
5548 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 7, APRIL 1, 2022

A Secure Platform Model Based on ARM Platform
Security Architecture for IoT Devices

Junyoung Jung , Beomseok Kim , Jinsung Cho , and Ben Lee , Member, IEEE

Abstract—The proliferation of Internet of Things (IoT) devices
comes with many challenges among which security is one of
the most serious issues. In order to address the security issue
for low-end IoT devices, ARM recently proposed the platform
security architecture (PSA), which provides execution isolation
to safely manage and protect the computing resources of low-
end IoT devices. However, developers implementing IoT services
for PSA-based IoT devices need to follow complex development
procedures and understand the PSA hardware, which dramat-
ically increases the development time and cost of PSA-based
IoT devices. This article analyzes vulnerabilities that may arise
from general-purpose low-end IoT devices to derive the secu-
rity requirements and essential security services for PSA-based
IoT devices, and proposes a secure platform model based on the
analysis results. The proposed secure platform model consists of
System Security Services and Application Security Services based
on the basic PSA model and essential trusted subsystems, and
it is designed to be flexible and applicable to various types of
PSA-based IoT devices. In addition, it provides secure platform
services APIs to enable easy and fast development of IoT services.
To evaluate the proposed secure platform model, two proof-of-
concept implementations are provided by using both the basic
PSA model with secure element (SE) and a reference device for
ARM’s PSA. Finally, a case study shows that the development of
IoT services can be done easily and quickly using the proposed
security platform model.

Index Terms—ARM platform security architecture (PSA),
Internet of Things (IoT) security, security platform, security
service, trusted execution environment (TEE).

I. INTRODUCTION

W ITH the rapid growth of Internet of Things (IoT), the
number of IoT devices has surpassed the number of

mobile phones in 2018 and is expected to reach 18 billion
devices by 2022 [1]. This growth is driven by a wide range
of services, including home automation (e.g., smart locks
and thermostats), industrial automation, connected vehicles,

Manuscript received April 20, 2021; revised June 1, 2021; accepted August
26, 2021. Date of publication September 1, 2021; date of current version
March 24, 2022. This work was supported in part by the Young Researcher
Support Program through NRF Grant founded by the Ministry of Science,
ICT & Future Planning (MSIP) under Grant NRF-2018R1C1B6006938, and
in part by the Basic Science Research Program through NRF Grant funded
by the Ministry of Education under Grant NRF-2017R1D1A1B04035914.
(Corresponding author: Beomseok Kim.)

Junyoung Jung, Beomseok Kim, and Jinsung Cho are with the Department
of Computer Engineering, Kyung Hee University, Yongin-si 17104,
South Korea (e-mail: junyoung.jung@khu.ac.kr; passion0822@khu.ac.kr;
chojs@khu.ac.kr).

Ben Lee is with the School of Electrical Engineering and Computer
Science, Oregon State University, Corvallis, OR 97331 USA (e-mail:
benl@eecs.orst.edu).

Digital Object Identifier 10.1109/JIOT.2021.3109299

Fig. 1. Vulnerabilities and attacks in the entities that comprise the IoT
systems.

smart cities, water management, agriculture, and even vending
machines [2]. Consequently, IoT has also become an attractive
target for attackers and well-known threats vary from simple
resource hijacking, such as Mirai and Hajime botnets [3], [4],
to IoT ransomware targeting critical infrastructures such as
power grids [5].

Typically, IoT systems are composed of cloud servers, appli-
cations, and devices, and they are connected to each other as
shown in Fig. 1. IoT security issues can arise in various ways
for each entity in the system. First, cloud endpoints are Internet
components for IoT services, and they provide core services
such as remote administration, alerts, and digital contents [6].
Various cloud APIs exist for the development of such cloud
endpoints, but they can be vulnerable. For example, attack-
ers can inject inappropriate footage, trigger false alarms, and
launch Denial-of-Service (DoS) attacks to the cloud endpoints
through these insecure APIs [7], [8]. In addition, an access
token hijacking may occur using forged requests from applica-
tions to cloud endpoints [9]. Second, applications are typically
implemented as mobile applications and they are vulnerable
to threats, such as over-privileged access, programming error,
and hard-coded sensitive data [10]–[12]. Finally, devices that
represent other endpoints of IoT systems also have vulnera-
bilities, such as software bugs, weak authentication, insecure
default configuration, and hardware susceptibility (e.g., eas-
ily extractable flash memory, slow cryptographic functions,
easily accessible debug interface, etc.), and there are many

2327-4662 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on May 04,2022 at 22:12:06 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9412-2057
https://orcid.org/0000-0002-9369-9126
https://orcid.org/0000-0003-1661-4923
https://orcid.org/0000-0001-6289-1134

JUNG et al.: SECURE PLATFORM MODEL BASED ON ARM PLATFORM SECURITY ARCHITECTURE FOR IoT DEVICES 5549

attacks that exploit these vulnerabilities [13]–[15]. Meanwhile,
the infrastructure connecting IoT components consists of var-
ious communication technologies, such as WLAN, ZigBee,
long range (LoRa), and Bluetooth low energy (BLE). Since
these are generally implemented using lightweight protocols,
they are vulnerable to various attacks, such as hijacking and
man in the middle (MITM) attacks [16], [17]. Fortunately,
many studies exist on dealing with vulnerabilities of cloud
endpoints, applications, and infrastructures, and the aforemen-
tioned security problems can be handled with existing security
techniques.

Unlike other entities in the system, IoT devices are generally
implemented using low-end hardware platforms [18]. As such,
they are susceptible to various vulnerabilities, such as sensi-
tive information leak, firmware modification attack, firmware
roll-back attack, etc., because bootloader/firmware binaries are
stored in easily accessible storage and can be analyzed and
modified [19], [20].

To deal with these problems, various research on enhanc-
ing the security of low-end devices have been performed, and
some of them are implemented as software-based security
services [21], [22]. However, software security implementa-
tions may cause additional vulnerabilities [23]. In addition,
security and privacy concerns for IoT devices are particularly
difficult due to the short time-to-market (TTM) [24]. Despite
these problems, studies on systems that provide hardware Root
of Trust (RoT)-based integrated security support for low-end
IoT devices are still in their early stage. The trusted computing
group (TCG) defines RoT as a component that performs one
or more security-specific functions, such as measurement, stor-
age, reporting, verification, and/or update. An RoT is always
trusted to behave in an expected manner, and studies have
shown the importance of using hardware RoT (i.e., nonmod-
ifiable boot ROM, cryptographic processor, etc.) to improve
security in low-end devices [26], [27].

Meanwhile, ARM recently proposed the platform secu-
rity architecture (PSA) as a security solution for low-end
IoT devices based on Cortex-M series processors [28]. The
ARM PSA has two execution states to provide a trusted
execution environment (TEE), a secure state (Secure World)
and a nonsecure state (Normal world), and execution iso-
lation between them. Accordingly, application functions are
divided into two parts, i.e., secure processing environment
(SPE) firmware and non-SPE (NSPE) firmware, in the design
phase and developed separately by Secure World developers
(SWDs) and normal world developers (NWDs), respectively.
However, the ARM documentation only specifies the minimum
required components and functions to implement the PSA. The
requirements for adding additional hardware RoT elements
to address vulnerabilities caused by software bugs, such as
a trusted subsystem, are not defined and instead delegated to
platform providers. Therefore, NWDs and SWDs would have
to be familiar with both the PSA as well as trusted subsystem
hardware, including switching between secure and nonsecure
states. Since applications for low-end IoT devices are quite
simple, this complicated development process will increase
the development time and cost. The development time and cost
can be significantly reduced if hardware developers and SWDs

can provide a secure platform so that NWDs can develop IoT
applications without the knowledge of the complicated PSA
hardware.

Based on the above-mentioned discussions, this article pro-
poses a model that includes a secure software platform and
essential trusted subsystems based on the ARM PSA hard-
ware platform. In order to derive the security requirements
for the proposed model, a comprehensive analysis is first per-
formed on vulnerabilities and threats by considering hardware
restrictions of low-end devices and the IoT standard docu-
ment on security requirements. Based on the derived security
requirements, the proposed secure platform model includes
five security services based on a hardware design that includes
identified essential trusted subsystem and secure platform APIs
for NWDs. The proposed secure platform model is a general
model that not only provides guidelines for hardware develop-
ers and SWDs to develop a PSA-based hardware platform, but
also helps NWDs to quickly develop nonsecure firmware. Our
evaluation of two Proof-of-Concept (PoC) implementations
shows that the proposed model is useful for the PSA-based
platform development. In addition, our evaluation shows that
application developers can easily and quickly develop secure
IoT applications by demonstrating a smart plug device.

The remainder of this article is organized as follows:
Section II presents a preliminary study as well as a background
on ARM TrustZone and PSA. Section III analyzes vulnerabil-
ities, threats, and requirements of low-end IoT devices based
on the oneM2M standard and ARM’s PSA documents. The
proposed security platform model is presented in Section IV.
Section V discusses our PoC implementations of the proposed
security platform model. Section VI presents a case study on
the development of a secure IoT device based on the secure
platform model. Finally, Section VII concludes this article and
discusses possible future work.

II. PRELIMINARY STUDY AND BACKGROUND

A. Preliminary Study

As a preliminary study, firmware from 16 commercial IoT
devices were extracted and analyzed1 to determine whether
commercial IoT devices employ security solutions based on
the hardware RoT support and how easily their firmware
can be accessed. This was achieved by desoldering the flash
memory chips on each device and obtaining the firmware
binaries using a flash memory reader. The extracted firmware
files were then analyzed using various analysis tools, such as
Binwalk, IDA pro, Ghidra, etc.

The results of our study can be summarized as fol-
lows: 1) the hardware platforms for most of the existing
IoT devices are designed without security considerations,

1The 16 commercial IoT devices examined were as follows: Samsung
Galaxy S9 (smart phone), Synology DS 218J (NAS), Xiaomi Mi Box S (set
top box), LG VR6341LVM (smart TV), FOSCAM (IP camera), Xiami Mi
Smart Home Gateway 2 (gateway), Broadlink RM-MINI3 (gateway), ipTime
A1004ns (router), Gateman DANDY S (doorlock), DJI Tello (drone), SYMA
X8W (drone), Brunt BREAKR1601 (blind engine), Xiaomi Mijia Bluetooth
Smart Temperature & Humidity Sensor (smart sensor), Xiaomi PM2.5 Sensor
(smart sensor), SK BDS301W (smart switch), and Darwin PM-B540-W (smart
meter).

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on May 04,2022 at 22:12:06 UTC from IEEE Xplore. Restrictions apply.

5550 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 7, APRIL 1, 2022

Fig. 2. Basic PSA model.

Fig. 3. Elements of the PSA firmware framework.

and their firmware can easily be extracted; 2) reverse engi-
neering the extracted firmware binaries, including disassem-
bling/decompiling, makes it possible to obtain essential data,
such as credentials and even the main flow of control of codes;
and 3) high-end Linux devices are much more vulnerable than
bare-metal devices, and for this reason, Samsung Galaxy and
LG smart TVs rely on the ARM’s TrustZone technology. The
implication of this study is that low-end IoT devices are being
developed without any security considerations, and thus this
poses a tremendous threat to IoT services.

B. ARM Platform Security Architecture

TrustZone is a hardware platform that improves security
by providing an execution isolation environment on the ARM
Cortex-A processor. Based on this, the ARM PSA was recently
proposed to provide TEE for low-cost IoT devices [28]. Fig. 2
illustrates the basic ARM PSA model consisting of the essential
components, which includes processing elements (PEs), RAM,
boot ROM, and flash memory. PEs consist of ARM Cortex-M
v8 microcontroller (MCU) and security attribution unit (SAU),
which supports system state transition in an isolated execution
environment. Flash memory stores the PSA firmware framework
that includes SPE firmware and NSPE firmware.

Fig. 3 shows the elements of ARM’s PSA firmware frame-
work that isolates the Secure World and the Nonsecure
World. Both worlds have their own user along with cache,
memory, and other resources. In addition, the Secure World is

Fig. 4. System state transition of PSA firmware framework.

subdivided into Secure Partitions according to their purpose
and classified into PSA RoT and Application RoT. The security
functions essential to the system are implemented in the PSA
RoT, while the Application RoT includes security functions
used by nonsecure application firmware. The Secure Partition
Manager, which is the most privileged firmware, protects the
PSA RoT by managing isolation among PSA RoT, Application
RoT, and Application. In addition, it provides communications
among the isolated firmware components.

Fig. 4 shows the two cases of system state transitions [32].
In the first case, the system state transitions from the
Nonsecure state to Secure state occurs when a code in the
nonsecure region calls a secure function in the secure region.
During the call, the processor allocates a special type of secure
location called nonsecure callable (NSC) to properly return
from executing the secure function. NSC executes the Secure
Gateway (SG) instruction to store an entry point. When the
secure function completes, the state is switched to the nonse-
cure state by using the BXNS instruction to return to the entry
point stored in the NSC. In the second case, the state transi-
tions from the secure state to the nonsecure state occurs when a
code in the secure region calls a nonsecure function in the non-
secure region. This is accomplished by executing the BLXNS
instruction, which causes the return address in the link regis-
ter (LR) to be set to a special value called FNC_RETURN to
switch to the secure state after the execution of the nonsecure
state is completed. These system state switches are performed
securely with the support of the SAU embedded in the ARM
Cortex-M v8 processor.

ARM also defines the main components of the PSA RoT
as follows.

1) PSA Security Lifecycle: Identification and control of
available credentials of the device during the manufac-
turing stage of the PSA-based device.

2) PSA Immutable RoT: Nonmodifiable firmware and data
provisioned during manufacturing.

3) Trusted Boot and Firmware Update: Ensures the
integrity and authenticity of device firmware.

4) Secure Partition Manager: Manages the isolation of the
RoT services and scheduling logic to service requests.

5) PSA RoT Services: Essential encryption functions and
access management of immutable RoT for Application
RoT services.

The main components of the PSA RoT are essen-
tial items that platform providers should implement when

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on May 04,2022 at 22:12:06 UTC from IEEE Xplore. Restrictions apply.

JUNG et al.: SECURE PLATFORM MODEL BASED ON ARM PLATFORM SECURITY ARCHITECTURE FOR IoT DEVICES 5551

TABLE I
VULNERABILITIES AND SECURITY REQUIREMENTS OF LOW-END IOT DEVICES

developing PSA-based IoT devices. A simple way to imple-
ment each component of the PSA RoT is to develop
the required functions in software. However, software-
based functions are vulnerable to firmware extraction and
tampering.

To deal with this problem, the ARM PSA document rec-
ommends that platform providers use a trusted subsystem
(see Section III-B), which includes cryptographic accelerator,
true random number generator (TRNG), secure storage (e.g.,
one-time-programmable memory and secure flash), and other
trusted peripherals. A trusted subsystem may itself imple-
ment its own secondary RoT, but it must be a subordinate
to the PSA RoT service at all times in the sense that its
configuration and state must always be attestable by the
PSA RoT.

Meanwhile, ARM TrustZone, which provides TEEs for
Cortex-A series processors, is actively used to enhance the
security of smartphones [29]. TEEs are often assumed to be
highly secure, however, TEEs have been attacked multiple
times [30]. ARM is enhancing security by continuously
supplementing the vulnerabilities of attacks. Likewise, the
ARM PSA is a technology that inherits TrustZone and is
the most advanced trustable technology that can guaran-
tee the security of low-end IoT devices. Therefore, this
article assumes that the ARM PSA is a trustable security
solution.

Section III further analyzes the security requirements of IoT
devices to define the set of components for the proposed secure
platform based on the features of the ARM PSA hardware
platform.

III. ANALYSIS OF SECURITY REQUIREMENTS FOR IOT
DEVICES

A. Vulnerabilities of Low-End IoT Devices

The two major limitations of low-end IoT devices are inse-
cure storage and low computing power. First, low-end devices
store their firmware codes and data, such as credentials and
sensitive data, on various types of storage, e.g., flash memory,
EPROM, EEPROM, etc. As mentioned in Section I, firmware
codes and data in these storage media can be easily obtained
through various hardware debug interfaces or by de-soldering
chips. Second, low-end devices cannot perform computational
intensive encryption/decryption operations due to low com-
puting power and limited memory size. Therefore, this article
defines the following four major vulnerabilities2 of low-end
IoT devices: 1) exposed firmware code; 2) exposed crypto-
graphic key; 3) exposed sensitive data; and 4) software-based
cryptographic function.

On the other hand, oneM2M, which is the largest stan-
dardization organization for IoT/M2M services [33], published
the Technical Specification—0002 document that includes
security requirements for Machine-to-Machine (M2M) and
IoT services, networks, and devices. The current version of
the specification defines 82 security requirements (SER-001–
082) [34]. These requirements were examined, and the security
requirements related to system issues (not application ones) of
IoT devices and their four major vulnerabilities defined above
were identified. Table I summarizes the mapping.

2The application software vulnerabilities are beyond the scope of this
article.

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on May 04,2022 at 22:12:06 UTC from IEEE Xplore. Restrictions apply.

5552 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 7, APRIL 1, 2022

In addition, various hardware RoT support mentioned in
Section I are presented as follows.

1) SER-023: The oneM2M System shall be able to rely on
the hardware security module (HSM)3 to provide local
security, if it is supported.

2) SER-070: The oneM2M System shall be able to support
security mechanisms to protect cryptographic keys and
operations by using tamper-resistant elements, such as
trusted platform module (TPM), HSM, and subscriber
identity module (SIM).

3) SER-042: A secured API shall enable application and
service layer entities to make use of sensitive func-
tions and data residing within the secure environment,
independently of its technical implementation.

In SER-042, a secured API is clearly described, and this is
the major function utilized by the proposed secure platform
model.

Based on Table I, the following analyzes each vulnerability
in more detail along with related security requirements and
presents some countermeasures.

1) Exposed Firmware Code: As discussed in Section III-A,
firmware in IoT devices can easily be extracted, and
there are a number of recent studies on firmware extrac-
tion/analysis/modification. Zhang et al. [35] developed a
binary firmware extraction framework called PANDORA and
used it to perform security analysis of firmware binaries. The
purpose of PANDORA is to show that an attacker can ana-
lyze firmware codes of low-end IoT devices and even attempt
to tamper with them. Vasile et al. [36] also conducted a
study on tampering with firmware from actual off-the-shelf
IoT devices. They found that firmware installed on a device
can be extracted through the debug interfaces, such as JTAG
and UART, as well as using raw flash dumps. To verify this,
they performed several case studies on various commercial
low-end IoT devices, such as Amazon fire TV, Google Nest,
Chromecast, LG smart refrigerator, Samsung smart doorlock,
etc. Although they extracted firmware using debug interfaces,
our preliminary study reveals that most recent commercial IoT
devices no longer provide the debug interfaces

To avoid vulnerabilities exposed by firmware codes, a mech-
anism to verify the integrity of a firmware during boot and
update phases need to be provided. In addition, IoT devices
should be able to report their current operation status to
a remote verifier to perform an integrity check of running
firmware binaries. Furthermore, these mechanisms should be
supported based on a hardware RoT to satisfy the security
requirements SER-013, SER-064, SER-065, SER-066, and
SER-078 in Table I.

2) Exposed Cryptographic Key: A cryptographic key is
an essential component for a variety of security operations,
such as authentication and digital signature. As mentioned in
Section I, exposed keys can be illegally copied or replaced
with other keys, and this can significantly compromise the
reliability of IoT services. Strobel et al. [37] presented sev-
eral key extraction cases of low-end devices and exposed

3HSM is a term defined by oneM2M and is synonymous with the trusted
subsystem of the ARM PSA.

their vulnerability. They extracted system keys by perform-
ing hardware analysis on Microchip PIC16F886µC connected
to SimonsVoss digital locking system and YubiKey one-time
password token.

A countermeasure against these threats should be provided
by storing cryptographic keys in a secure storage based on a
hardware RoT support, which will then satisfy requirements
SER-010, SER-019, SER-020, and SER-021 in Table I.

3) Exposed Sensitive Data: IoT devices store confidential
data, including configuration data, privacy data, etc., which can
be exposed. The aforementioned work by Vasile et al. [36] also
mentioned the vulnerability of exposed sensitive data. In this
study, the authors achieved root privileges on 18 off-the-shelf
IoT devices and were able to easily access security-sensitive
data.

To prevent this threat and to satisfy the requirements SER-
002, SER-003, and SER-026 in Table I, a Data Protection
mechanism needs to be provided. This will allow sensitive data
to be stored in an encrypted form, which is safely provisioned,
as discussed in the previous section. For example, data can be
stored or encrypted securely with a unique key in a secure
storage.

4) Software-Based Cryptographic Function: Software-
based cryptographic functions are also exposed to attackers,
as mentioned in Section III-A1. Sklavos et al. [38] ana-
lyzed the limitations of software-based cryptographic functions
on general-purpose computers. According to their analy-
sis, software-based cryptographic functions are vulnerable
to attacks, such as tamper and injection, which can cause
the leakage of cryptographic keys and other sensitive data.
Heartbleed, which is a bug in the OpenSSL cryptographic
library widely used in the implementation of transport layer
security (TLS), is a typical example of vulnerability in cryp-
tography implementation [39]. This allows credentials, such
as session keys and other secret information (e.g., user ID and
password) to be obtained from SSL/TLS. Moreover, software
cryptographic functions are not suitable for low-end devices
due to their computational limitations.

To deal with these problems and to satisfy the require-
ments SER-068 and SER-069, a hardware implementation of
the cryptographic algorithm (e.g., cryptographic accelerator)
is required.

B. Comprehensive Security Analysis of PSA-Based Low-End
IoT Devices

One way to protect against the vulnerabilities discussed in
the previous section is to utilize the PSA to ensure isolated
execution. However, platform providers need to understand the
design of the PSA hardware platform including an appropri-
ate trusted subsystem. In addition, a firmware that is divided
into SPE firmware and NSPE firmware should be developed
by SWDs and NWDs, respectively, and as such all developers
need to be familiar with the PSA and trusted hardware sub-
systems. This complex development process increases the cost
and time of IoT device development.

In order to design PSA-based low-end IoT devices, this arti-
cle regards trusted subsystems as essential for implementing

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on May 04,2022 at 22:12:06 UTC from IEEE Xplore. Restrictions apply.

JUNG et al.: SECURE PLATFORM MODEL BASED ON ARM PLATFORM SECURITY ARCHITECTURE FOR IoT DEVICES 5553

TABLE II
SECURITY SERVICES TO SATISFY REQUIREMENTS TO IMPLEMENT PSA-BASED LOW-END IOT DEVICES

the main components of the PSA RoT. In addition, well-known
security services directly related to vulnerabilities, security
requirements, and the implementation of the main components
of the PSA RoT are identified in Table II. In order to solve the
exposed firmware code vulnerability and implement the related
main components of the PSA RoT, services that verify the
integrity of the system at boot and runtime and ensure the lat-
est verified firmware updates are essential. Exposed sensitive
data, exposed cryptographic key, and software-based crypto-
graphic functions are vulnerabilities related to the execution of
cryptographic functions. Therefore, services that can guaran-
tee the stability of key management and encryption function
execution are necessary to protect against these vulnerabili-
ties and implement the related main PSA RoT components. In
addition, in order to implement the main components of PSA
RoT, it is necessary to implement essential security services
based on the support of trusted subsystems, such as unmodi-
fiable boot ROM, security key storage, password accelerator,
and TRNG.

As a result, the five essential security services needed to
implement the main components of the PSA RoT are as fol-
lows: 1) Secure Boot; 2) secure firmware update;4 3) Data
Protection; 4) Key Management And Cryptographic Functions;
and 5) Attestation. SWDs can implement these five security
functions as a secure platform, and a trusted subsystem and the
normal world can use these service APIs without the knowl-
edge of complicated PSA and trusted subsystem hardware.
Details of our secure platform based on the ARM PSA that
will lead to fast TTM and reduced cost are discussed in the
following section.

IV. PROPOSED SECURE PLATFORM

This section presents the implementation of the proposed
secure platform, which includes trusted subsystems, securely

4Secure boot and secure firmware update are the same concepts as trusted
boot and firmware update of the ARM PSA.

Fig. 5. Proposed secure platform model.

provisioning credentials, and providing secure services to
satisfy the requirements in Table II.

A. Secure Platform Model

Fig. 5 shows the proposed secure platform model based
on the ARM Cortex-M v8 architecture. As mentioned in
Section II-B, the basic ARM Cortex-M v8 architecture consists
of PE, RAM, and embedded flash. Based on this architec-
ture, the proposed secure platform model includes essential
trusted subsystems, secure platform services, and secure plat-
form services APIs, as shown on the right side of Fig. 5. As
discussed in Section III, Trusted Subsystems, such as nonmod-
ifiable boot ROM, Secure Key Storage, cryptographic accel-
erator, and TRNG are necessary to satisfy the requirements
defined by the oneM2M standard.

The secure platform services listed in Table II can be cate-
gorized into two groups according to their purpose: 1) System
Security Services and 2) Application Security Services. System
Security Services composed of Secure Boot and Secure
Firmware Update are the basic services to ensure system

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on May 04,2022 at 22:12:06 UTC from IEEE Xplore. Restrictions apply.

5554 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 7, APRIL 1, 2022

TABLE III
PLATFORM KEYS AND THEIR USAGE

integrity, confidentiality, and availability. Application Security
Services consisting of Data Protection, key management, and
cryptographic functions, and Attestation are essential services
for NWDs to develop NSPE firmware in a Nonsecure World.
According to the isolation requirement of the ARM PSA, these
secure platform services have to be securely implemented in a
Secure World because they are executed through system state
transition using NSC and SG instructions.

B. Platform Keys for Secure Platform Services

In the proposed secure platform, the secure platform
services guarantee integrity, confidentiality, and availability
through various cryptographic algorithms using platform keys
shown in Table III. These keys are stored in the Secure Key
Storage during the initial provisioning stage. The usage of
platform keys for secure platform services are as follows.

1) Secure Boot is a chain of trust, where the first bootloader
verifies the second bootloader and the second boot-
loader verifies the SPE firmware and NSPE firmware.
The detailed use of platform keys during executions of
Secure Boot are as follows.

a) The first bootloader verifies the digital signature of
the second bootloader using KPP

public.
i) The platform provider signs the second boot-

loader with KPP
private and stores this signature

together with the second bootloader during the
initial provisioning or firmware update.

b) The second bootloader verifies both digital signa-
tures of the SPE firmware and the NSPE firmware
using KPP

public and KAD
public.

i) The platform provider signs the SPE firmware
with KPP

private and stores this signature along with
the SPE firmware during the initial provisioning
or firmware update.

ii) The application developer signs the NSPE
firmware with KAD

private and stores this signature
along with the NSPE firmware during the initial
provisioning or firmware update.

2) The Secure Firmware Update service updates the device
with the latest NSPE firmware. The detailed use of plat-
form keys during the executions of the Secure Firmware
Update service is as follows.

a) The application developer creates an update pack-
age containing the new application firmware and
its digital signature signed with KAD

private.
b) The firmware updater sends the update package to

the Secure Firmware Update service on the device.

Fig. 6. Provisioning process.

c) The Secure Firmware Update service verifies the
integrity of received package with KAD

public and
updates the new firmware.

3) The Data Protection service allows application develop-
ers to save data securely without a key and cryptographic
functions by using DUK.

4) The Key Management And Cryptographic Function
service provides functions to derive application depen-
dent keys with DUK as well as manage and delete
derived keys. Based on the derived keys, various cryp-
tographic functions, such as SHA, RSA, and AES are
also provided.

5) The attestation service proves that the system and appli-
cation software are intact and trustworthy by using
KDevice

public and KDevice
public .

a) To check the integrity of the system at runtime, the
attestation service signs the attestation data with
KDevice

private .
b) The verifier checks the integrity of the measure-

ment with KDevice
public .

In order to securely store and operate on sensitive data such
as encryption keys, the proposed secure platform model under-
goes a provisioning process of injecting data into a device
during manufacturing as shown in Fig. 6. When a platform is
designed, both SWD and NWD create their own key pairs. The
SWD stores the generated KPP

public, first bootloader (1st BL),
device ID (ID.Device), and DUK to the device by using the
provisioning tool. The second bootloader (2nd BL) received
from the NWD is signed with KAD

private and saved on the device
with KAD

public. Afterward, the SWD creates a manifest of the
SPE firmware, signs it with KPP

private, stores it on the device,
and places a Secure Region Lock to isolate the SPE firmware.
The NWD also creates a manifest of NSPE firmware, signs
it with KAD

private, and stores it on the device. Finally, the NWD
creates a key pair for device verification, stores KDevice

public in the
device, and terminates device provisioning.

C. Secure Platform Services APIs

The following provides detailed descriptions of the APIs for
Application Security Services.

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on May 04,2022 at 22:12:06 UTC from IEEE Xplore. Restrictions apply.

JUNG et al.: SECURE PLATFORM MODEL BASED ON ARM PLATFORM SECURITY ARCHITECTURE FOR IoT DEVICES 5555

1) Data Protection: As mentioned in Section IV-B,
the Data Protection service ensures the confidentiality and
integrity of various data, such as credentials, security-sensitive
data, privacy information, etc. The following shows the sample
APIs for the Data Protection service.

1) int storeData(int *dataID, char
*plainData, int dataSize);

a) Input: plain data and its size.
b) Output: ID of encrypted data in dataID.

2) int loadData(int dataID, char
*plainData, int *plainSize);

a) Input: ID of encrypted data.
b) Output: Decrypted data stored in plainData and

its size in plainSize.
This service satisfies the requirements SER-002, SER-003,

and SER-026 in Table II.
2) Key Management and Cryptographic Function: NWDs

are required to use cryptographic functions for their appli-
cations as well as the Data Protection service. In addition,
the keys for these cryptographic functions need to be man-
aged. To satisfy these requirements, the proposed secure
platform model provides an index-based key management
where the value of the application key is not exposed
to NWDs. This ensures that keys stored in the Secure
Key Storage or using the Data Protection service is not
exposed.

Examples of cryptographic APIs using the index-based key
management are shown below, and different options exist
depending on specific cryptographic algorithms.

1) int createKey(int *keyID, cryptOpt
option);

a) Input: Cryptographic option.
b) Output: ID of the created key in keyID.
c) cryptOpt is a structure that contains options for

various cryptographic algorithms, such as AES,
RSA, ECC, etc.

2) int destroyKey(int keyID);
a) Input: ID of the key.
b) Output: Destroy the key of keyID.

3) int saveKey(int *keyID, keyOpt key,
int keySize, cryptOption option);

a) Input: Key and its size with cryptographic option.
b) Output: ID of saved key in keyID.

4) int restoreKey(int keyID, keyOpt
*key, int *keySize);

a) Input: ID of the key.
b) Output: Key of the keyID in key and its size in

keySize.
The requirements SER-010, SER-019, SER-020, and SER-

021 in Table II are met by the above key related APIs.
The following shows APIs related to cryptographic func-

tions.
1) int hash(hashOpt option, char

*plainData, int plainSize, char
*hashData, int *hashSize);

a) Input: Hash option, plain data, and its size.
b) Output: Hashed data stored in hashData and its

size in hashSize.

c) cryptOpt is a structure that contains options for
various hash algorithms, such as SHA, MD5, CRC,
etc.

2) int enc(cryptOpt option, int keyID,
char *plainData, int plainSize, char
*cipherData, int *cipherSize);

a) Input: Cryptographic option, ID of the key, plain
data, and its size.

b) Output: Encrypted data in cipherData and its
size in cipherSize.

3) int dec(cryptOpt option, int keyID,
char *cipherData, int cipherSize,
char *plainData, int *plainSize);

a) Input: Cryptographic option, ID of the key, cipher
data, and its size.

b) Output: Decrypted data in plainData and its
size in plainSize.

In addition, these cryptographic-related APIs are performed
in the cryptographic accelerator, which satisfies the require-
ments SER-068 and SER-069 in Table II.

3) Attestation: The goal of attestation is to prove that SPE
firmware and NSPE firmware are intact and trustworthy. The
verifier (e.g., the remote server) trusts that attestation data
are accurate by checking its integrity measurement, which
may contain SPE firmware and NSPE firmware as well as
application-specific data. Therefore, our proposed secure plat-
form model provides the attestation service using the following
API.

1) int getSignedMeasure(appSpecific
data, char *signedMeasure,
int *signatureSize);

a) Input: Application-specific data which is added to
SPE firmware and NSPE firmware.

b) Output: Signed measure in signedMeasure and
its size in signatureSize.

The attestation service satisfies the requirements SER-013,
SER-064, and SER-065 in Table II.

V. POC IMPLEMENTATION

This section presents the PoC implementation as well as our
analysis of the secure platform model proposed in Section IV.
Platform providers develop IoT devices by adding various
configurations based on the basic PSA model according to
their purpose. Therefore, the hardware platform of PSA-
based IoT devices can be developed by either adding external
components to the basic PSA model or using an SoC. To eval-
uate different hardware platforms, our PoC implementations
involve two approaches: 1) a basic PSA model with secure
element (SE) and 2) a PSA reference device. The NuMaker-
PFM-M2351 development board from Nuvoton is used for
both approaches [31]. This board includes the M2351KIAAE
SoC chip based on the ARM Cortex-M23 processor with
TrustZone-based isolation and is capable supporting PSA.
In addition, M2351KIAAE is connected to a Secure Serial
Flash Memory (W77F32W) chip [40] and a Wi-Fi module
(ESP8266) [41] via SPI and UART, respectively. The following
sections provide details of the implementations.

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on May 04,2022 at 22:12:06 UTC from IEEE Xplore. Restrictions apply.

5556 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 7, APRIL 1, 2022

Fig. 7. PoC implementation: basic PSA model with SE.

Fig. 8. System architecture of PoC implementation based on basic PSA
model with SE.

A. Implementation 1: Basic ARM Cortex-M v8 With SE

There are various SE models on the market for low-end
devices that have received high-grade common criteria (CC)
certifications. Among them, Infineon Optiga Trust P SE5 was
chosen for the first implementation. The Infineon SE has a
cryptographic accelerator with TRNG, processor, SRAM, non-
volatile memory (NVM), and embedded flash. In addition,
since an SE can embed its own proprietary firmware, a more
secure implementation is possible by fusing firmware for the
proposed secure platform services into an SE.

Figs. 7 and 8 show our prototype of the basic PSA with
SE and its system architecture, respectively. The basic ARM
Cortex-M v8 based PSA and SE are securely connected by a
serial communication with SSL/TLS. In addition, Fig. 8 illus-
trates the mapping of the proposed secure platform model to
the first PoC implementation, where NuMaker-PFM-M2351
with SE was used and only its basic PSA model was activated.
The detailed description of the mapping is as follows.

1) Secure Boot: Implemented with nonmodifiable boot
ROM and Secure Firmware Update. The basic ARM
Cortex-M v8 processor provides a nonmodifiable boot
ROM as default. Therefore, the first bootloader in our
prototype is implemented in the nonmodifiable boot
ROM. The second bootloader first establishes a secure
session with the SE, and then the SPE firmware verifi-
cation and Secure Firmware Update are implemented in
the flash memory built into the SE.

5The Infineon Optiga Trust P model used in this article has
CC EAL 5+ (high) certification. (https://www.infineon.com/dgdl/
Infineon-OPTIGA_Trust_P_SLJ52_ACA-PB-v02_16-EN.pdf?fileId=
db3a30434521785c01452440162809d8).

Fig. 9. System architecture of PoC implementation based on reference board
for the ARM PSA.

2) Secure Key Storage and Cryptographic Accelerator:
Since the platform keys in Table III can be stored safely
in NVM of the SE (i.e., Secure Key Storage) and it has a
cryptographic accelerator, both requirements of essential
trusted subsystems are satisfied.

3) Data Protection: Application’s requests for the Data
Protection service are delivered to the SE via secure
platform APIs, and data is safely encrypted/decrypted
with KDevice

shared .
4) Key Management and Cryptographic Functions: Similar

to the Data Protection service, application requests are
delivered to the SE through the SPE firmware. Generated
keys are safely stored in the Secure Key Storage, and
all the cryptographic operations are executed by the
Cryptographic Accelerator.

5) Attestation: The attestation service module in the SE
processes application’s requests using KDevice

private stored in
the Secure Key Storage.

B. Implementation 2: Reference Device for PSA

In the second PoC implementation, we used only the
target reference board implemented in SoC by integrating
ARM Cortex-M v8 and trusted subsystem into an MCU
(M2351KIAAE SoC), not SE connecting. Fig. 9 illustrates its
system architecture.

In this PoC implementation, all the modules of the
NuMaker-PFM-M2351 development board including exter-
nal peripherals (i.e., Secure Serial Flash Memory, and Wi-Fi
module) are activated. The SoC has NVM, OTP memory,
nonmodifiable boot ROM, and cryptographic accelerator with
TRNG. This cryptographic accelerator can directly access the
Secure Serial Flash Memory chip that stores encrypted data
(Secure data), but the main processor does not directly access
the W77F32W chip. The Wi-Fi module can communicate with
the outside through network protocols, such as TCP, UDP, and
SSL. The detailed description of the mapping is as follows.

1) Secure Boot With Nonmodifiable Boot ROM and Secure
Firmware Update: The first bootloader is implemented
in the nonmodifiable boot ROM and the second boot-
loader is implemented in NVM. This is consistent with
the proposed secure platform model.

2) Secure Key Storage and Cryptographic Accelerator:
OTP in the M2351KIAAE SoC is used for provisioning

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on May 04,2022 at 22:12:06 UTC from IEEE Xplore. Restrictions apply.

JUNG et al.: SECURE PLATFORM MODEL BASED ON ARM PLATFORM SECURITY ARCHITECTURE FOR IoT DEVICES 5557

platform keys as nonmodifiable storage, and the Secure
Serial Flash Memory chip is used for storing appli-
cation dependent keys and security-sensitive data.
M2351KIAAE also includes cryptographic accelerators
and TRNG; therefore, both requirements of essential
trusted subsystems are satisfied.

3) Data Protection, Key Management, and Cryptographic
Functions, and Attestation: The platform keys includ-
ing KDevice

shared are provisioned in OTP and the application
dependent keys are stored in the Secure Serial Flash
Memory chip. However, unlike the first approach, these
Application Security Services are implemented in the
secure state in the ARM PSA. When a request related
to these services from an application is generated, SAU
converts the system state to a secure state, and the request
operation is executed by the cryptographic accelerator.

Meanwhile, our PoC implementation presents two possi-
bilities for applying essential HSMs to improve the security
of devices supporting the ARM PSA. The first is to connect
essential HSMs to an ARM Cortex M-23 or M-33-based MCU
that supports the ARM PSA, and the second is to use an
SoC, which includes both ARM Cortex M-23 or M-33 and
essential HSMs. Our PoC is implemented by applying the
proposed secure platform model to the NuMaker-PFM-M2351
reference board for two possibilities, which shows that the
proposed secure platform model can be flexibly applied to
other PSA-enabled devices.

C. Performance Analysis

Since IoT devices generally operate on batteries, low power
consumption is one of the most important requirements for
IoT devices. However, since existing IoT devices are exposed
to various vulnerabilities, there is a need for techniques that
can improve the security of IoT devices and at the same
time satisfy low power consumption. This section verifies that
the proposed security platform model can meet low power
consumption requirements. In addition, the effect of some
overheads of ARM PSA on IoT devices are also analyzed
based on the experimental results.

For the experiments, simple encryption/decryption of three
different scenarios were performed with the NuMarker-PFM-
M2351 board in the same way as our PoC implementation.
The encryption algorithm used AES ECB with a 128-bits
key and the plain text “HELLO WORLD!” (13 characters).
The three different scenarios represent the proposed secure
platform model, Non-PSA with cryptographic accelerator, and
Non-PSA with mbed-Crypto Library [48].

Fig. 10 shows the results of our performance evalua-
tion. When a cryptographic accelerator is used, the execution
time differs by about 2.59 µs depending on whether or not
PSA is applied. In the proposed secure platform model, the
actual overhead of one system state transition between secure
and nonsecure states is 1.295 µs because two system state
transitions occur.

To determine the effect of the state transition overhead
on the power consumption of PSA-based IoT devices, the
instructions for configuring the overhead has been analyzed.

Fig. 10. Experimental results.

Fig. 11. Smart home/grid IoT service architecture with smart plug.

As mentioned in Section II, the state transition overheads con-
sist of calling a function when entering NSC, calling an NSC
callable function, calling a secure function, and initializing the
general-purpose register (GPR)/process status register (PSR).
Moreover, additional overheads occur in executing SG and
BXNS instructions required to change the execution mode of
the MCU. Therefore, the additional overheads that occur in
the scenario with the PSA involves three jumps, a register ini-
tialization in the secure state, and an MCU execution mode
change. Since this overheads comprise simple instructions, the
PSA slightly increases power consumption compared to the
scenario where the PSA is not supported.

On the other hand, the Non-PSA with mbed-Crypto Library
scenario shows that using a cryptographic accelerator can
reduce the computational power dramatically. The experimen-
tal results show that the scenario using the mbed-Crypto
library takes about 12 times longer execution time than the
scenario using the cryptographic accelerator, which means that
using a software-based cryptographic function increases the
load of the MCU. Such an increase in the load increases the
power consumption and shortens the lifetime of IoT devices.

As a result, our performance evaluation verifies that the
proposed security platform model based on the PSA can
guarantee security with little overhead.

VI. CASE STUDY

A smart plug is a power receptacle that plugs into a traditional
electrical outlet and allows for integration into smart home/grid
IoT services. The device periodically measures power consump-
tion and reports it to the cloud server or the user application, as
shown in Fig. 11. Our proposed secure platform model allows

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on May 04,2022 at 22:12:06 UTC from IEEE Xplore. Restrictions apply.

5558 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 7, APRIL 1, 2022

Fig. 12. Sequence diagram of smart plug.

an NWD to easily and quickly implement such a smart plug.
Fig. 12 illustrates this simple scenario.

1) Application Provisioning Phase: First, the platform keys
in Table III are provisioned in the smart plug. Next, the
smart plug creates an ECC key pair with our Secure
Service API createKey(). Finally, UserID and
KUser

public are safely stored using the APIs storeData()
and saveKey(). This phase is only performed once.

2) Initialization Phase: When the smart plug is pow-
ered on or reset, the Secure Boot procedure starts
and a remote attestation is performed using the API
getSignedMeasure(). If the cloud server succeeds
the integrity check of attestation data with KPlug

public, the
smart plug is authenticated. This attestation can also be
done periodically or as needed.

3) Periodic Measurement and Storage of Data: The smart
plug periodically measures the power consumption and
stores this information using the API storeData().

4) Reporting Measured Data to Cloud Server: When the
cloud server sends a request, the smart plug pre-
pares a reply message containing measuredData and
signature using APIs loadData(), hash(), and
enc().

5) User Authentication: In order to control the smart plug
with a smartphone application, the user needs to be first
authenticated. To accomplish this, the application sends

a message that contains UserID and its signature to
the smart plug. The smart plug then authenticates the
user with its UserID and KUser

public provided during the
application provisioning phase.

This case study shows that NWDs can easily develop IoT
services that can meet security requirements using the secure
platform services APIs.

VII. CONCLUSION

The demand for protection against vulnerabilities in low-end
IoT devices is increasing with the proliferation of IoT. To solve
this problem, ARM recently proposed PSA that provides a
hardware-based isolation execution environment. However, the
development cost and time of ARM PSA-based IoT devices
dramatically increase because developers need to understand
both the complex procedures of the PSA-based IoT devices
development and the PSA hardware. To solve these problems,
this article carried out a comprehensive analysis of vulnera-
bilities and security requirements for low-end IoT devices and
derived essential trusted subsystems and security services to
satisfy the security requirements. Based on this, we proposed a
secure platform model for low-end IoT devices based on ARM
PSA. The proposed secure platform model not only reduces
the development cost and time for platform providers, but also
helps NWDs to quickly and easily develop IoT applications
for low-end IoT devices based on PSA.

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on May 04,2022 at 22:12:06 UTC from IEEE Xplore. Restrictions apply.

JUNG et al.: SECURE PLATFORM MODEL BASED ON ARM PLATFORM SECURITY ARCHITECTURE FOR IoT DEVICES 5559

REFERENCES

[1] Ericsson. (2018). IoT Market Outlook. [Online]. Available:
https://www.ericsson.com/en/networks/trending/hot-topics/iot-
connectivity/iot-market-outlook

[2] M. Xu et al., “Dominance as a new trusted computing primitive for
the Internet of Things,” in Proc. IEEE Symp. Security Privacy, 2019,
pp. 1415–1430.

[3] M. Antonakakis et al., “Understanding the Mirai botnet,” in Proc.
USENIX Security Symp., 2018, pp. 1093–1110.

[4] S. Herwig, K. Harvey, G. Hughey, R. Roberts, and D. Levin,
“Measurement and analysis of hajime, a peer-to-peer IoT botnet,” in
Proc. Netw. Distrib. Syst. Security Symp., 2019, pp. 1–9.

[5] S. Oltan, P. Mittal, and H. V. Poor, “BlackIoT: IoT botnet of high wattage
devices can disrupt the power grid,” in Proc. USENIX Security Symp.,
2018, pp. 15–32.

[6] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose, “SoK: Security
evaluation of how-based IoT deployment,” in Proc. IEEE Symp. Security
Privacy, 2019, pp. 1–19.

[7] J. Obermaier and M. Hutle, “Analyzing the security and privacy of cloud-
based video surveillance systems,” in Proc. 2nd ACM IoTPTS, 2016,
pp. 22–28.

[8] M. Surbatovich, J. Aljuraidan, L. Bauer, A. Das, and L. Jia, “Some
recipes can do more than spoil your appetite: Analyzing the security
and privacy risks of IFTTT recipes,” in Proc. 26th Int. World Wide Web
(WWW) Conf., 2017, pp. 1501–1510.

[9] C. Zuo, W. Wang, Z. Lin, and R. Wang, “Automatic forgery of cryp-
tographically consistent messages to identify security vulnerabilities in
mobile services,” in Proc. Netw. Distrib. Syst. Security Symp. (NDSS),
San Diego, CA, USA, Feb. 2016, p. 4.

[10] D. Barrera, H. G. Kayacik, P. C. van Oorschot, and A. Somayaji, “A
methodology for empirical analysis of permission-based security mod-
els and its application to Android,” in Proc. 17th ACM Conf. Comput.
Commun. Security (CCS), Chicago, IL, USA, Oct. 2010, pp. 73–84.

[11] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An empirical
study of cryptographic misuse in Android applications,” in Proc. 20th
ACM Conf. Comput. Commun. Security (CCS), Berlin, Germany,
Oct. 2013, pp. 73–84.

[12] N. Viennot, E. Garcia, and J. Nieh, “A measurement study of Google
play,” in Proc. ACM SIGMETRICS, 2014, pp. 221–233.

[13] J. Max, “Backdooring the frontdoor hacking a “perfectly secure” smart
lock,” in Proc. DEFCON, 2016, p. 9.

[14] S. P. Kavalaris and E. Serrelis, “Security issues of contemporary
multimedia implementations: The case of sonos and SonosNet,” in Proc.
Int. Conf. Inf. Security Digit. Forensics (ISDF), 2014, pp. 79–86.

[15] A. Costin, J. Zaddach, A. Francillon, D. Balzarotti, and S. Antipolis,
“A large-scale analysis of the security of embedded firmwares,” in
Proc. 23rd USENIX Security, San Diego, CA, USA, Aug. 2014,
pp. 95–110.

[16] N. J. AlFardan, D. J. Bernstein, K. G. Paterson, B. Poettering, and
J. C. N. Schuldt, “On the security of RC4 in TLS and WPA,” in
Proc. 22th USENIX Security, Washington, DC, USA, Aug. 2013,
pp. 1–24.

[17] M. Ryan, “Bluetooth smart: The good, the bad, the ugly· · · and the
fix,” in Proc. BlackHat, 2013.

[18] M. O. Ojo, S. Giordano, G. Procissi, and I. N. Seitanidis, “A review of
low-end, middle-end, and high-end IoT devices,” IEEE Access, vol. 6,
pp. 70528–70554, 2018.

[19] A. Milburn, N. Timmers, and N. Wiersma, “There will be glitches:
Extracting and analyzing automotive firmware efficiently,” in Proc.
BlackHat, 2018.

[20] J. Shim, K. Lim, J. Jeong, S. Cho, M. Park, and S. Han, “A case study on
vulnerability analysis and firmware modification attack for a wearable
fitness tracker,” IT Converg. Pract., vol. 5, no. 4, pp. 25–33, 2017.

[21] F. Brasser, K. B. Rasmussen, A. Sadeghi, and G. Tsudik, “Remote
Attestation for low-end embedded devices: The prover’s perspective,”
in Proc. 53th ACM/EDAC/IEEE Design Autom. Conf. (DAC), Austin,
TX, USA, 2016, pp. 1–6.

[22] Y. Lee, Y. Kim, and J. kim, “Implementation of TLS and DTLS on
Zephyr OS for IoT devices,” in Proc. Int. Conf. Inf. Commun. Technol.
Converg. (ICTC), 2018, pp. 1292–1294.

[23] K. Ly and Y. Jin, “Security challenges in CPS and IoT: From end-node
to the system,” in Proc. IEEE Comput. Soc. Annu. Symp. VLSI (ISVLSI),
Pittsburgh, PA, USA, 2016, pp. 63–68.

[24] E. Cozzi, M. Graziano, Y. Fratantonio, and D. Balzarotti,
“Understanding Linux malware,” in Proc. IEEE Symp. Security
Privacy (SP), San Francisco, CA, USA, 2018, pp. 161–175.

[25] TCG Roots of Trust Specification, Trusted Comput. Group, Beaverton,
OR, USA, Jul. 9, 2018.

[26] S. J. Johnston, M. Scott, and S. J. Cox, “Recommendations for securing
Internet of Things sevices using commodity Hardware,” in Proc. IEEE
3rd World Forum Internet Things (WF-IoT), Reston, VA, USA, 2016,
pp. 307–310.

[27] L. Kbarda, P. Hnyk, L. Vojtech, Z. Lokaj, M. Neruda, and T. Zitta,
“Software implementation of a secure firmware update solution in an IoT
context,” Inf. Commun. Technol. Services, vol. 14, no. 4, pp. 369–389,
2016.

[28] Arm Platform Security Architecture Security Model 1.0 Alpha-2, Arm
Ltd., Cambridge, U.K., 2019.

[29] Arm Security Technology Building a Secure System Using TrustZone
Technology, Arm Ltd., Cambridge, U.K., 2009.

[30] D. Cerdeira, N. Santos, P. Fonseca, and S. Pinto, “SoK: Understanding
the prevailing security vulnerabilities in trustzone-assisted TEE
systems,” in Proc. IEEE Symp. Security Privacy (SP), San Francisco,
CA, USA, 2020, pp. 1416–1432.

[31] NuMaker-PFM-M2351 User Manual Rev 1.00, Nuvoton, Inc., Taipei
City, Taiwan, 2018.

[32] TrustZone Technology for ARMv8-M Architecture Version 2.0, Arm Ltd.,
Cambridge, U.K., 2017.

[33] OneM2M—Home. [Online]. Available: http://www.onem2m.org/
[34] OneM2M Partners, “TS-0002-Requirements-V4.6.0,” 2019.
[35] W. Zhang, Y. Chen, H. Li, Z. Li, and L. Sun, “PANDORA: A scalable

and efficient scheme to extract version of binaries in IoT firmwares,” in
Proc. IEEE Int. Conf. Commun. (ICC), Kansas City, MO, USA, 2018,
pp. 1–6.

[36] S. Vasile, D. Oswald, and T. Chothia, “Breaking all the things—A sys-
tematic survey of firmware extraction techniques for IoT devices,” in
Proc. Int. Conf. Smart Card Res. Adv. Appl. (CARDIS), Montpellier,
France, 2018, pp. 171–185.

[37] D. Strobel, D. Oswald, B. Richter, F. Schellenberg, and C. Paar,
“Microcontrollers as (in)security devices for pervasive computing appli-
cations,” Proc. IEEE, vol. 102, no. 8, pp. 1157–1173, Aug. 2014.

[38] N. Sklavos, K. Touliou, and C. Efstathiou, “Exploiting cryptographic
architectures over hardware vs. software implementation: Advantages
and trade-offs,” in Proc. 5th WSEAS Int. Conf. Appl. Elect. Eng., Prague,
Czech Republic, 2006, pp. 147–151.

[39] D. A. Wheeler, “Preventing heartbleed,” IEEE Comput., vol. 47, no. 8,
pp. 80–83, Aug. 2014.

[40] W75F32W 32M-bit Secure Serial Flash Memory Security Target
Revision B, Winbond Electron. Corporat., Taichung City, Taiwan, 2017.

[41] ESP8266 Technical Reference Version 1.4, Espressif Inc., Shanghai,
China, 2019.

[42] E. Bertino and N. Islam, “Botnets and Internet of Things security,”
Computer, vol. 50, no. 2, pp. 76–79, Feb. 2017.

[43] Water Meter Threat Model and Security Analysis (English language
Protection Profile) Beta-1, Arm Ltd., Cambridge, U.K., 2018.

[44] Arm Platform Security Architecture Trusted Base System Architecture for
ARMv6-M, ARMv7-M and ARMv8-M 1.0 Beta-1, Arm Ltd., Cambridge,
U.K., 2019.

[45] C. Kil, E. C. Sezer, A. M. Azab, P. Ning, and X. Zhang, “Remote
attestation to dynamic system properties: Towards providing complete
system integrity evidence,” in Proc. IEEE/IFIP Int. Conf. Depend. Syst.
Netw., 2009, pp. 115–124.

[46] Arm Versatile Express Cortex-M Prototyping Systems (V2M-MPS2 and
V2M-MPS2+) Technical Reference Manual, Arm Ltd., Cambridge, U.K.,
2016.

[47] Application Note AN521 Example CoreLink SSE-200 Subsystem for
MPS2+, Arm Ltd., Cambridge, U.K., 2018.

[48] ARM MBED-CRYPTO Library. [Online]. Available: https://github.com/
ARMmbed/mbed-crypto

Junyoung Jung received the B.S. degree from the
Department of Electronic Engineering, Kyung Hee
University, Yongin-si, South Korea, in 2018, where
he is currently pursuing the M.S. degree.

His research interests include embedded system
security, IoT security, and smart car security.

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on May 04,2022 at 22:12:06 UTC from IEEE Xplore. Restrictions apply.

5560 IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 7, APRIL 1, 2022

Beomseok Kim received the B.S., M.S., and
Ph.D. degrees from the Department of Computer
Engineering, Kyung Hee University, Yongin-
si, South Korea, in 2010, 2012, and 2016,
respectively.

He was an Assistant Professor with the
Department of Computer Software Engineering,
Changshin University, Changwon, South Korea,
from 2016 to 2018, and a Research Professor with
the Department of Computer Engineering, Kyung
Hee University in 2019. In 2020, he joined as a

Research Professor with the Department of Computer Science Engineering,
JeonBuk National Univeristy, Jeonju, South Korea, and currently an Instructor
with the Department of Computer Engineering, Kyung Hee University. His
research interests include wireless sensor and body area networks, embedded
systems, and network security.

Jinsung Cho received the B.S., M.S., and Ph.D.
degrees in computer engineering from Seoul
National University, Seoul, South Korea, in 1992,
1994, and 2000, respectively.

He was a Visiting Researcher with IBM
T. J. Watson Research Center, Ossining, NY, USA,
in 1998 and a Research Staff with SAMSUNG
Electronics, Suwon-si, South Korea, from 1999
to 2003. He is currently a Professor with the
Department of Computer Engineering, Kyung Hee
University, Yongin-si, South Korea. His research

interests include IoT security, system security, and embedded systems.

Ben Lee (Member, IEEE) received the B.E. degree
in electrical engineering from the Department of
Electrical Engineering, State University of New
York at Stony Brook, Stony Brook, NY, USA, in
1984, and the Ph.D. degree in computer engineer-
ing from the Department Electrical and Computer
Engineering, Pennsylvania State University, State
College, PA, USA, in 1991.

He is a Professor and an Associate School Head of
the School of Electrical Engineering and Computer
Science, Oregon State University, Corvallis, OR,

USA. His research interests include multimedia streaming, wireless networks,
embedded systems, computer architecture, multithreading and thread-level
speculation, and parallel and distributed systems.

Prof. Lee was a recipient of the Loyd Carter Award for Outstanding and
Inspirational Teaching in 1994, the Alumni Professor Award for Outstanding
Contribution to the College and the University from the OSU College of
Engineering in 2005, and the HKN Innovation Teaching Award from Eta
Kappa Nu, School of Electrical Engineering and Computer Science in 2008.
He has been on the Program Committees and the Organizing Committee
for numerous international conferences, including from 2005 to 2012 IEEE
Workshop on Pervasive Wireless Networking and the IEEE International
Conference on Pervasive Computing and Communications (PerCom). He was
the Workshop Chair for PerCom 2009. He was a Guest Editor for the Special
Issue on Wireless Networks and Pervasive Computing of the International
Journal of Pervasive Computing and Communications. He was also an Invited
Speaker at the 2007 International Conference on Embedded Software and
System and a Keynote Speaker at the 2014 ACM International Conference on
Ubiquitous Information Management and Communication. He was the TPC
Chair and the General Chair for the 2018 and 2020 Annual IEEE Consumer
Communications and Networking Conference (CCNC), respectively. He is
also an Adjunct Faculty Member from the Korea Advanced Institute of
Science and Technology.

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on May 04,2022 at 22:12:06 UTC from IEEE Xplore. Restrictions apply.

