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Cache memog-so 
effective in  traditional 
control-flow 
architecturehas the 
potential to enhance 
dataflow system 
performance as well. 
n e  authors explore 
the recent trend in 
co m bin ing da taflo w 
and control-flow 
processing, which 
offers new alternatives 
in computer 
architecture design, 
and analyze cache 
memo y 's application 
to the dataflow 
environment. 

urrent microelectronics technology has enabled chip capac- 
ity to exceed 64 million transistors, and computer architects 
are facing the increasing challenge of ULSI (ultra large scale 

, integration) technology. By the year 2000, technology 
advances are expected to make possible chps with more than 

100 million transistors. With such a significant on-chip hardware capac- 
ity, concurrency is a way to reduce the computation gap between the com- 
putational power demanded by the applications and that demanded by 
the underlymg computer platforms. 

Designers can increase architectural support for instruction-level par- 
allelism to absorb such a massive hardware capacity; examples are super- 
scalar and superpipeline machmes.' However, the single-instruction stream 
processing characteristic of the control-flow machine makes it inherently 
unsuitable to exploit superscalar and superpipeline architectures effi- 
ciently.2 This is because the total ordering of the control-flow execution 
model is ill-equipped to tolerate long, unpredictable memory and com- 
munication latencies that are unavoidable in a multiprocessor system. 

An alternative is to design parallel computers based on partial order- 
ing of the execution. Datajlow machines are an example of this approach, 
where an instruction initiates (fires) only when all the required operands 
are available. Instructions impose no sequencing constraints except the 
one on the program's data dependencies. As a result, the program's 
dataflow graph representation exposes all forms of parallelism, eliminat- 
ing the need to explicitly manage parallel program execution. 

Research efforts have long focused on the dataflow computation model, 
simple and elegant in describing parallelism and data dependencies. Since 
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the early 1970s, researchers have proposed, simulated, 
and prototyped dataflow designs. The  consensus is that 
directly implementing the dataflow concept carries 
overhead costs, mainly due to its fine-grain approach to 
parallelism.2 

In this article, we compare control-flow and dataflow 
architectures, examine cache as it relates to both, and 
describe our research experiments in adding cache to 
Monsoon, an example of a pure dataflow system. 

Dataflow revisited 
Dataflow computation has received renewed attention 
lately, resulting from (1) a lack of developments in con- 
ventional parallel processing, and ( 2 )  a change in view- 
point on dataflow and its implementation (a shift from 
the exploitation of fine-grain to medium- and large- 
grain parallelism). To alleviate the inefficiencies asso- 
ciated with the pure dataflow model, designers have 
compromised, incorporating control-flow methods into 
the dataflow approach. 

In dataflow architectures, context switching can occur 
on a per-instruction basis, which tolerates long, unpre- 
dictable latencies due to remote memory accesses. The 
instruction-level context-switching capability combined 
with sequential scheduling yields what we call multi- 
threading. The evolution from a pure self-scheduling par- 
adigm to multithreading requires locality and improved 
processor efficiency during remote memory accesses. 
Current dataflow research indicates multithreading as a 
means to build hybrid architectures that combine fea- 
tures of dataflow and von Neumann execution models. 

Despite recent architectural advances that support 
fine-grain parallelism and latency tolerance, challenges 
such as thread scheduling still remain. Multithreading’s 
success depends on how quickly and efficiently context 
switching can be supported. This is possible only if 
threads are resident in fast but small memories-cache, 
which limits the number of active threads and thus the 
amount of latency that can be tolerated. (See “The util- 
ity of cache” sidebar.) Dataflow scheduling’s generality, 
however, makes it difficult to fetch and execute a logi- 
cally related thread sequence through the processor 
pipeline, which means registers can’t be used across 
thread boundaries. Relegating scheduling and storage- 
management responsibilities to the compiler alleviates 
this problem somewhat. In conventional architectures, 
reduced memory latencies are achieved through 
(explicit) programmable registers and (implicit) high- 
speed caches. Adding caches, or register-caches, to the 

dataflow framework could better exploit parallelism and 
hardware utilization. 

Dataflow architecture 
In the dataflow model, tokens carry data values and 
travel along the arcs connecting various instructions in 
the program graph. The  arcs are assumed to be FIFO 
queues of unbounded capacity. Impractical for direct 
implementatioq2 the dataflow execution model instead 
is either static or dynami~ .~  T o  date, researchers cate- 
gorize dataflow machine organizations as pure dataflow, 
macro dataflow, or hybrid2 (see “Dataflow system fea- 
tures” sidebar). The  major differences between pure 
dataflow and classical dynamic architectures are (1) the 
reversal of the instruction fetch unit and the matching 
unit, and (2) the introduction of frames to represent con- 
texts. These changes result primarily from a direct 
matching scheme to reduce the hardware overhead (see 
“Token matching” sidebar). 
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Dataflow system features 

Table A lists key features and characteristics of six dataflow systems in three categories. 

Table A. Archi tectural  features of cur ren t  d a t a f l o w  systems. 

4. R.S. Nikhil and h i n d ,  “Can Dataflow Subsume von Neumann 
Computing!” Proc. 16th Ann. Int ’I Spp. Computer Architemre, 
ACM Press, 1989, pp. 262-272. 

5. R.S. Nikhil, G.M. Papadopoulos, and h i n d ,  “*T: A Multi- 
threaded Massively Parallel Architecture,” Proc. 19th Ann. Int’l 
Synp. ComputerArchite&re, ACM Press, 1992, pp. 156-167. 

6. D.E. Culler et al., “Fine-Grain Parallelism with Minimal 

CATEGORY 

Pure 
dataflow 

Macro- 
dataflow 

_ ~ _ _  
Hybrid 

GENERAL CHARACTERISTICS 

Implements the traditional 
dataflow instruction cycle. 
Direct matching of tokens. 

Integration of a token-based 
circular pipeline and an 
advanced control pipeline. 
Direct matching of tokens. 

Based on conventional 
control-flow processor, that 
is, sequential scheduling is 
implicit by the RISC-based 
architecture. 
Tokens do not carry data, 
only continuations. Provides 
limited token matching 
capability through special 
synchronization primitives 
(Join). 
Message handlers implemenl 
interprocessor 
communication. 
Can use both conventional 
and dataflow compiling 
technologies. 

MACHINE 

Monsoon’ 

_ _ _ ~  
Epsilon-22 

- _ _  

EM-43 

___. - 

P-RISC4 

_-  ____ 
* T5 

TAM6 

KEY FEATURES 

Direct matching of tokens using rendezvous slots in the frame 
memory (Explicit Token Store model). 
Associates three temporary registers with each computation thread. 
Sequential scheduling implemented by recalculating scheduling 
paradigm using direct recirculation path (instructions are annotated 
with special marks to indicate that the successor instruction is IPt1). 
Multiple threads supported by Fork and implicit Join. 

A separate match memory maintains match counts for the rendezvous 
slots, and each operand is stored separately in the frame memory. 
Use of repeat unit reduces the overhead of copying tokens and 
represents a thread of computation (macro actor) as a linked list. 
Use of a register file temporarily stores values within a thread. 

Use of macro actors IS based on the strongly connected arc model, 
and macro actors are executed using advanced control pipeline. 
Use of registers reduces the instruction cycle and the communication 
overhead of transferring tokens within a macro actor. 
Special thread library functions Fork and Null spawn and synchronize 
multiple threads. 

- ~ ____ _ _ _ . - _ _ ~  

Multithreading is supported with a token queue and circulating 
continuations. 
Context switching can occur on every cycle or when a thread dies due 
to Loads or Joins. 

Overhead is reduced by off-loading the burden of message handling 
and synchronization to separate coprocessors. 

f. G.M. Papadopoulos and K.K. Traub, “Multithreading: A Revi- 
sionist View of Dataflow Architectures,” Proc. 18th Ann. Int’l 
Symp. Computer Architermre, ACM Press, New York, 1991, pp. 
342-3 5 1. 

2. V.G. Grafc and J.E. Hoch, “The Epsilon-2 Multiprocessor Sys- 
tem,”3. Pnrallel & Distrihnted Compiiting, Vol. 10, 1990, pp. 

3. S. Sakai et al., “An Architecture of a Dataflow Single Chip Proces- 
sor,” Proc 16th Ann. Int’l Symp. Computer Architecture, ACM 
Press, 1989, pp. 46-53. 

309-318. 

Placing all synchronization, scheduling, and storage-management 
responsibility under compiler control-for example, exposes the 
token queue (continuation vector) for scheduling threads. 
The compiler produces specialized message handlers as inlets to each 
code block. 

port fir Progrnrnmrng Languages and Oper/jtmng Svtenu, ACM 
Press, 1991. 

‘The hybrid organizat ion is a radical depa rh i r e  froni 
classical dynamic  archi tectures  in t h e  sense tha t  tokens 
on ly  ca r ry  tags, and the archi tecture  is liased o n  con-  
ventional control-flow sequencing .  Researchers regard 
such  archi tectures  as control-f low machines  ex tended  

to suppor t  f ine-grained dataflow capability. Unlike the 
p u r e  dataflow organization, hybrid machines  provide a 
limited token-matching  capability th rough  special syn- 
chronizat ion primitives. 

A token-based  circular  pipeline in t eg ra t ed  wi th  a n  
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Token matching and the 
Monsoon system From communication network 

Direct matching-a simplified process of matching 
tags-eliminates associative search used in dynamic 
dataflow architectures to match pairs of tokens represent- 
ing an instruction’s operands. Storage (called activation 
f i m z e s )  is dynamically allocated for all the tokens that can 
be generated by a code block. Location usage in a code 
block is determined a t  compile time; however, activation 
frame allocation is determined during runtime. 

With this scheme, any computation is completely 
described by an instruction pointer (IP) and an activation 
frame pointer (FP). The pair of pointers, <FP.  I P > ,  is 
called a continuation and corresponds to the tag part of a 
token. A typical instruction specifies an opcode, an offset 
in the activation frame where the match will take place, and 
one or more displacements that define the destination 
instructions that will receive the result token(s). Each dis- 
placement is also accompanied by an input port (lewright) 
indicator that specifies the appropriate input arc for a des- 
tination actor. 

In Monsoon, the tokens-matching process is based on 
the Explicit Token Store model.’ An example of the ETS 
code block invocation and its corresponding instruction 
and frame memory is shown in Figure A. When a token 
arrives a t  an actor (for example, Add), the IP part of the 
continuation points to the instruction that contains an off- 
set r as well as displacements for the destination instruc- 
tions. The system achieves the actual matching process by 
checking the disposition of the slot in the frame memory 
pointed to by FP + r. If the slot is empty, the system writes 
the token’s value in the slot and sets its presence bit to indi- 
cate that the slot is full. If the slot is already full, the sys- 
tem extracts the value, leaving the slot empty, and executes 
the corresponding instruction. The system communicates 
the result tokens that the operation generates to the desti- 

! I  
cution pipeline 

Instruction 
and frame 
memory 

i L ,  1 U 

unit 

token 

I 
~ 

To communication network I 
Figure B. An organization of a pure-dataflow processing 
element. 

nation instructions by updating the IP according to the dis- 
placements encoded in the instruction (for example, exe- 
cution of the Add operation produces two result tokens 
<FP. I P  + 1, 3.55> and <FP. I P  + 2, 3.55>L). Inpure 
dataflow organizations, the token-matching mechanism 
provides the full generality of the dataflow model of exe- 
cution, and therefore the hardware supports it. 

The fundamental Monsoon design concerns the map- 
ping of activation fi 

<FP. , IP, 

Code block activation Instruction 
Opcode Offset Destination 

3 1 > ~  I I I instructions I 
+1, +2L 

SUB +1 

I I 
Frame memory 

FP+2 

Presence bits 

Figure A. ETS representation of a dataflow program execution. 

nes among processors (see Figure B). 
A Monsoon processor is an eight- 
stage pipeline. On each processor 
cycle, a token enters the pipe and- 
after eight cycles-zero, one, or 
two tokens emerge from the pipe- 
line. One output token can be read- 
ily circulated back into the pipe. 
Tokens that do not circulate back 
to the pipeline are either inserted 
into the token queue or sent to the 
destination processor. 

Reference 
I .  G.M. Papadopoulos and K.R. 

Traub, “Multithreading: A Revi- 
sionist View of Dataflow Archi- 
tectures,” Proc. 18th Ann. Int’l 
Symp. Computer Architecture, 
ACM Press, NewYork, 1991, pp. 
342-35 I. 

~~ 
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advanced control pipeline characterizes the macro 
dataflow organization, a compromise between pure 
dataflow and hybrid. This architecture exploits a more 
coarse-grained parallelism by incorporating control- 
flow sequencing into the dataflow approach. 

Cache in conventional 
multiprocessor systems 
Shared-memory multiprocessors increase computing 
power and throughput cost-effectively, although mem- 
ory contention, communication contention, and latency 
time problems can increase memory-access times and 
lower processor utilization and throughput. As a solu- 
tion, cache memories have effectively reduced the aver- 
age memory-access time. For a cache-based multi- 
processor organization, the literature proposes private- 
and shared-cache multiprocessors. In a private cache, 
however, a drawback to the simplicity and reduced 
access time of shared code and data structures among 
the processes is that the sharing can result in a coher- 
ence problem. 

Most multiprocessors are multiprogrammed such that 
each process uses the processor for a time slice, or quan- 
tum, in a round-robin fashion. Because processors are 
typically alternated in use, a significant fraction of cache 
misses result from task switching. The  terms wamn-stavt 
and cold-start refer to die iniss ratio starting with a full 
cache and the m i s s  ratio starting with an empty cache, 
respectively. 

Cache in dataftbw systems 

W e  knew that cache effectively uses the presence of 
locality in control-flow programs. The  question under- 
lying our research was, can it do likewise in dataflow 
programs? 

A dataflow program is represented as a directed graph, 
G = G(N, A), where nodes (or actors) in Nindicate oper- 
ations, and directed arcs in A indicate data dependen- 

cies among the nodes. Data packets called tokens con- 
vey the operands from one node to anothera3 Dataflow 
programs generally offer locality of effect and freedom 
from side effects. Moreover, dataflow procedures are 
not history-sensitive. These characteristics result from 
dataflow’s asynchronous nature. 

Dataflow executions are either statlc or dynamic (see 
“Classificaaon of dataflow architectures” sidebar). A sta- 
tic dataflow program is a directed acyclic graph in which 
repetitively executed subgraphs must be unraveled 
before execution. A dynamic dataflow program (a 
directed cyclic graph) contains cycles and/or runtime 
procedure calls for loop consu’ucts. In static programs, 
temporal locality for instructions does not fully apply, 
because each instruction is executed only once. Instead, 
locality can be established on the basis of simultaneity of 
execution by assigning a weight to each dataflow node, 
where a weight represents a node’s distance from the 
root. The nodes with the same weight are then clustered 
on the same page. This strategy partitions the dataflow 
graph into K horizontal layers such that the nodes in 
layer K ,  are data-independent from each other, mean- 
ing they can likely be executed in parallel, and are data- 
dependent on nodes in layer K, - l ( l <  z < K ) .  For a 
dynamic dataflow program, locality applies on the 
grounds of instruction recurrence (such as loops) and 
simultaneity of execution. 

TEMPORAL LOCALITY IN DATAFLOW PROGRAMS 

If a loop comprises a locality pattern, then the loop’s 
complete execution appears as repetitions of that pat- 
tern.4 These repetitions may be partially distinct (for 
example, DoAcross) or overlapping (for example, 
D O A ~  I), depending on the loop’s data dependencies and 
on the underlying dataflow architecture. In a sequential 
environment, loop instructions are reused in iterations. 
If instructions are similarly reused in a dataflow envi- 
ronment, temporal locality exists, as shown in Figure 1, 
where a loop is executed on a feedback processor. Fig- 
ure IC represents each instruction by a line number, 
operation code, position for operand values, and desti- 
nation addresses. 

A feedback processor will restrict or prohibit over- 
lapped successive iterations to eliminate possible 
operand overwriting. A nonfeedback processor, how- 
ever, lets a loop unwind naturally during execution time 
so that only data dependencies from one iteration to the 
next constrain successive iteration initiation. Figure 2 
shows the loop execution, depicted in Figure lb, on a 
nonfeedback processor. Here the complete loop execu- 
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Opcode Operand part ~ Destination addresses I 
(a) Instruction template 

while i <= n do 
y : = 1 ** 2 + 3 * i + 4 
write y 
i : = i + l  

end 

(b) High-level code 

io <= , ;ii,i2,i3,i4,i5,ia,i9 
11 merge , , ; 10,14,15,19 
12 merge , , ; 10;12 
13 merge , , ; 18 
14 ** -,‘2’;16 
15 * ‘3’,-;16 
16 + . ;17 
17 + -,‘4’;18 
18 write , ;13 
19 + -,‘l’;ll 
(c) Compiled code 

(d) Execution fringe 

Figure 1.  Execution of a loop on a feedback processor: 
(a) instruction template; (b) high-level code; (c) 
compiled code; (d) execution fringe. 

tion appears as overlapped repetitions of the locality pat- 
tern. Temporal locality can be exploited if and only if 
the successive locality patterns use the same copy of 
instructions in the memory. 

SPATIAL LOCALITY IN DATAFLOW PROGRAMS 

Straight-line code-in fact, any section of the code-may 
produce exploitable spatial localities in a dataflow envi- 
ronment. (See “Execution fringe and reference fringe” 
sidebar). An exploitable spatial locality is a set of instruc- 
tions that would constitute a spatial locality if grouped 
together in the virtual address space. An activity path, 
determined by the program’s data dependencies, repre- 
sents the locality. For example, the code in Figure 3a may 
be compiled and encoded into the graph of Figure 3 b, 
which is summarized for this discussion. This code pro- 
ducestheactivitypaths ((18, 21, 22), (19, 21, 
2 2 ) , ( 2 0, 2 2 ) 1. Each path will be an actual spatial 
locality if and only if the instructions in that path are 
grouped together in the virtual address space. 

Spatial localities in a dataflow graph can be easily 
exploited. For example, the vertically layered alloca- 
tion algorithm introduced by Lee and colleagues’ can 

10 <= , ;11,12,16 
11 ** -,‘2‘;13 
12 * ‘3’,-,;13 
13 + , ;14 
14 + -,‘4’;15 
15 write, : 
16 + -...-,‘l’;lO 
(a) Compiled code 

Time 5 6 7 8 9 10 11 
10 11 13 14 15 12 

12 I 16 

a 

(b) Execution fringe 

Figure 2. Execution of a loop on a nonfeedback 
processor: (a) compiled code; (b) execution fringe. 

a : = x + y  

b : = x * y  

X Y 

I/ I 

Figure 3. Spatial localities in a dataflow program: (a) 
high-level code; (b) dataflow graph. 

be modified to detect spatial locality in a dataflow 
graph. The modification is based on (1) assigning data- 
dependent nodes to the same vertical layer or frame and 
(2) combining heavily data-dependent frames together 
into a virtual address frame. Thus, clustering sequen- 
tial nodes into a single frame exploits simultaneity of 
execution, and combining the frames into the same vir- 
tual frame based on their degree of connectivity and the 
physical characteristics of the underlying architecture 
enhances spatial locality. 

PARTITIONING PROGRAMS INTO THREADS 

Partitioning programs into multiple sequential threads 
is important because a thread defines the granularity of 
a computation and thus the basic unit ofwork for sched- 
uling. Each thread has an associated cost, which directly 
affects the amount of overhead required for synchro- 
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Execution fringe and reference fm*nge 

To show temporal and spatial locali- 
ties in dataflow programs, we can 
employ two types of memory traces: 

execution fringe and reference fringe. 
The execution fringe records when an 
instruction begins execution; the ref- 

1oB 11B 
4 5 6 7 

5 1 4 6 3 2  
2 6 6 5  8 7 8 
3 8  7 9 1 0 9  
4 9  11 

10 
11 

(3) 

erence fringe records when an instruc- 
tion is referenced. Both fringes have 
two dimensions: time and degree of 
parallelism. 

Figure C1 shows a dataflow graph 
for a quadratic equation. Assuming 
unit execution time for each instruc- 
tion and a feedback processor, both the 
execution fringe and the reference 
fringe for the graph's complete execu- 
tion are given in Figures C2 and C3, 
respectively. At time 3, a new reference 
to Instruction 1 is made because its 
results from a previous reference are 
consumed by Instructions 2 and 5.  In 
a dataflow environment, an instruction 
may be referenced but not yet ready to 
execute. For example, comparing the 
execution fringe of Figure C2 to the 
reference fringe of Figure C3 shows 
that Instruction 6 is referenced by the 
arrival of an operand at time 2 but does 
nor begin execution until time 3. This 
delay is caused by the necessity of 
Instruction 6 to wait for the result 
from Instruction 5 .  

Figure C .  Dataflow graph of a 
quadratic equation: (1) dataflow; 
( 2 )  execution fringe; (3) reference 
fringe. 

nization and context switching-parameters needed by 
a cache controller to enforce the prefetching and 
replacement policies. Therefore, a partitioning algo- 
rithm should maximize parallelism while minimizing 
the overhead required to support the threads. In 
dataflow architectures, context switching is free within 
the limits of the cache size because each token carries 
its context information. 

Many control-flow designs use multithreading for 
tolerating high-latency memory operations.' The thread 
definition depends on the language and criteria used for 
context switching. For example, in the multiple contexts 
schemes of Weber and Gupta," the partitioner divides 
a p"lel loop into sequential processes, and context 
switching occurs when the system requires main mem- 
ory access after a cache miss. Thread granularity in this 
model is coarse, thereby limiting the amount of paral- 
lelism that can he exposed. On the other hand, nonstrict 
functional languages for dataflow architectures, such as 
Id, complicate partitioning due to feedback depenclen- 

cies that must be dynamically resolved. These situations 
arise because functions or arbitrary expressions can 
return results before all operands are computed (for 
example, I-structure semantics?). 'I'herefore, the parti- 
tioner needs a more restrictive constraint to partition a 
nonstrict program into threads. 

Another partitioning issue is maximizing the ex- 
ploitable parallelism. The  partitioner attempts to group 
into a thread only those instructions where little or no 
exploitable parallelism exists. Also, longer thread lengths 
result in longer intervals between context switches, 
which increases the spatial locality and the resource uti- 
lization. Data dependencies crossing thread boundaries 
should be used to iniprove the spatial locality and/or 
performance during execution. 

An example ofa partitioning algorithm that converts 
dataflow graph representation of programs into threads 
is that of Schauser and c o l l e a p e ~ , ~  whose scheme used 
dual graphs: directed graphs with data, control, and 
dependence arcs. A data arc represents the data depen- 

~~ I ~~~~ 
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dency between producer and consumer nodes, a con- 
trol arc represents the scheduling order between two 
nodes, and a dependence arc specifies long latency oper- 
ation due to message handlers-sendingheceiving mes- 
sages across code block boundaries. The partitioning 
involves first grouping the nodes based on dependence 
sets. This results in a safe partition, with the following 
characteristics: 

Partition output is not produced before all inputs are 
available. 
When the inputs to the partition are available, all par- 
tition nodes execute. 
No arc connects a partition node to an input node of 
the same partition. The partitions merge into larger 
partitions based on rules that generate safe partitions. 

When the general partitioning is complete, opti- 
mization reduces the synchronization cost. In short, the 
partitioner output is a set of threads where the nodes in 
each thread execute sequentially and the synchroniza- 
tion requirement, determined statically, occurs only at 
the beginning of a thread. 

Design principles for dataflow 
caches 
In the static dataflow paradigm, an actor executes only 
when all the tokens are available on its input arcs and 
no tokens exist on any of its output arcs. Because only 
one instance of the node will be fired, regardless of the 
number of instructions referenced at  any time, locali- 
ties can be exploited and enhanced more effectively by 
concentrating on the dataflow program’s execution 
fringe rather than its reference fringe. Cache imple- 
mentation in the static model depends largely on the 
way we interpret programs’ execution fringes. 

The dynamic dataflow approach, however, permits 
multiple node activation during runtime. To distinguish 
between different nodes, each token has a tag that iden- 
tifies the context in which a particular token was gener- 
ated. An actor is executable when its input arcs contain 
a set of tokens with identical tags. In a dynamic envi- 
ronment, both reference and execution fringes can help 
us understand localities and hence caches. T o  exploit 
temporal and spatial localities in dynamic dataflow pro- 
grams, we must separate instruction memory from the 
operand memory. However, asynchronous dataflow 
instructions means frequent context switching and a lack 
of temporal and spatial localities in accessing instruc- 
tion and operand memories.8 

T o  cope with these problems, a designer must control 
the load and manage resources in the processing ele- 
ments. This involves partitioning the dataflow graphs 
into subgraphs and allocating subgraphs among pro- 
cessing elements, combined with controlling subgraph 
activation in a processing element. Asynchronous 
dataflow instructions mean that node addresses in a 
dataflow graph can be set as desired without affecting 
execution outcome. 

T o  derive full benefit of the cache organization, we 
should study the effectiveness of traditional replacement 
algorithms (such as LRU) for instruction and operand 
memories apt to cause incorrect replacement. This 
means that a properly load-controlled PE requires a 
sophisticated deterministic algorithm to replace 
dataflow blocks. 

Finally, because operand memory is crucial in achiev- 
ing satisfactory dataflow machine performance, the 
operand cache must be effectively managed. In a 
dataflow machine, it’s as necessary to maintain spatial 
locality for the input arguments of a code block (frame) 
as it is to maintain spatial locality for the result tokens 
of the code block. Cache management must keep track 
of several active frames to avoid cache misses in access- 
ing arguments while storing the results. 

DATAFLOW CACHE EXAMPLES 

Two examples of dataflow systems in which designers 
have introduced cache memory are the Dataflow 
Machine-118 and the Super-Actor M a ~ h i n e . ~  

Dataflow Machine-11 
Designers introduced cache in the DFM-I1 (see 
“Dataflow Machine-11” sidebar) on the basis of four 
design principles: controlling the number of active 
processes, partitioning dataflow graphs, applying block- 
structured operand memory, and using a suitable 
replacement policy. With these principles, even small 
instruction and operand caches can achieve a sufficiently 
low miss ratio. 

Operand cache. The instruction memory, the operand 
memory blocks, and the operand cache memory are each 
a group of S sets (the number of stages in the instruction 
pipe determines the value of S; see Figure D in the 
“Dataflow Machine-11” sidebar). The  system assigns 
each operand memory block to a process, and the active 
process controls the cache memory. 

The system organizes OM cache into two levels of 
set-associative memories (see Figure 4): an operand 
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Dataflow Machine-II 

Figure D shows a DFM-11 processing element block 
diagram. It consists of a circular pipeline of four stages: 
result packet unit (RPU), key matching unit (KMU), 
data memory unit (DMU), and functional unit (Fuv). 
The system forwards a result packet @P)-an operand 
composed of a value and a destination (combination of 
the instruction address and color)-from the FUU to 
an RP buffer register (RPB) or to the RP memory 
(RPM) depending on the KMU’s status. The KMU 
attempts to match operands of a dyadic operation 
comparing the destination in the RPB with locations 
the key memory (KM). 

With a successful match, the KM 
sponding destination in the KM. Otherwi 
the result packet’s destination in the 
the destination fetches the operation code and the new 
destination of the corresponding instruction from the 
instruction memory 0. The operation code, the des- 
tination, the key matching result (matchho match), and 
the operand value form an instruction packet. If the key 
matching result shows a match, the system activates the 
DMU to read out a mate operand from the data mem- 
ory (DM) to complete the instruction packet. Other- 
wise, the system stores the operand value in the DM. 
For a monadic operation, the KM and DM are not used. 

‘ 
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cessing element in the 

address translation buffer and an operand cache mem- 
ory. The  OCM is composed ofp planes, each with the 
same structure as the OATB. An OATB entry corre- 
sponds top  entries in the OCM blocks with the same 
relative addresses, and each OATB can be in one of the 
active, waiting, or idle states. 

For address resolution, the token tag selects a set 
within an OATB. The  system associatively matches the 
key portion of the operand token against key portions of 
the active or waiting entries in the designated set. If it 
finds no match, it allocates an idle entry in the set (if one 
exists), changes its validity bit, and loadsp blocks of the 
cache corresponding to that entry from the OM. If there 
is no available entry, the system selects one of the wait- 
ing entries in the set and swaps p corresponding cache 
blocks. 

bzstl-iution cache. The  instruction cache organization, its 
replacement policy, and its address resolution proce- 
dure are similar to those of the operand cache memory 
(see Figure 4). Instruction cache is composed of an 
instruction address translation buffer, an instruction- 
memory-block token count memory (ITCM), and an 
instruction cache memory. The LATB is a set-associative 
memory, and has the same structure as the ICM. The  
system assigns an entry in the IATB to a dataflow block, 
and allocates an entry of the ITCM to a process as 
defined by the dataflow blocks. The  system uses a 

portion of the operand address to address a set of the 
IATB blocks. Again, the key portion of the result token 
associatively searches the selected blocks. In a success- 
ful match, the system accesses the instruction from the 
corresponding instruction cache block. Otherwise, it 
selects an idle (or waiting) cache block to house the new 
instruction block. 

Takesau8 simulated this cache design and analyzed its 
performance measures, then experimented with three 
different programs with varying degrees of parallelism. 
His model tried to overlap cache block swapping with 
normal cache accesses to allow multiple processes to 
share the same program blocks. H e  observed that if 
locality can be enforced in the programs, the LM cache 
of 1K words and the OM cache of 2K words suffice in 
offering low miss ratios. In addition, because of frequent 
interprocess switching in the dataflow environment, 
classical replacement algorithms could replace active 
blocks, which encourages development of more sophis- 
ticated replacement algorithms. 

Super-Actor Machine 
(See the “Super-Actor Machine” sidebar). Hum and 
Gao‘ proposed the operand and instruction caches in 
this system on the basis that (1) in a multiprocessor sys- 
tem, the explicit use of programmable registers results 
in reduced memory latencies, and (2) conventional caches 
cannot handle multithreaded architectures. Therefore, 

~ 

58 IEEE Parallel & Distributed Technology 



SAM features a set of high-speed 
memories for data and instructions, 
register caches (R-caches). These are 
organized both as a register file and a 
cache (see Figure S). Similar to gen- 
eral register addressing in conven- 
tional CPUs, the execution unit ac- 
cesses R-caches using relatively short 
addresses, and from the actor pro- 
cessing unit perspective, their con- 
tents are tagged just as in conventional 
caches. R-caches are transparent to 
the compiler, and R-cache line allo- 
cation occurs a t  runtime, aided by 
cache update and replacement algo- 
rithms. Afterward, the super-actor 
execution unit can directly access the 
locations in an R-cache line as if they 
were general registers. 

In this scheme, a partitioner parti- 
tions a dataflow program into a 
number of super-actors (instruction 
threads). A super-actor is executable 
only if it satisfies the firing rule and 
the spatial locality conditions-that 
is, the input data resides in the R- Figure 4. Operand and instruct ion caches for t h e  Da ta f l ow  Machine-ll. 

Super-Actor Machine 

SuDer-Actor Machine (SAM) is a mal- I 
ti<rocessor system with multithreadinW 1 

Main 
memory 

capabilities, in which each PE has five 
basic components (see Figure E): the 
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Figure 5. A register cache. 

cache and the system had reserved space to hold the 
results. Therefore, the execution unit of the SAM will 
never stall when accessing instructions or data, as hap- 
pens in conventional systems due to cache misses. A 
loader attached to the R-caches detects and schedules 
the ready super-actors for execution in the high-speed 
buffer memory. 

Hum and Gao used three benchmark programs to 
test the effectiveness and the feasibility of the proposed 
architecture, which had an instruction R-cache of IK 
words and a data R-cache of 1Kwords. The preliminary 
simulation results have shown the effectiveness of the 
register cache in hiding local memory la ten~ies .~ 

Adding cache to Monsoon 

Our research focused on adding cache to Monsoon, an 
example of a pure dataflow system based on the concept 
of the Explicit Token Store (ETS). The following dis- 
cussion details, from the perspective of our experiments, 
the architectural changes that would need to be made 
to Monsoon in order for cache to be effective in improv- 
ing system performance. 

Because the self-scheduling of instructions in a pure 
dataflow program precludes the use of cache, reorder- 
ing those program instructions can produce synthetic 
localities that justify a cache. Executed instructions can 

produce operands relating to instructions in subsequent 
blocks; thus, we must consider multiple blocks of 
operand locations from the operand memory. These 
blocks are a worhng set. (The working set for a 
dataflow program is the minimum set of instructions 
that keep the execution unit busy, and we can deter- 
mine it by analyzing the dataflow graph.*) We  can opti- 
mize block size and working set size, for a given cache 
configuration, to achieve a desired performance. We  
found that for instruction blocks of two instructions, 
working sets of 4 to 8 instructions yield significant per- 
formance improvements. 

T h e  locality for the operand cache relates to the 
ordering of instructions in the instruction cache. When 
the system references a block's first instruction, it brings 
the corresponding block into the instruction cache. 
Simultaneously, the system allocates locations in the 
operand cache for all the operands corresponding to the 
working set. The operand cache will satisfy any subse- 
quent references to the operand cache caused by the 
instructions in this block. (The operand cache block 
consists of waiting operands or empty locations.) 
Prefetching ensures that future stores and matches 
caused by executing the block instructions will occur in 
the operand cache. 

INSTRUCTION CACHE DESIGN 

Figure 6 shows the instruction cache structure, which 
resembles a conventional set-associative cache, except 
for the additional information. The instruction address's 
low-order bits map instruction blocks into N sets; in 
each set, the blocks are associatively searched. Each 
block has a tag, a valid bit, and a process count. The tag 
and the valid bits function as in conventional caches. 
The process count refers to the number of activation 
frames referring to this block's instructions. This infor- 

mation could be the basis for a context-sen- 
sitive cache replacement policy: an instruc- 
tion block used by many activation frames 
(loop iterations) is a poor candidate for 
replacement. 

PERAND CACHE DESIGN 

We examined the use of two-level set asso- 
ciativity for operand cache memories, which 
is similar to the DFM-I1 design.* At the first 
level, we partitioned the operand cache into 
superblocks. (At the second level the system 
accesses individual locations in a frame.) A 

Figure 6. Instruction cache organization. superblock is composed of three parts: 

I 
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A cold bit that indicates whether or not 
the superblock is occupied. This 
information eliminates misses result- 
ing from cold starts. In the dataflow 
model, because the first operand to 
arrive will be stored (written), there 
is no need to fetch an empty location 
from memory. The  cold bit with a 

Cold bits 
I 

WS address, ... WS address, 
WS pattern Tag ws pattern 

Cold bits 

Figure 7. Operand cache organizat ion.  

I 
WS address, ... WS address, 

WS pattern Tag ws pattern 

superblock allocates an entire frame 
(or context) and is set when the first operand is writ- 
ten into the frame. This eliminates the compulsory 
misses1* on writes. 
A tug that identifies the context (frame) occupying 
the superblock. This is based on the frame pointer 
address obtained from a token tag. 
Working set identifiers. The system divides memory 
locations within an activation frame into blocks and 
working sets, associating an instruction block with 
its corresponding working set. Thus, a superblock 
contains multiple working sets, which are accessed 
at Level 2 of set associativity. 

Figure 7 depicts the operand cache organization. Our 
simulation results indicated that no significant benefit 
will be gained by using two-level set associativity. 

The two-level set associativity we used presented sev- 
eral new issues: 

Cache replacement strategies 
For working set replacement, we investigated a used- 
words policy that replaces working sets containing mem- 
ory locations already used for matching operands. This 
policy will lead to the reuse of operand memory loca- 
tions within an activation frame. At the termination of 
an instruction, the memory locations used for match- 
ing the input operands can be reused for matching 
operands of other instructions. Such an optimization 
could improve the operand cache memory's perfor- 
mance. For superblock replacement, we studied the 
dead-context replacement policy that replaces a super- 
block representing a completed context (or frame). 

Process control 
The operand cache must accommodate several frames 
(contexts or threads) corresponding to different loop 
iterations, as well as frames belonging to other code 
blocks. T o  minimize the possibility of thrashing, the 
system must carefully manage the number of active con- 
texts (threads). The number depends on cache size and 
activation frame size. For tolerating remote memory 

latencies, however, the processor must keep a larger 
number of contexts. By reusing locations within a frame, 
we can reduce the size of an activation frame and 
increase the process count. We can also exploit this con- 
cept for cache memories within the scope of conven- 
tional multithreaded systems. 

PERFORMANCE EVALUATION 

Our preliminary experiments on cache memories were 
very encouraging.12 We believe that dataflow machines 
can derive performance benefits by using cache memo- 
ries in a manner similar to control-flow machines. In 
addition, the results for process control can be easily 
extended to optimal use of cache memories in super- 
scalar (multithreaded) implementations. 

T o  analyze cache memory's effectiveness in a dataflow 
environment, we developed a simulator to mimic the 
behavior of the ETS model enhanced by the instruction 
and data caches. We  also developed a translator that 
takes IF1 graphs from a Sisal compiler and generates 
ETS instructions for our simulator. The IF1 graphs are 
further preprocessed to enhance locality.12 

In our studies, we used a fast Fourier transform pro- 
gram, a matrix multiplication program, Loop 5 of Liv- 
ermore Loops, and a random graph. We used the ran- 
dom graph to study the effectiveness of our techniques 
for reordering instructions. Table 1 lists the character- 
istics of these programs. Unlike conventional cache 
experiments, benchmark programs and traces for 
dataflow architectures are not readily available. We plan 

Table 1. Characteristics (number of references) 
in t h e  benchmark programs. 

NAME INSTRUCTIONS OPERAND I-STRUCTURE 
REFERENCED REFERENCES REFERENCES 

Fast Fourier transform 179,050 128,524 38,553 
Livermore Loop 5 158,074 134,620 28,386 
Matrix multiplication 115,682 69,292 18,128 
Random 281,960 196,204 36,786 
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Figure 8. Miss ratio versus instruction cache block size. 

Figure 9. Miss ratio versus operand working set size. (FFT and Loop 5 
coincide .) 

to extend the benchmarks by rewriting some standard C 
or Fortran programs in Sisal. 

Experiments with cache parameters 
In our initial experiments, we evaluated the cache size, 
the worlclng set, and the block size. The  effects of these 
parameters on the miss ratio are similar to those 
obtained with a conventional cache. For example, as we 
increase instruction cache size, the miss ratio decreases. 
Set associativity adversely affects the instruction cache. 
The  miss ratio increases almost linearly with instruc- 
tion cache set associativity, indicating that a direct- 
mapping scheme is better for instruction caches. 

Nearly all instruction cache misses result from cold- 
start misses, and increasing block size can reduce these 
misses (see Figure Sj. Increasing block size, however, 
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negatively affects the operand cache 
memories, as will be discussed shortly. 
Similarly, the miss ratio drops as we 
increase the operand cache memory 
size. But unlike the instruction cache, 
the operand cache miss ratio increases 
as we increase the block size (and 
worlung set size) (see Figure 9j. W e  
expected this behavior: in dataflow 
environments, efficient cache utiliza- 
tion implies that both input operands 
and memory for result tokens be kept 
in the cache. With larger working sets, 
it’s difficult to assure that operands 
and memory for results are in the 
operand cache. 

In one of our experiments, we mea- 
sured the miss ratio against the asso- 
ciativity degree of both the superblock 
and the workmg set. Superblocks are 
somewhat similar to base addresses 
and paging of conventional virtual 
memory systems. Increasing the work- 
ing set associativity (second level of 
operand cache), however, reduces the 
miss ratio (for fast Fourier transform 
and Loop Sj up to a point beyond 
which the miss ratio starts to increase: 
the initial decrease occurs when con- 
flict misses are eliminated, while the 
increase at higher associativities results 
from fewer sets in the cache (for a 
given cache size). Cold-start misses in 
operand cache memories are elimi- 

nated because cache blocks are allocated on writes. 

Effect ofprocess control 
Process control prevents too many active processes (con- 
texts) from contending for the limited operand cache 
resources. An appropriate threshold value permits dis- 
ciplined use of the cache resources and better utiliza- 
tion and performance. The  best value for the threshold 
depends on the number of superblocks that can be held 
in the operand cache. 

Effect of replacement strategies 
We explored performance gains achieved through dead- 
context replacement for superblocks and used-words 
replacement for working sets. The  dead-context 
replacement policy showed significant improvements for 
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small caches (as much as 70% fewer 
superblock misses when compared to 
random replacement policy, for 2K or 
smaller cached2). We applied the used- 
words scheme for the working set 
replacement (within a superblock). 
Here, the system replaces a working set 
(if one exists) containing operand loca- 
tions that have already been used by 
instructions. 

Figure 10 shows the percentage of 
operand cache misses that can be satis- 
fied by the used-words policy. The  
improvement resulting from this pol- 
icy indicates that dataflow systems can 
be designed to reuse operand cache 
memory locations for matching op- 
erands of more than one instruction 
within a frame. In other words, instead 
of replacing used words in a frame, the 
system can reuse them for storing 
and matching other operands. Many 
operand cache misses can then be elim- 
inated. Reusing operand locations is 
akin to using registers to keep tempo- 
rary variables during a computation, 
bringing the dataflow processing even 
closer to control-flow architecture. 

Throughput improvement with 
cache 
We measured the throughput improve- 
ment against various operand cache 
sizes. Because of the small code size of 
the benchmark programs and the fact 
that instruction cache misses are rare, 
we didn’t experiment with the effect of 
various instruction cache sizes. Figure 

Instruction cache size = 1 K words, Instruction block size = 1 word, 
Working set associativity = 2, Working set size = 1 word, 

Process threshold = 8, Superblock associativity = 4 

Figure IO. Significance of used-words replacement policy. 

uction cache size = 1 K words, Working set associativity = 2 

0 Fast Fourier transform 
Working set size = 8 words, Process threshold = 8 

Figure 11. Uniprocessor throughput gains versus operand cache size. 

11 shows the gains (reduced execution times) that can be 
achieved relative to a platform with no cache memory. 

ache memories have proved their useful- 
ness in conventional systems, while in 
dataflow models cache has shown un- 
equaled effectiveness in improving sys- C tem performance. Intuitive ideas, gained 

through experience with control-flow systems, gener- 

ally apply to the dataflow environment, especially in a 
hybrid machine in which a control-driven model exe- 
cutes intraprocess instructions and a data-driven model 
executes interprocess communication and synchroniza- 
tion. The ultimate goal is to develop a computational 
environment that competes with today’s FUSC proces- 
sors in performance without the shortcomings of con- 
trol-flow organization. We can achieve this by bring- 
ing the dataflow computation model closer to the 
control-flow model of computation, and by using con- 
ventional technological innovations such as hierarchical 
memories, branch prediction, and superscalars. 
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Cache, if properly designed, generally shows more 
promise in dataflow organization when we can rely on 
compiler optimization to exploit locality. In a dataflow 
environment, designers can implement a workmg set 
concept for an active process to devise sophisticated 
prefetching and replacement policies. As an example, 
because the program can reference an instruction block 
in more than one context in a dataflow environment, a 
simple process count attached to each block can help 
effectively select suitable blocks for replacement. 

The impact on dataflow architecture performance by 
memory hierarchy and caches with mixed data and 
instructions needs to be explored further. How a partic- 
ular partitioning algorithm can be used efficiently to 
establish or to enhance the localities within dataflow pro- 
grams is another question for today’s computer architects 
to explore. Finally, there are few algorithms for accom- 
plishng various tasks in dataflow caches, and researchers 
must direct their efforts toward this issue as well. a 
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