-
ter. These inefficiencies in the pure-
dataflow model tend to degrade perfor-
mance under a low degree of parallelism.

Another formidable problem is the
management of data structures. The
dataflow functionality principle implies
that all operations are side-effect free;
that is, when a scalar operation is per-
formed, new tokens are generated after
the input tokens have been consumed.
However, absence of side effects implies
that if tokens are allowed to carry vec-
tors, arrays, or other complex structures,
an operation on a structure element must
result in an entirely new structure. Al-
though this solution is theoretically ac-
ceptable, in practice it creates excessive
overhead at the level of system perfor-
mance. A number of schemes have been
proposed in the literature: but the prob-

August 1994 29

Table 1. Architectural features of current datanow systems.

Category General Characteristics Machine Key Features

Pure- Implements the traditional
dataflow dataflow instruction cycle.

0 Direct matching of tokens

Macro-
dataflow dataflow circular pipeline and

an advanced control pipeline.

Integration of a token-based

Direct matching of tokens.

Hybrid Based on conventional control-
flow processor, i.e., sequential
scheduling is implicit by the
RISC-based architecture.
Tokens do not cany data,
only continuations.

0 Provides limited token matching
capability through special synchro-
nization primitives (i.e., JOIN).
Message handlers implement inter-
processor communication.
Can use both conventional and data-
flow compiling technologies.

Monsoonl.2

Epsilon-23

EM-44

P-RIS6

*T6

Threaded
Abstract
Machinel

Direct matching of tokens using rendezvous slots

Associates three temporary registers with

Sequential scheduling implemented by

in the frame memory (ETS model).

each thread of computation.

recirculating scheduling paradigm using
a direct recirculation path (instructions are
annotated with special marks to indicate that
the successor instruction is IP+l).
Multiple threads supported by FORK and
implicit JOIN.

A separate match memory maintains match
counts for the rendezvous slots, and each
operand is stored separately in the frame
memory.
Repeat unit is used to reduce the overhead of
copying tokens and to represent a thread of
computation (macroactor) as a linked-list.

store values within a thread.
Use of a register file to temporarily

Use of macroactors based on the strongly
connected arc model, and the execution of
macroactors using advanced control pipeline.
Use of registers to reduce the instruction cycle
and the communication overhead of
transferring tokens within a macroactor.
Special thread library functions, FORK and NULL,
to spawn and synchronize multiple threads.

Support for multithreading using a
token queue and circulating continuations.
Context switching can occur on every cycle
or when a thread dies due to LOADS or JOINS.

Overhead is reduced by off-loading
the burden of message handling and
synchronization to separate coprocessors.

Placing all synchronization, scheduling,
and storage management responsibility under
compiler control, e.g., exposes the token queue
(i.e., continuation vector) for scheduling threads.

message handlers as inlets to each code-block.
Having the compiler produce specialized

1. D.E. Culler and G.M. Papadopoulos, “The Explicit Token Store,”J. Parallel & Distributed Computing, Vol. 10,1990, pp. 289-308.

2. G.M. Papadopoulos and K.R. Traub, “Multithreading: A Revisionist View of Dataflow Architectures,” Proc. 18th Annual Int ‘1 Symp.
Computer Architecture, IEEE CS Press, Los Alamitos, Calif., Order No. 2146,1991, pp. 342-351.

3. V.G. Grafe and J.E. Hoch, “The Epsilon-2 Multiprocessor System,” J. Parallel & Distributed Computing, Vol. 10,1990, pp. 309-318.

4. S. Sakai et al., “An Architecture of a Dataflow Single-Chip Processor,” Proc. 16th Annual Int’l Symp. Computer Architecture, IEEE CS Press,
Los Alamitos, Calif., Order No. 1948 (microfiche only), 1989, pp. 46-53.

5. R.S. Nikhil and Arvind, “Can Dataflow Subsume von Neumann Computing?” Proc. 16th Annual Int‘l Symp. Computer Architecture,
IEEE CS Press, Los Alamitos, Calif., Order No. 1948 (microfiche only), 1989, pp. 262-272.

6. R. S . Nikhil, G.M. Papadopoulos, and Arvind, “*T: A Multithreaded Massively Parallel Architecture,” Proc. 19th Annual Int’l Symp.
Computer Architecture, IEEE CS Press, Los Alamitos, Calif., Order No. 2941 (microfiche only), 1992, pp. 156-167.

7. D.E. Culler et al., “Fine-Grain Parallelism with Minimal Hardware Support: A Compiler-Controlled Threaded Abstracted Machine,”
Proc. Fourth Int‘l Con$ Architectural Support for Programming Languages and Operating Systems, 1991.

30 COMPUTER

From
communication network

Direct
recirculation

To
communication network

Conventional
RISC-based

Token
queue

t

Local
memory

nstruction

Frames

Messages
to/from
memory

and
other PES

~ start 1

Figure 5. Organization of a pure-dataflow processing element. Figure 6. Organization of a hybrid processing element.

lem of efficiently representing and ma-
nipulating data structures remains a dif-
ficult challenge.

Recent architectural
developments

Table 1 lists the features of six ma-
chines that represent the current trend in
dataflow architecture: MIT’s Monsoon,
Sandia National Labs’ Epsilon-2, Elec-
trotechnical Labs’ EM-4, MIT’s P-RISC,
MIT’s *T, and UC Berkeley’s TAM
(Threaded Abstract Machine). Each pro-
posal provides a different perspective on
how parallel processing based on the
dataflow concept can be realized; how-
ever, they share the goal of alleviating the
inefficiencies associated with the
dataflow model of computation. From
these efforts, a number of innovative so-
lutions have emerged.

Three categories. The dataflow ma-
chines currently advanced in the litera-
ture can be classified into three cate-
gories: pure-dataflow, macro-dataflow,
and hybrid.

Figure 5 shows a typical processing el-
ement (PE) based on the pure-dataflow
organization. It consists of an execution
pipeline connected by a token queue.

(The processing unit contains an ALU
and a target address calculation unit for
computing the destination address(es). It
may also contain a set of registers to tem-
porarily store operands between instruc-
tions.) The pure-dataflow organization is
a slight modification of an architecture
that implements the traditional dataflow
instruction cycle. The major differences
between the current organizations and
the classic dynamic architectures are (1)
the reversal of the instruction fetch unit
and the matching unit and (2) the intro-
duction of frames to represent contexts.
These changes are mainly due to the im-
plementation of a new matching scheme.
Monsoon and Epsilon-2 are examples of
machines based on this organization.

The hybrid organization departs more
radically from the classic dynamic archi-
tectures. Tokens carry only tags, and the
architecture is based on conventional
control-flow sequencing (see Figure 6).
Therefore, architectures based on this or-
ganization can be viewed as von Neu-
mann machines that have been extended
to support fine-grained dataflow capa-
bility. Moreover, unlike the pure-
dataflow organization where token
matching is implicit in the architecture,
machines based on the hybrid organiza-
tion provide a limited token-matching ca-
pability through special synchronization
primitives. P-RISC, *T, and TAM can be

categorized as hybrid organizations.
The macro-dataflow organization,

shown in Figure 7, is a compromise be-
tween the other two approaches. It uses
a token-based circular pipeline and an
advanced control pipeline (a look-ahead
control that implements instruction
prefetching and token prematching to
reduce idle times caused by unsuccessful
matches). The basic idea is to shift to a
coarser grain of parallelism by incorpo-
rating control-flow sequencing into the
dataflow approach. E M 4 is an example
of a macro-dataflow organization.

Token matching. One of the most im-
portant developments to emerge from
current dataflow proposals is a novel and
simplified process of matching tags - di-
rect matching. The idea is to eliminate
the expensive and complex process of as-
sociative search used in previous dynamic
dataflow architectures. In a direct match-
ing scheme, storage (called an activation
frame) is dynamically allocated for all the
tokens generated by a code-block. The
actual location used within a code-block
is determined at compile time; however,
the allocation of activation frames is de-
termined during runtime. For example,
“unfolding” a loop body is achieved by
allocating an activation frame for each
loop iteration. The matching tokens gen-
erated within an iteration have a unique

August 1994 31

Token
queue

T

From
communication network

Instruction

match
memory

Y
Form token

To
communication network

.. "..* Code-block activation Instruction memory

Frame memory

Figure 8. Explicit-token-store representation of a dataflow

slot in the activation frame in which they
converge. The actual matching process
simply checks the disposition of the slot
in the frame memory.

In a direct matching scheme, any com-
putation is completely described by a
pointer to an instruction (IP) and a
pointer to an activation frame (FP). The
pair of pointers, <FP.IP>, is called a con-
tinuation and corresponds to the tag part
of a token. A typical instruction pointed
to by an IP specifies an opcode, an offset
in the activation frame where the match
will take place, and one or more dis-
placements that define the destination in-
structions that will receive the result to-
ken(s). Each destination is also
accompanied by an input port (lefthight)
indicator that specifies the appropriate
input arc for a destination actor.

To illustrate the operations of direct
matching in more detail, consider the to-
ken-matching scheme used in Monsoon.
Direct matching of tokens in Monsoon is
based on the Explicit Token Store (ETS)
model.' Figure 8 shows an ETS code-
block invocation and its corresponding
instruction and frame memory. When a
token arrives at an actor (for example,
ADD), the IP part of the cdntinuation
points to the instruction that contains an
offset r as well as displacement(s) for the
destination instruction(s). Matching is
achieved by checking the disposition of
the slot in the frame memory pointed to
by FP + r. If the slot is empty, the value of
the token is written in the slot, and its
presence bit is set to indicate that the slot
is full. If the slot is already full, the value
is extracted, leaving the slot empty, and

FP+2

Presence bits

Figure 7. Organization of a macro-datatlow processing element. program execution.

the corresponding instruction is exe-
cuted. The result token(s) generated
from the operation is communicated to
the destination instruction(s) by updat-
ing the IP according to the displace-
ment(s) encoded in the instruction. For
example, execution of the ADD operation
produces two result tokens <FP.IP + 1,
3 . 5 5 and <FP.IP + 2, 3.%bL.

In one variation to the matching

I

Direct matching
schemes used in pure-
dataflow and macro-

dataflow organizations
are implicit in the

architecture.

scheme, EM-4 maintains a simple one-
to-one correspondence between the ad-
dress of an instruction and the address of
its rendezvous slot (Figure 9). This is
achieved by allocating an operand seg-
ment - analogous to an activation frame
- that contains the same number of
memory words as the template segment
that contains the code-block. In addition,
the operand segment is bound to a tem-
plate segment by storing the correspond-
ing segment number in the first word of
the operand segment. The token's con-
tinuation contains only an FP and an off-
set. These values are used to determine

the unique location in the operand seg-
ment (called an entry point) to match to-
kens and then to fetch the corresponding
instruction word.

In the Epsilon-2 dataflow multipro-
cessor, a separate storage (match mem-
ory) contains rendezvous slots for in-
coming tokens (see Table 1, reference 3).
Similar to Monsoon, an offset encoded
in the instruction word is used to deter-
mine the match-memory location to
match tokens. However, unlike the Mon-
soon, each slot is associated with a match
count that is initialized to zero. As tokens
arrive, the match count is compared with
the value encoded in the opcode. If the
match count is less than the value en-
coded in the opcode, the match count is
incremented and stored back in the
match memory. Otherwise, the node is
considered enabled, and the match count
is reinitialized to zero. The instruction
word also specifies offsets in the frame
memory where the actual operands re-
side. Therefore, in contrast to the scheme
used in Monsoon or EM-4, the opcode
specifies two separate frame locations for
the operands.

Direct matching schemes used in the
pure-dataflow and macro-dataflow orga-
nizations are implicit in the architecture.
In other words, the token-matching
mechanism provides the full generality
of the dataflow model of execution and
therefore is supported by the hardware.
Architectures based on the hybrid orga-
nization, on the other hand, provide a
limited direct matching capability
through software implementation using
special JOIN instructions. P-RISC is an ex-

32 COMPUTER

ample of such an architecture
(Table 1, reference 5). P-
RISC is based on a conven-
tional RISC-type architec-
ture, which is extended to
support fine-grain dataflow
capability. To synchronize
two threads of computations,
a JOIN x instruction toggles
the contents of the frame lo-
cation FP + x. If the frame lo-
cation FP + x is empty, no
continuation is produced, and
the thread dies. If the frame
location is full, it produces a
continuation <FP.IP + 1>.
Therefore, a JOIN instruction
implements the direct match-
ing scheme and provides a
general mechanism for syn-
chronizing two threads of
computations. Note that the

Operand segment

FP

offset

Figure 9. The EM-4’s direct matching scheme.

JOIN operation can be generalized to sup-
port n-way synchronization; that is, the
frame location x is initialized to n - 1 and
different JOIN operations decrement it un-
til it reaches zero. JOIN instructions are
used in *T and TAM to provide explicit
synchronization.

Convergence of dataflow and von
Neumann models. Dataflow architec-
tures based on the original model pro-
vide well-integrated synchronization at a
very basic level - the instruction level.
The combined dataflowlvon Neumann
model groups instructions into larger
grains so that instructions within a grain
can be scheduled in a control-flow fash-
ion and the grains themselves in a
dataflow fashion. This convergence com-
bines the power of the dataflow model
for exposing parallelism with the execu-
tion efficiency of the control-flow model.
Although the spectrum of dataflowlvon
Neumann hybrid is very broad, two key
features supporting this shift are sequen-
tial scheduling and use of registers to
temporarily buffer the results between
instructions.

Sequential scheduling. Exploiting a
coarser grain of parallelism (compared
with instruction-level parallelism) allows
use of a simple control-flow sequencing
within the grain. This is in recognition of
the fact that data-driven sequencing is
unnecessarily general and such flexible
instruction scheduling comes at a cost of
overhead required to match tokens.
Moreover, the self-scheduling paradigm
fails to provide an adequate program-

ming medium to encode imperative op-
erations essential for execution of oper-
ating system functions (for example, re-
source management).4 In addition, the
instruction cycle can be further reduced
by using a register file to temporarily
store operands in a grain, which elimi-
nates the overhead involved in con-
structing and transferring result tokens
within a grain.

The combined model
groups instructions
into larger grains
for control-flow

scheduling of instruc-
tions but dataflow

scheduling of grains.

There are contrasting views on merg-
ing the two conceptually different execu-
tion models. The first is to extend existing
conventional multiprocessors to provide
dataflow capability (hybrid organiza-
tion). The idea here is to avoid a radical
departure from existing programming
methodology and architecture in favor of
a smoother transition that provides incre-
mental improvement as well as software
compatibility with conventional machines.
The second approach is to incorporate
control-flow sequencing into existing
dataflow architectures (pure- or macro-

dataflow organization). For the
sake of presentation, we side-
step discussion of the first ap-
proach, since sequential
scheduling is implicit in hybrid
architectures, and focus on the
second.

Control-flow sequencing can
be incorporated into the
dataflow model in a couple
ways. The first method is a sim-
ple recirculate scheduling
paradigm. Since a continuation
is completely described by a
pair of pointers <FP.IP>,
where IP represents a pointer
to the current instruction, the
successor instruction is simply

<FP.IP + 1>. In addition to this
simple manipulation, the hard-
ware must support the immedi-
ate reinsertion of continuations

into the execution pipeline. This is
achieved by using a direct recirculation
path (see Figure 5) to bypass the token
queue.

One potential problem with the recir-
culation method is that successor contin-
uations are not generated until the end
of the pipeline (“Form token unit” in Fig-
ure 5). Therefore, execution of the next
instruction in a computational thread will
experience a delay equal to the number
of stages in the pipe. This means that the
total number of cycles required to exe-
cute a single thread of computation in a
k-stage pipeline will be k times the num-
ber of instructions in the thread. On the
other hand, the recirculation method al-
lows interleaving up to k independent
threads in the pipeline, effectively mask-
ing long and unpredictable latency due
to remote loads.

The second technique for implement-
ing sequential scheduling uses the
macroactor concept. This scheme groups
the nodes in a dataflow graph into
macroactors. The nodes within a
macroactor are executed sequentially;
the macroactors themselves are sched-
uled according to the dataflow model.
The EM-4 dataflow multiprocessor im-
plements macroactors based on the
strongly connected arc model (Table 1,
reference 4). This model categorizes the
arcs of a dataflow graph as normal or
strongly connected. A subgraph whose
nodes are connected by strongly con-
nected arcs is called a strongly connected
block (SCB). An SCB is enabled (fired)
when all its input tokens are available.
Once an SCB fires, all the nodes in the

August 1994 33

block are executed exclusively by means
of the advanced control pipeline.

Epsilon-2 uses a unique architectural
feature - the repeat unit - to imple-
ment sequential scheduling (Table 1, ref-
erence 3). The unit generates repeat to-
kens, which efficiently implement data
fanouts in dataflow graphs and signifi-
cantly reduce the overhead of copying to-
kens. The unit represents a thread of
computation as a linked list and uses reg-
isters to buffer the results between in-
structions (see Figure 10). To generate a
repeat token, it adds the repeat offset en-
coded in the instruction word to the cur-
rent token’s instruction pointer. Thus, the
repeat unit can prioritize instruction ex-
ecution within a grain.

Register use. Inefficient communica-
tion of tokens among nodes was a major
problem in past dataflow architectures.
The execution model requires combin-
ing result values with target addresses to
form result tokens for communication to
successor nodes. Sequential scheduling
avoids this overhead whenever locality
can be exploited, registers can be used to
temporarily buffer results.

The general method of incorporating
registers in the dataflow execution
pipeline is illustrated in Figure 11. A set
of registers is associated with each com-
putational grain, and the instructions in
the grain are allowed to refer to these
registers as operands. For example,
Monsoon employs three temporary reg-
isters (called T registers) with each com-
putational thread. The T registers, com-
bined with a continuation and a value,
are called computation descriptors
(CDs). A CD completely describes the
state of a computational thread. Since

34

Figure 10.
Linked-list rep-
resentation of a
dataflow graph
using the repeat
unit (d and r
represent the
repeat offsets).

the number of active CDs can be large,
only threads occupying the execution
pipeline are associated with T registers.
As long as a thread does not die, its in-
structions can freely use its registers.
Once a thread dies, its registers may be
committed to a new thread entering the
pipeline; therefore, the register values
are not necessarily preserved across
grain boundaries. All current architec-
tures use registers but, unlike Monsoon,
do not fix the number of registers asso-
ciated with each computational grain.
Therefore, proper use of resources re-
quires a compile-time analysis.

Multithreading
Architectures based on the dataflow

model offer the advantage of instruction-
level context switching. Since each datum
carries context-identifying information
in a continuation or tag, context switching
can occur on a per-instruction basis.
Thus, these architectures tolerate long,
unpredictable latency resulting from split
transactions. (This refers to message-
based communication due to remote
loads. A split transaction involves a read
request from processor A to processor B
containing the address of the location to
be read and a return address, followed by
a response from processor B to processor
A containing the requested value.)

Combining instruction-level context
switching with sequential scheduling
leads to another perspective on dataflow
architectures - multithreading. In the
context of multithreading, a thread is a
sequence of statically ordered instruc-
tions where once the first instruction is
executed, the remaining instructions ex-

Token in
I Execution Dimline

$.
Token out

Figure 11. Use of a register file.

ecute without interruption? A thread de-
fines a basic unit of work consistent with
the dataflow model, and current dataflow
projects are adopting multithreading as
a viable method for combining the fea-
tures of the dataflow and von Neumann
execution models.

Supporting multiple threads. Basically,
hybrid dataflow architectures can be
viewed as von Neumann machines ex-
tended to support fine-grained interleav-
ing of multiple threads. As an illustration
of how this is accomplished, consider P-
RISC, which is strongly influenced by Ian-
nucci’s dataflowlvon Neumann hybrid ar-
chitecture? P-RISC is a RISC-based
architecture in the sense that, except for
loadktore instructions, instructions are
frame-to-frame (that is, register-to-regis-
ter) operations that operate within the PE
(Figure 6). The local memory contains in-
structions and frames. Notice that the P-
RISC executes three address instructions
on data stored in the frames; hence, “to-
kens” carry only continuations. The in-
struction-fetch and operand-fetch units
fetch appropriate instructions and
operands, respectively, pointed to by the
continuation. The functional unit per-
forms general RISC operations, and the
operand store is responsible for storing re-
sults in the appropriate slots of the frame.

For the most part, P-RISC executes in-
structions in the same manner as a con-

COMPUTER

FP.IP+l

Thread 1

F P.label2

FORK labell

FP. labell \
i Thread2

J FP.label2
7

label2: JOINX

Figure 12. Application of FORK and
JOIN constructs.

I
A ’

Remote
memory Synchronization Data
request coprocessor processor

coprocessor

t
Local memory

ventional RISC. An arithmeticllogic in-
struction generates a continuation that is
simply <FP.IP + 1>. However, unlike ar-
chitectures based on the pure-dataflow
organization, 1P represents a program
counter in the conventional sense and is
incremented in the instruction-fetch
stage. For a JUMP x instruction, the con-
tinuation is simply <FP.x>. To provide
fine-grained dataflow capability, the in-
struction set is extended with two special
instructions - FORK and JOIN - used to
spawn and synchronize independent
threads. These are simple operations ex-
ecuted within the normal processor
pipeline, not operating system calls. A
FORK instruction is a combination of a
JUMP and a fall-through to the next in-
struction. Executing a FORK label has two
effects. First, the current thread continues
to the next instruction by generating a
continuation of the form <FP.IP + 1>.
Second, a new thread is created with the
same continuation as the current contin-
uation except that the “ I P is replaced by
“label” (that is, <FP.label>). JOIN, on the
other hand, is an explicit synchronization
primitive that provides the limited direct-
matching capability used in other
dataflow machines. FORK and JOIN opera-
tions are illustrated in Figure 12.

In addition to FORK and JOIN, a special
START message initiates new threads and
implements interprocessor communica-
tion. The message of the form

<START, value, FP.IP, d>

writes the value in the location FP + d
and initiates a thread described by FP.IP.
START messages are generated by LOAD

and STORE instructions used to implement
I-structure reads and procedure calls, re-

Figure 13. Organization of a *T processor node.

spectively. For example, the general form
of a synchronizing memory read, such as
I-structure, is LOAD x , d, where an address
a in frame location FP + x is used to load
data onto frame location FP + d. Execut-
ing a LOAD instruction generates an out-
going message (via the loadlstore unit)
of the form

<I-READ, U , FP.IP, d>

where a represents the location of the
value to be read and d is the offset rela-
tive to FP. This causes the current thread
to die. Therefore, a new continuation is
extracted from the token queue, and the
new thread will be initiated. On its return
trip from the I-structure memory, an in-
coming START message (via the start unit)
writes the value at location FP + d and
continues execution of the thread. A pro-
cedure is invoked in a similar fashion
when the caller writes the arguments into
the callee’s activation frame and initiates
the threads. This is achieved by the in-
struction

START, dv, &PIP, dd

which reads a value v from FP + dv, a con-
tinuation <FP.IP> from FP+dFPIP, and
an offset d from FP + dd. Executing this
instruction sends a START message to an
appropriate processing element and ini-
tiates a thread.

P-RISC supports multithreading in one
of two ways. In the first method, as long as
a thread does not die due to LOADS or
JOINS, it is executed using the von Neu-
mann scheduling IP + 1. When a thread
dies, a context switch is performed by ex-
tracting a token from the token queue,
The second method is to extract a token

from the token queue every pipeline cycle.
*T, a successor to P-RISC, provides

similar extensions to the conventional in-
struction set (Table 1, reference 6). How-
ever, to improve overall performance, the
thread-execution and the message-han-
dling responsibilities are distributed
among three asynchronous processors.
The general organization of *T is shown
in Figure 13. A *T node consists of the
data processor, the remote-memory re-
quest coprocessor, and the synchroniza-
tion coprocessor, which all share a local
memory. The data processor executes
threads by extracting continuations from
the token queue using the NEXT instruc-
tion. It is optimized to provide excellent
single-thread performance. The remote-
memory request coprocessor handles in-
coming remote LOADISTORE requests. For
example, a LOAD request is processed by
a message handler, which (1) accesses the
local memory and (2) sends a START mes-
sage as a direct response without dis-
turbing the data processor. On the other
hand, the synchronization coprocessor
handles returning LOAD responses and
JOIN operations. Its responsibility is to (1)
continually queue messages from the net-
work interface; (2) complete the unfin-
ished remote LOADS by placing message
values in destination locations and, if
necessary, performing JOIN operations;
and (3) place continuations in the token
queue for later pickup and execution by
the data processor.

In contrast to the two hybrid projects
discussed thus far, TAM provides a con-
ceptually different implementation of the
dataflow execution model and multi-
threading (Table 1, reference 7). In
TAM, the execution model for fine-grain
interleaving of multiple threads is sup-

August 1994 35

Figure 14. A
Threaded Ab-
stract Machine
(TAM) activa-
tion.

..........................

.........................

ported by an appropriate compilation
strategy and program representation, not
by elaborate hardware. In other words,
rather than viewing the execution model
for fine-grain parallelism as a property
of the machine, all synchronization,
scheduling, and storage management is
explicit and under compiler control.

Figure 14 shows an example of a TAM
activation. Whenever a code-block is in-
voked, an activation frame is allocated.
The frame provides storage for local vari-
ables, synchronization counters, and a
continuation vector that contains ad-
dresses of enabled threads within the
called code-block. Thus, when a frame is
scheduled, threads are executed from its
continuation vector, and the last thread
schedules the next frame.

TAM supports the usual FORK opera-
tions that cause additional threads to be
scheduled for execution. A thread can be
synchronized using SYNC (same as JOIN)

operations that decrement the entry
count for the thread. A conditional flow
of execution is supported by a SWITCH op-
eration that forks one of two threads
based on a Boolean input value. A STOP

(same as NEXT) operation terminates the
current thread and causes initiation of an-
other thread. TAM also supports inter-
frame messages, which arise in passing
arguments to an activation, returning re-
sults, or split-phase transactions, by
associating a set of inlets with each code-
block. Inlets are basically message han-
dlers that provide an external interface.

As can be seen, TAM’S support for
multithreading is similar to that of the
other hybrid machines discussed. The
major difference is that thread scheduling
in P-RISC and *T is local and implicit
through the token queue. In TAM,

thread scheduling is explicit and under
compiler control.

In contrast to P-RISC, *T, and TAM,
Monsoon’s multithreading capability is
based on the pure-dataflow model in the
sense that tokens not only schedule in-
structions but also carry data. Monsoon
incorporates sequential scheduling, but
with a shift in viewpoint about how the
architecture works. It uses presence bits
to synchronize predecessorlsuccessor in-
structions through rendezvous points in
the activation frame. To implement the
recirculate scheduling paradigm, instruc-
tions that depend on such scheduling are
annotated with a special mark to indicate
that the successor instruction is IP + 1 .
This allows each instruction within a
computation thread to enter the execu-
tion pipeline every k cycles, where k is
the number of stages in the pipe. The ac-
tual thread interleaving is accomplished
by extracting a token from the token
queue and inserting it into the execution
pipeline every clock cycle. Thus, up to k
active threads can be interleaved through
the execution pipeline.

New threads and synchronizing
threads are introduced by primitives sim-
ilar to those used in hybrid machines -

bell generates two continuations, <FP.la-
bell> and <FP.IP + b. An implicit JOIN

instruction of the form

FORK and JOIN. For example, a FORK la-

label2 [FP + offset]: instruction

indicates the threads’ rendezvous slot is
at frame location [FP + offset]; therefore,
the instruction will not execute until both
continuations arrive. FORK and JOIN oper-
ations are illustrated in Figure 15.

Although FORK and JOIN can be viewed

FORK labdl

FP.label2, v i /
FP.label2, vr

FP.label1, labell VI)(

FP.labell+l ,
vl+M

[FP+off set]:

.labell, vr

FP.label2,
Vl+M

Figure 15. Application of FORK and
JOIN constructs and equivalent dataflow
actor in Monsoon.

as thread-spawning and thread-synchro-
nizing primitives, these operations can
also be recognized as instructions in the
dataflow execution model. For example,
a FORK instruction is similar to but less
general than a COPY operation used in the
pure-dataflow model. JOIN operations are
implemented through the direct match-
ing scheme. For example, consider the
dataflow actor shown in Figure 15, which
receives two input tokens, evaluates the
sum, and generates two output tokens.
The operation of this actor can be real-
ized by a combination of instructions of
the form

labell[FP + offset]:
ADD vl, vr I I FORK laben,

where II represents the combination of an
ADD and a FORK. In a pure-dataflow or-
ganization (including Monsoon), the ex-
ecution pipeline handles token matching,
arithmetic operation, and token forming.
Therefore, instructions that appear to be
distinctively multithreaded in fact can be
viewed as part of the more traditional
dataflow operations.

In EM-4, an SCB is thought of as a se-
quential, uninterruptable thread of con-
trol. Therefore, the execution of multi-
ple threads can be implemented by
passing tokens between SCBs. This is

36 COMPUTER

achieved by having thread library func-
tions that allow parallelism to be ex-
pressed explicitly? For example, a master
thread spawns and terminates a slave
thread using functions FORK and NULL, re-
spectively. The general format for the
FORK function is given as

FORK(PE, func, n, argl, . . . , argn),

where PE specifies the processing ele-
ment where the thread was created, and
n represents the number of arguments in
the thread. This function causes the fol-
lowing operations: (1) allocate a new
operand segment on the processing ele-
ment and link it to the template segment
specified by the token’s address portion,
(2) write the arguments into the operand
segment, (3) send the NULL routine’s ad-
dress as a return address for the newly
created thread, and (4) continue the ex-
ecution of the current thread. Once exe-
cution completes, the new thread termi-
nates by executing a NULL function.

Using the FORK and NULL functions, a
master thread can distribute the work
over a number of slave threads to com-
pute partial results. The final result is col-
lected when each slave thread sends its
partial result to the master thread. Mul-
tithreading is achieved by switching
among threads whenever a remote LOAD

operation occurs. However, since each
thread is an SCB (that is, an uninterrupt-
able sequence of instructions), interleav-
ing of threads on each cycle is not al-
lowed.

Partitioning programs to threads. An
important issue in multithreading is the
partitioning of programs to multiple se-
quential threads. A thread defines the ba-
sic unit of work for scheduling - and
thus a computation’s granularity. Since
each thread has an associated cost, it di-
rectly affects the amount of overhead re-
quired for synchronization and context
switching. Therefore, the main goal in
partitioning is maximizing parallelism
while minimizing the overhead required
to support the threads.

A number of proposals based on the
control-flow model use multithreading as
a means of tolerating high-latency mem-
ory operations, but thread definitions
vary according to language characteris-
tics and context-switching criteria. For
example, the multiple-context schemes
used in Weber and Gupta9 obtain threads
by subdividing a parallel loop into a num-
ber of sequential processes, and context

switching occurs when a main memory
access is required (due to a cache miss).
As a consequence, the thread granularity
in these models tends to be coarse,
thereby limiting the amount of paral-
lelism that can be exposed. On the other
hand, non-strict functional languages for
dataflow architectures, such as Id, com-
plicate partitioning due to feedback de-
pendencies that may only be resolved dy-
namically. These situations arise because
of the possibility of functions or arbitrary
expressions returning results before all
operands are computed (for example, I-
structure semantics). Therefore, a more
restrictive constraint is placed on parti-
tioning programs written in non-strict
languages.

Iannucci’ has outlined several impor-
tant issues to consider in partitioning pro-

Thread definitions
vary according to

language characteris-
tics and context-

switching criteria.

grams: First, a partitioning method
should maximize the exploitable paral-
lelism. In other words, the attempt to
aggregate instructions does not imply re-
stricting or limiting parallelism. Instruc-
tions that can be grouped into a thread
should be the parts of a code where little
or no exploitable parallelism exists. Sec-
ond, the longer the thread length, the
longer the interval between context
switches. This also increases the locality
for better utilization of the processor’s
resources. Third, any arc (that is, data de-
pendency) crossing thread boundaries
implies dynamic synchronization. Since
synchronization operations introduce
hardware overhead and/or increase pro-
cessor cycles, they should be minimized.
Finally, the self-scheduling paradigm of
program graphs implies that execution
ordering cannot be independent of pro-
gram inputs. In other words, this dynamic
ordering behavior in the code must be
understood and considered as a con-
straint on partitioning.

A number of thread partitioning algo-
rithms convert dataflow graph represen-
tation of programs into threads based on
the criteria outlined above. Schauser et

al.6 proposed a partitioning scheme based
on dual graphs. A dual graph is a directed
graph with three types of arcs: data, con-
trol, and dependence. A data arc repre-
sents the data dependency between pro-
ducer and consumer nodes. A control arc
represents the scheduling order between
two nodes, and a dependence arc speci-
fies long latency operation from message
handlers (that is, inlets and outlets) send-
ingheceiving messages across code-block
boundaries.

The actual partitioning uses only the
control and dependence edges. First, the
nodes are grouped as dependence sets
that guarantee a safe partition with no
cyclic dependencies. A safe partition has
the following characteristics6: (1) no out-
put of the partition needs to be produced
before all inputs are available; (2) when
the inputs to the partition are available,
all the nodes in the partition are exe-
cuted; and (3) no arc connects a node in
the partition to an input node of the same
partition. The partitions are merged into
larger partitions based on rules that gen-
erate safe partitions. Once the general
partitioning has been completed, a num-
ber of optimizations are performed in an
attempt to reduce the synchronization
cost. Finally, the output of the partitioner
is a set of threads wherein the nodes in
each thread are executed sequentially
and the synchronization requirement is
determined statically and only occurs at
the beginning of a thread.

Future prospects
To predict whether dataflow comput-

ing will have a legitimate place in a world
dominated by massively parallel von
Neumann machines, consider the suit-
ability of current commercial parallel ma-
chines for fine-grain parallel program-
ming. Studies on TAM show that it is
possible to implement the dataflow exe-
cution model on conventional architec-
tures and obtain reasonable performance
(Table 1, reference 7). This has been
demonstrated by compiling Id90 pro-
grams to TAM and translating them, first
to TLO, the TAM assembly language, and
finally to native machine code for a vari-
ety of platforms, mainly CM-5.1° How-
ever, TAM’S translation of dataflow
graph program representation to control-
flow execution also shows a basic mis-
match between the requirements for fine-
grain parallelism and the underlying
architecture. Fine-grain parallel pro-

August 1994 37

gramming models dynamically create
parallel threads of control that execute
on data structures distributed among pro-
cessors. Therefore, efficient support for
synchronization, communication, and dy-
namic scheduling becomes crucial to
overall performance.

One major problem of supporting fine-
grain parallelism on commercial parallel
machines is communication overhead. In
recent years, the communication perfor-
mance of commercial parallel machines
has improved significantly." One of the
first commercial message-passing multi-
computers, Intel's iPSC, incurs a com-
munication overhead of several millisec-
onds, but current parallel machines, such
as KSRl, Paragon, and CM-5, incur a
one-way communication overhead of just
25 to 86 microseconds." Despite this im-
provement, the communication overhead
in these machines is too high to efficiently
support dataflow execution. This can be
attributed to the lack of integration of the

- for example, by off-loading message
handling to coprocessors, as in *T - may
reduce this even more.

With the advent of multithreading, fu-
ture dataflow machines will no doubt
adopt a hybrid flavor, with emphasis on
improving the execution efficiency of
multiple threads of computations. Ex-
periments on TAM have already shown
how implementation of the dataflow ex-
ecution model can be approached as a
compilation issue. These studies also in-
dicate that considerable improvement is
possible through hardware support,
which was the original goal of dataflow
computer designers - to build a special-
ized architecture that allows direct map-
ping of dataflow graph programs onto the
hardware. Therefore, the next generation
of dataflow machines will rely less on
very specialized processors and empha-
size incorporating general mechanisms

TAM alleviates this problem to some ex-
tent by relegating the responsibilities of
scheduling and storage management to
the compiler. For example, continuation
vectors that hold active threads are im-
plemented as stacks, and all frames hold-
ing enabled threads are linked in a ready
queue. However, both hardware and
software methods discussed are based on
a naive, local scheduling discipline with
no global strategy. Therefore, appropri-
ate means of directing scheduling based
on some global-level understanding of
program execution will be crucial to the
success of future dataflow architectures.12

Another related problem is the alloca-
tion of frames and data structures. When-
ever a function is invoked, a frame must be
allocated; therefore, how frames are allo-
cated among processors is a major issue.
Two extreme examples are a random al-
location on any processor or local alloca-
tion on the processor invoking the func-
tion. The proper selection of an allocation

I

network interface as part of hardware
functionality. That is, individual proces-

strategy will greatly affect the balance of
the computational load. The distribution

sors offer high execution performance on of data structures among the processors is
sequential streams of computations, but The Of closely linked to the allocation of frames.
communication and synchronization threading &Den& For example, an allocation policy that dis-

U 1
among processors have substantial over-
head.l03l1

In comparison, processors in current

on rapid support of
context switching-

tributes a-large data structure among the
processors may experience a large num-
ber of remote messages, which will require

dataflow machines-communicate by exe-
cuting message handlers that directly
move data in and out of preallocated stor-
age. Message handlers are short threads
that handle messages entirely in user
mode, with no transfer of control to the
operating system. For example, in Mon-
soon, message handlers are supported by
hardware: A sender node can format and
send a message in exactly one cycle, and
a receiver node can process an incoming
message by storing its value and per-
forming a JOIN operation in one or two cy-
cles. In hybrid-class architectures, mes-
sage handlers are implemented either by
specialized hardware, as in P-RISC and
*T, or through software (for example, in-
terrupt or polling) as part of the processor
pipeline execution. The most recent hy-
brid-class prototype under development
at MIT and Motorola, inspired by the con-
ceptual *T design at MIT, uses processor-
integrated networking that directly inte-
grates communication into the MC88110
superscalar RISC microprocessor." Pro-
cessor-integrated networking efficiently
implements the message-passing mecha-
nism. It provides a low communication
overhead of 100 nanoseconds, and over-
lapping computation with communication

to support fine-grain parallelism into ex-
isting sequential processors. The major
challenge, however, will be to strike a bal-
ance between hardware complexity and
performance.

Despite recent advances toward de-
veloping effective architectures that sup-
port fine-grain parallelism and tolerate
latency, some challenges remain. One of
these challenges is dynamic scheduling.
The success of multithreading depends
on rapid support of context switching.
This is possible only if threads are resi-
dent at fast but small memories (that is, at
the top level of the storage hierarchy),
which limits the number of active threads
and thus the amount of latency that can
be tolerated. All the architectures de-
scribed - Monsoon, Epsilon-2, EM-4, P-
RISC, and *T - rely on a simple
dataflow scheduling strategy based on
hardware token queues. The generality
of the dataflow scheduling makes it diffi-
cult to execute a logically related set of
threads through the processor pipeline,
thereby removing any opportunity to uti-
lize registers across thread boundaries.

more threads to mask the delays. On the
other hand, allocating data structures lo-
cally may cause one processor to serve a
large number of accesses, limiting the en-
tire system's performance. Therefore, the
computation and data must be studied in
unison to develop an effective allocation
methodology.

he eventual success of dataflow
computers will depend on their T programmability. Traditionally,

they've been programmed in languages
such as Id and SISAL (Streams and It-
erations in a Single Assignment Lan-
guage)* that use functional semantics.
These languages reveal high levels of
concurrency and translate onto dataflow
machines and conventional parallel ma-
chines via TAM. However, because their
syntax and semantics differ from the im-
perative counterparts such as Fortran
and C, they have been slow to gain ac-
ceptance in the programming commu-
nity. An alternative is to explore the use
of established imperative languages to
program dataflow machines. However,
the difficulty will be analyzing data de-
pendencies and extracting parallelism

38 COMPUTER

from source code that contains side ef-
fects. Therefore, more research is still
needed to develop compilers for con-
ventional languages that can produce
parallel code comparable to that of par-
allel functional languages. H

References
1. Arvind and D.E. Culler, “Dataflow Ar-

chitectures,’’ Ann. Review in Computer
Science, Vol. 1,1986, pp. 225-253.

2. J.-L. Gaudiot and L. Bic, Advanced Top-
ics in Dataflow Computing, Prentice Hall,
Englewood Cliffs, N.J., 1991.

3. Arvind, D.E. Culler, and K. Ekanadham,
“The Price of Fine-Grain Asynchronous
Parallelism: An Analysis of Dataflow
Methods,” Proc. CONPAR 88, Sept. 1988,
pp. 541-555.

4. D.E. Culler and Arvind, “Resource Re-
quirements of Dataflow Programs,” Proc.
15th Ann. Int’l Symp. Computer Architec-
ture, IEEE CS Press, Los Alamitos, Calif.,
Order No. 861 (microfiche only), 1988, pp.
141-150.

5. B. Lee, A.R. Hurson, and B. Shirazi, “A
Hybrid Scheme for Processing Data Struc-
tures in a Dataflow Environment,” IEEE
Trans. Parallel and Distributed Systems,
Vol. 3, No. 1, Jan. 1992, pp. 83-96.

6. K.E. Schauser et al., “Compiler-Con-
trolled Multithreading for Lenient Parallel
Languages,” Proc. Fifth ACM Conf: Func-
tional Programming Languages and Com-
puter Architecture, ACM, New York, 1991,
pp. 50-72.

7. R.A. Iannucci, “Towards a Dataflow/von
Neumann Hybrid Architecture,” Proc.
15th Ann. Int’l Symp. Computer Architec-
ture, IEEE CS Press, Los Alamitos, Calif.,
Order No. 861 (microfiche only), 1988, pp.
131-140.

8. M. Sat0 et al., “Thread-Based Program-
ming for EM-4 Hybrid Dataflow Ma-
chine,” Proc. 19th Ann. Int’l Symp. Com-
puter Architecture, IEEE CS Press, Los
Alamitos, Calif., Order No. 2941 (mi-
crofiche only), 1992, pp. 146-155.

9. W.D. Weber and A. Gupta, “Exploring
the Benefits of Multiple Hardware Con-
texts in a Multiprocessor Architecture:
Preliminary Results,” Proc. 16th Ann. Int’l
Symp, Computer Architecture, IEEE CS
Press, Los Alamitos, Calif., Order No.
1948 (microfiche only), 1989, pp. 273-280.

10. E. Spertus et al., “Evaluation of Mecha-
nisms for Fine-Grained Parallel Programs
in the J-Machine and the CM-5,” Proc.
20th Ann. Int’l Symp. Computer Architec-
ture, IEEE CS Press, Los Alamitos, Calif.,
Order No. 3811 (microfiche only), 1993.

August 1994

11. G.M. Papadopoulos et al., “*T: Integrated
Building Blocks for Parallel Computing,”
Proc. Supercomputing 93, IEEE CS Press,
Los Alamitos, Calif., Order No. 4340,
1993, pp. 624-635.

12. D.E. Culler, K.E. Schauser, and T. von
Eicken, “Two Fundamental Limits on
Dataflow Multiprocessing,” Proc. IFIP
Working Group 10.3 (Concurrent Systems)
Working Conf: on Architecmre and Com-
pilation Techniques for Fine- and Medium-
Grain Parallelism, Jan. 1993.

Ben Lee is an assistant professor in the De-
partment of Electrical and Computer Engi-
neering at Oregon State University. His in-
terests include computer architectures,
parallel and distributed systems, program al-
location, and dataflow computing. Lee re-
ceived the BEEE degree from the State Uni-
versity of New York at Stony Brook in 1984
and the PhD degree in computer engineering
from Pennsylvania State University in 1991.

He is a member of ACM and the IEEE Com-
puter Society.

A.R. Hurson is on the computer engineering
faculty at Pennsylvania State University. His
research for the past 12 years has been directed
toward the design and analysis of general as
well as special-purpose computers. He has
published over 120 technical papers and has
served as guest coeditor of special issues of the
IEEE Proceedings, the Journal of Parallel and
Distributed Computing, and the Journal of In-
tegrated Computer-Aided Engineering. He is
the coauthor of Parallel Architectures for Data
and Knowledge Base Systems (IEEE CS Press,
to be published in October 1994), a member of
the IEEE Computer Society Press Editorial
Board, and a speaker for the Distinguished
Visitors Program.

Readers can contact Lee at Oregon State
University, Dept. of Electrical and Computer
Engineering, Corvallis, OR 97331-3211. His
Internet address is benl@ece.orst.edu.

A quarterly magazine published by the IEEE Computer Society

Subscribe before August 31.
Receive the final 1994 issues for just $12.

0 FALL 1994 - High-Performance Fortran
WINTER 1994 - Real-Time Computing

YES, SIGN ME UP! A s a member of the Computer Society or another IEEE Society, I qualify for the
member rate of $12 for a half-year subscription (two issues).

Society IEEE Membership No.
Since IEEE subscriptions are annualized, orders received from September 1994 through Februaly

1994 will be entered as full-year subscriptions for the 1995 calendar year. Pay the full-year rate of $24
for four quarterly issues. For membership information, see pages 16A-B.

FULL SICNATURE Dam

NAME

STREETADDRESS

STATdCOWRi’ ZIPPOSTAL LODE

Payment enclosed Residents of CA, DC, Canada, and Belgium, add applicable tax.

0 Charge to 0 Visa 0 MasterCard U American Express

CWRGE-URD NUMUER EXPIRATION DATE

....................
MUNIH YE4R

MAIL ro CIRCLUTION DEFT, 10662 LOS VAQUEROS CIRCLE, PO Bux3014, Lob AUMIIOS, LA 90720-1264

mailto:benl@ece.orst.edu

