
A.R. Hurson
Pennsylvania State University
Krishna M. Kavi and Behrooz Shirazi
University of Texas

Ben Lee
Oregon State University

Cache memog-so
effective in traditional
control-flow
architecturehas the
potential to enhance
dataflow system
performance as well.
n e authors explore
the recent trend in
co m bin ing da taflo w
and control-flow
processing, which
offers new alternatives
in computer
architecture design,
and analyze cache
memo y 's application
to the dataflow
environment.

urrent microelectronics technology has enabled chip capac-
ity to exceed 64 million transistors, and computer architects
are facing the increasing challenge of ULSI (ultra large scale

, integration) technology. By the year 2000, technology
advances are expected to make possible chps with more than

100 million transistors. With such a significant on-chip hardware capac-
ity, concurrency is a way to reduce the computation gap between the com-
putational power demanded by the applications and that demanded by
the underlymg computer platforms.

Designers can increase architectural support for instruction-level par-
allelism to absorb such a massive hardware capacity; examples are super-
scalar and superpipeline machmes.' However, the single-instruction stream
processing characteristic of the control-flow machine makes it inherently
unsuitable to exploit superscalar and superpipeline architectures effi-
ciently.2 This is because the total ordering of the control-flow execution
model is ill-equipped to tolerate long, unpredictable memory and com-
munication latencies that are unavoidable in a multiprocessor system.

An alternative is to design parallel computers based on partial order-
ing of the execution. Datajlow machines are an example of this approach,
where an instruction initiates (fires) only when all the required operands
are available. Instructions impose no sequencing constraints except the
one on the program's data dependencies. As a result, the program's
dataflow graph representation exposes all forms of parallelism, eliminat-
ing the need to explicitly manage parallel program execution.

Research efforts have long focused on the dataflow computation model,
simple and elegant in describing parallelism and data dependencies. Since

50 1063-6552/96/$4.00 0 1996 IEEE IEEE Parallel & Distributed Technology

the early 1970s, researchers have proposed, simulated,
and prototyped dataflow designs. The consensus is that
directly implementing the dataflow concept carries
overhead costs, mainly due to its fine-grain approach to
parallelism.2

In this article, we compare control-flow and dataflow
architectures, examine cache as it relates to both, and
describe our research experiments in adding cache to
Monsoon, an example of a pure dataflow system.

Dataflow revisited
Dataflow computation has received renewed attention
lately, resulting from (1) a lack of developments in con-
ventional parallel processing, and (2) a change in view-
point on dataflow and its implementation (a shift from
the exploitation of fine-grain to medium- and large-
grain parallelism). To alleviate the inefficiencies asso-
ciated with the pure dataflow model, designers have
compromised, incorporating control-flow methods into
the dataflow approach.

In dataflow architectures, context switching can occur
on a per-instruction basis, which tolerates long, unpre-
dictable latencies due to remote memory accesses. The
instruction-level context-switching capability combined
with sequential scheduling yields what we call multi-
threading. The evolution from a pure self-scheduling par-
adigm to multithreading requires locality and improved
processor efficiency during remote memory accesses.
Current dataflow research indicates multithreading as a
means to build hybrid architectures that combine fea-
tures of dataflow and von Neumann execution models.

Despite recent architectural advances that support
fine-grain parallelism and latency tolerance, challenges
such as thread scheduling still remain. Multithreading’s
success depends on how quickly and efficiently context
switching can be supported. This is possible only if
threads are resident in fast but small memories-cache,
which limits the number of active threads and thus the
amount of latency that can be tolerated. (See “The util-
ity of cache” sidebar.) Dataflow scheduling’s generality,
however, makes it difficult to fetch and execute a logi-
cally related thread sequence through the processor
pipeline, which means registers can’t be used across
thread boundaries. Relegating scheduling and storage-
management responsibilities to the compiler alleviates
this problem somewhat. In conventional architectures,
reduced memory latencies are achieved through
(explicit) programmable registers and (implicit) high-
speed caches. Adding caches, or register-caches, to the

dataflow framework could better exploit parallelism and
hardware utilization.

Dataflow architecture
In the dataflow model, tokens carry data values and
travel along the arcs connecting various instructions in
the program graph. The arcs are assumed to be FIFO
queues of unbounded capacity. Impractical for direct
implementatioq2 the dataflow execution model instead
is either static or dynami~ .~ T o date, researchers cate-
gorize dataflow machine organizations as pure dataflow,
macro dataflow, or hybrid2 (see “Dataflow system fea-
tures” sidebar). The major differences between pure
dataflow and classical dynamic architectures are (1) the
reversal of the instruction fetch unit and the matching
unit, and (2) the introduction of frames to represent con-
texts. These changes result primarily from a direct
matching scheme to reduce the hardware overhead (see
“Token matching” sidebar).

Winter 1996 51

~ ~~ ~ ~ _ _ _ -~~ ~~

Dataflow system features

Table A lists key features and characteristics of six dataflow systems in three categories.

Table A. Archi tectural features of cur ren t d a t a f l o w systems.

4. R.S. Nikhil and h i n d , “Can Dataflow Subsume von Neumann
Computing!” Proc. 16th Ann. Int ’I Spp. Computer Architemre,
ACM Press, 1989, pp. 262-272.

5. R.S. Nikhil, G.M. Papadopoulos, and h i n d , “*T: A Multi-
threaded Massively Parallel Architecture,” Proc. 19th Ann. Int’l
Synp. ComputerArchite&re, ACM Press, 1992, pp. 156-167.

6. D.E. Culler et al., “Fine-Grain Parallelism with Minimal

CATEGORY

Pure
dataflow

Macro-
dataflow

_ ~ _ _
Hybrid

GENERAL CHARACTERISTICS

Implements the traditional
dataflow instruction cycle.
Direct matching of tokens.

Integration of a token-based
circular pipeline and an
advanced control pipeline.
Direct matching of tokens.

Based on conventional
control-flow processor, that
is, sequential scheduling is
implicit by the RISC-based
architecture.
Tokens do not carry data,
only continuations. Provides
limited token matching
capability through special
synchronization primitives
(Join).
Message handlers implemenl
interprocessor
communication.
Can use both conventional
and dataflow compiling
technologies.

MACHINE

Monsoon’

_ _ _ ~
Epsilon-22

- _ _

EM-43

___. -

P-RISC4

_- ____
* T5

TAM6

KEY FEATURES

Direct matching of tokens using rendezvous slots in the frame
memory (Explicit Token Store model).
Associates three temporary registers with each computation thread.
Sequential scheduling implemented by recalculating scheduling
paradigm using direct recirculation path (instructions are annotated
with special marks to indicate that the successor instruction is IPt1).
Multiple threads supported by Fork and implicit Join.

A separate match memory maintains match counts for the rendezvous
slots, and each operand is stored separately in the frame memory.
Use of repeat unit reduces the overhead of copying tokens and
represents a thread of computation (macro actor) as a linked list.
Use of a register file temporarily stores values within a thread.

Use of macro actors IS based on the strongly connected arc model,
and macro actors are executed using advanced control pipeline.
Use of registers reduces the instruction cycle and the communication
overhead of transferring tokens within a macro actor.
Special thread library functions Fork and Null spawn and synchronize
multiple threads.

- ~ ____ _ _ _ . - _ _ ~

Multithreading is supported with a token queue and circulating
continuations.
Context switching can occur on every cycle or when a thread dies due
to Loads or Joins.

Overhead is reduced by off-loading the burden of message handling
and synchronization to separate coprocessors.

f. G.M. Papadopoulos and K.K. Traub, “Multithreading: A Revi-
sionist View of Dataflow Architectures,” Proc. 18th Ann. Int’l
Symp. Computer Architermre, ACM Press, New York, 1991, pp.
342-3 5 1.

2. V.G. Grafc and J.E. Hoch, “The Epsilon-2 Multiprocessor Sys-
tem,”3. Pnrallel & Distrihnted Compiiting, Vol. 10, 1990, pp.

3. S. Sakai et al., “An Architecture of a Dataflow Single Chip Proces-
sor,” Proc 16th Ann. Int’l Symp. Computer Architecture, ACM
Press, 1989, pp. 46-53.

309-318.

Placing all synchronization, scheduling, and storage-management
responsibility under compiler control-for example, exposes the
token queue (continuation vector) for scheduling threads.
The compiler produces specialized message handlers as inlets to each
code block.

port fir Progrnrnmrng Languages and Oper/jtmng Svtenu, ACM
Press, 1991.

‘The hybrid organizat ion is a radical depa rh i r e froni
classical dynamic archi tectures in t h e sense tha t tokens
on ly ca r ry tags, and the archi tecture is liased o n con-
ventional control-flow sequencing . Researchers regard
such archi tectures as control-f low machines ex tended

to suppor t f ine-grained dataflow capability. Unlike the
p u r e dataflow organization, hybrid machines provide a
limited token-matching capability th rough special syn-
chronizat ion primitives.

A token-based circular pipeline in t eg ra t ed wi th a n

52 IEEE Parallel & Distributed Technology

Token matching and the
Monsoon system From communication network

Direct matching-a simplified process of matching
tags-eliminates associative search used in dynamic
dataflow architectures to match pairs of tokens represent-
ing an instruction’s operands. Storage (called activation
f i m z e s) is dynamically allocated for all the tokens that can
be generated by a code block. Location usage in a code
block is determined a t compile time; however, activation
frame allocation is determined during runtime.

With this scheme, any computation is completely
described by an instruction pointer (IP) and an activation
frame pointer (FP). The pair of pointers, <FP. I P > , is
called a continuation and corresponds to the tag part of a
token. A typical instruction specifies an opcode, an offset
in the activation frame where the match will take place, and
one or more displacements that define the destination
instructions that will receive the result token(s). Each dis-
placement is also accompanied by an input port (lewright)
indicator that specifies the appropriate input arc for a des-
tination actor.

In Monsoon, the tokens-matching process is based on
the Explicit Token Store model.’ An example of the ETS
code block invocation and its corresponding instruction
and frame memory is shown in Figure A. When a token
arrives a t an actor (for example, Add), the IP part of the
continuation points to the instruction that contains an off-
set r as well as displacements for the destination instruc-
tions. The system achieves the actual matching process by
checking the disposition of the slot in the frame memory
pointed to by FP + r. If the slot is empty, the system writes
the token’s value in the slot and sets its presence bit to indi-
cate that the slot is full. If the slot is already full, the sys-
tem extracts the value, leaving the slot empty, and executes
the corresponding instruction. The system communicates
the result tokens that the operation generates to the desti-

! I
cution pipeline

Instruction
and frame
memory

i L , 1 U

unit

token

I
~

To communication network I
Figure B. An organization of a pure-dataflow processing
element.

nation instructions by updating the IP according to the dis-
placements encoded in the instruction (for example, exe-
cution of the Add operation produces two result tokens
<FP. I P + 1, 3.55> and <FP. I P + 2, 3.55>L). Inpure
dataflow organizations, the token-matching mechanism
provides the full generality of the dataflow model of exe-
cution, and therefore the hardware supports it.

The fundamental Monsoon design concerns the map-
ping of activation fi

<FP. , IP,

Code block activation Instruction
Opcode Offset Destination

3 1 > ~ I I I instructions I
+1, +2L

SUB +1

I I
Frame memory

FP+2

Presence bits

Figure A. ETS representation of a dataflow program execution.

nes among processors (see Figure B).
A Monsoon processor is an eight-
stage pipeline. On each processor
cycle, a token enters the pipe and-
after eight cycles-zero, one, or
two tokens emerge from the pipe-
line. One output token can be read-
ily circulated back into the pipe.
Tokens that do not circulate back
to the pipeline are either inserted
into the token queue or sent to the
destination processor.

Reference
I . G.M. Papadopoulos and K.R.

Traub, “Multithreading: A Revi-
sionist View of Dataflow Archi-
tectures,” Proc. 18th Ann. Int’l
Symp. Computer Architecture,
ACM Press, NewYork, 1991, pp.
342-35 I.

~~

Winter 1996
~

53

advanced control pipeline characterizes the macro
dataflow organization, a compromise between pure
dataflow and hybrid. This architecture exploits a more
coarse-grained parallelism by incorporating control-
flow sequencing into the dataflow approach.

Cache in conventional
multiprocessor systems
Shared-memory multiprocessors increase computing
power and throughput cost-effectively, although mem-
ory contention, communication contention, and latency
time problems can increase memory-access times and
lower processor utilization and throughput. As a solu-
tion, cache memories have effectively reduced the aver-
age memory-access time. For a cache-based multi-
processor organization, the literature proposes private-
and shared-cache multiprocessors. In a private cache,
however, a drawback to the simplicity and reduced
access time of shared code and data structures among
the processes is that the sharing can result in a coher-
ence problem.

Most multiprocessors are multiprogrammed such that
each process uses the processor for a time slice, or quan-
tum, in a round-robin fashion. Because processors are
typically alternated in use, a significant fraction of cache
misses result from task switching. The terms wamn-stavt
and cold-start refer to die iniss ratio starting with a full
cache and the m i s s ratio starting with an empty cache,
respectively.

Cache in dataftbw systems

W e knew that cache effectively uses the presence of
locality in control-flow programs. The question under-
lying our research was, can it do likewise in dataflow
programs?

A dataflow program is represented as a directed graph,
G = G(N, A), where nodes (or actors) in Nindicate oper-
ations, and directed arcs in A indicate data dependen-

cies among the nodes. Data packets called tokens con-
vey the operands from one node to anothera3 Dataflow
programs generally offer locality of effect and freedom
from side effects. Moreover, dataflow procedures are
not history-sensitive. These characteristics result from
dataflow’s asynchronous nature.

Dataflow executions are either statlc or dynamic (see
“Classificaaon of dataflow architectures” sidebar). A sta-
tic dataflow program is a directed acyclic graph in which
repetitively executed subgraphs must be unraveled
before execution. A dynamic dataflow program (a
directed cyclic graph) contains cycles and/or runtime
procedure calls for loop consu’ucts. In static programs,
temporal locality for instructions does not fully apply,
because each instruction is executed only once. Instead,
locality can be established on the basis of simultaneity of
execution by assigning a weight to each dataflow node,
where a weight represents a node’s distance from the
root. The nodes with the same weight are then clustered
on the same page. This strategy partitions the dataflow
graph into K horizontal layers such that the nodes in
layer K , are data-independent from each other, mean-
ing they can likely be executed in parallel, and are data-
dependent on nodes in layer K, - l (l < z < K) . For a
dynamic dataflow program, locality applies on the
grounds of instruction recurrence (such as loops) and
simultaneity of execution.

TEMPORAL LOCALITY IN DATAFLOW PROGRAMS

If a loop comprises a locality pattern, then the loop’s
complete execution appears as repetitions of that pat-
tern.4 These repetitions may be partially distinct (for
example, DoAcross) or overlapping (for example,
D O A ~ I), depending on the loop’s data dependencies and
on the underlying dataflow architecture. In a sequential
environment, loop instructions are reused in iterations.
If instructions are similarly reused in a dataflow envi-
ronment, temporal locality exists, as shown in Figure 1,
where a loop is executed on a feedback processor. Fig-
ure IC represents each instruction by a line number,
operation code, position for operand values, and desti-
nation addresses.

A feedback processor will restrict or prohibit over-
lapped successive iterations to eliminate possible
operand overwriting. A nonfeedback processor, how-
ever, lets a loop unwind naturally during execution time
so that only data dependencies from one iteration to the
next constrain successive iteration initiation. Figure 2
shows the loop execution, depicted in Figure lb, on a
nonfeedback processor. Here the complete loop execu-

54 I E E E Parallel & Distributed Technology

Opcode Operand part ~ Destination addresses I
(a) Instruction template

while i <= n do
y : = 1 ** 2 + 3 * i + 4
write y
i : = i + l

end

(b) High-level code

io <= , ;ii,i2,i3,i4,i5,ia,i9
11 merge , , ; 10,14,15,19
12 merge , , ; 10;12
13 merge , , ; 18
14 ** -,‘2’;16
15 * ‘3’,-;16
16 + . ;17
17 + -,‘4’;18
18 write , ;13
19 + -,‘l’;ll
(c) Compiled code

(d) Execution fringe

Figure 1. Execution of a loop on a feedback processor:
(a) instruction template; (b) high-level code; (c)
compiled code; (d) execution fringe.

tion appears as overlapped repetitions of the locality pat-
tern. Temporal locality can be exploited if and only if
the successive locality patterns use the same copy of
instructions in the memory.

SPATIAL LOCALITY IN DATAFLOW PROGRAMS

Straight-line code-in fact, any section of the code-may
produce exploitable spatial localities in a dataflow envi-
ronment. (See “Execution fringe and reference fringe”
sidebar). An exploitable spatial locality is a set of instruc-
tions that would constitute a spatial locality if grouped
together in the virtual address space. An activity path,
determined by the program’s data dependencies, repre-
sents the locality. For example, the code in Figure 3a may
be compiled and encoded into the graph of Figure 3 b,
which is summarized for this discussion. This code pro-
ducestheactivitypaths ((18, 21, 22), (19, 21,
2 2) , (2 0, 2 2) 1. Each path will be an actual spatial
locality if and only if the instructions in that path are
grouped together in the virtual address space.

Spatial localities in a dataflow graph can be easily
exploited. For example, the vertically layered alloca-
tion algorithm introduced by Lee and colleagues’ can

10 <= , ;11,12,16
11 ** -,‘2‘;13
12 * ‘3’,-,;13
13 + , ;14
14 + -,‘4’;15
15 write, :
16 + -...-,‘l’;lO
(a) Compiled code

Time 5 6 7 8 9 10 11
10 11 13 14 15 12

12 I 16

a

(b) Execution fringe

Figure 2. Execution of a loop on a nonfeedback
processor: (a) compiled code; (b) execution fringe.

a : = x + y

b : = x * y

X Y

I/ I

Figure 3. Spatial localities in a dataflow program: (a)
high-level code; (b) dataflow graph.

be modified to detect spatial locality in a dataflow
graph. The modification is based on (1) assigning data-
dependent nodes to the same vertical layer or frame and
(2) combining heavily data-dependent frames together
into a virtual address frame. Thus, clustering sequen-
tial nodes into a single frame exploits simultaneity of
execution, and combining the frames into the same vir-
tual frame based on their degree of connectivity and the
physical characteristics of the underlying architecture
enhances spatial locality.

PARTITIONING PROGRAMS INTO THREADS

Partitioning programs into multiple sequential threads
is important because a thread defines the granularity of
a computation and thus the basic unit ofwork for sched-
uling. Each thread has an associated cost, which directly
affects the amount of overhead required for synchro-

Winter 1996

Execution fringe and reference fm*nge

To show temporal and spatial locali-
ties in dataflow programs, we can
employ two types of memory traces:

execution fringe and reference fringe.
The execution fringe records when an
instruction begins execution; the ref-

1oB 11B
4 5 6 7

5 1 4 6 3 2
2 6 6 5 8 7 8
3 8 7 9 1 0 9
4 9 11

10
11

(3)

erence fringe records when an instruc-
tion is referenced. Both fringes have
two dimensions: time and degree of
parallelism.

Figure C1 shows a dataflow graph
for a quadratic equation. Assuming
unit execution time for each instruc-
tion and a feedback processor, both the
execution fringe and the reference
fringe for the graph's complete execu-
tion are given in Figures C2 and C3,
respectively. At time 3, a new reference
to Instruction 1 is made because its
results from a previous reference are
consumed by Instructions 2 and 5. In
a dataflow environment, an instruction
may be referenced but not yet ready to
execute. For example, comparing the
execution fringe of Figure C2 to the
reference fringe of Figure C3 shows
that Instruction 6 is referenced by the
arrival of an operand at time 2 but does
nor begin execution until time 3. This
delay is caused by the necessity of
Instruction 6 to wait for the result
from Instruction 5 .

Figure C . Dataflow graph of a
quadratic equation: (1) dataflow;
(2) execution fringe; (3) reference
fringe.

nization and context switching-parameters needed by
a cache controller to enforce the prefetching and
replacement policies. Therefore, a partitioning algo-
rithm should maximize parallelism while minimizing
the overhead required to support the threads. In
dataflow architectures, context switching is free within
the limits of the cache size because each token carries
its context information.

Many control-flow designs use multithreading for
tolerating high-latency memory operations.' The thread
definition depends on the language and criteria used for
context switching. For example, in the multiple contexts
schemes of Weber and Gupta," the partitioner divides
a p"lel loop into sequential processes, and context
switching occurs when the system requires main mem-
ory access after a cache miss. Thread granularity in this
model is coarse, thereby limiting the amount of paral-
lelism that can he exposed. On the other hand, nonstrict
functional languages for dataflow architectures, such as
Id, complicate partitioning due to feedback depenclen-

cies that must be dynamically resolved. These situations
arise because functions or arbitrary expressions can
return results before all operands are computed (for
example, I-structure semantics?). 'I'herefore, the parti-
tioner needs a more restrictive constraint to partition a
nonstrict program into threads.

Another partitioning issue is maximizing the ex-
ploitable parallelism. The partitioner attempts to group
into a thread only those instructions where little or no
exploitable parallelism exists. Also, longer thread lengths
result in longer intervals between context switches,
which increases the spatial locality and the resource uti-
lization. Data dependencies crossing thread boundaries
should be used to iniprove the spatial locality and/or
performance during execution.

An example ofa partitioning algorithm that converts
dataflow graph representation of programs into threads
is that of Schauser and c o l l e a p e ~ , ~ whose scheme used
dual graphs: directed graphs with data, control, and
dependence arcs. A data arc represents the data depen-

~~ I ~~~~

IEEE Parallel & Distributed Technology

dency between producer and consumer nodes, a con-
trol arc represents the scheduling order between two
nodes, and a dependence arc specifies long latency oper-
ation due to message handlers-sendingheceiving mes-
sages across code block boundaries. The partitioning
involves first grouping the nodes based on dependence
sets. This results in a safe partition, with the following
characteristics:

Partition output is not produced before all inputs are
available.
When the inputs to the partition are available, all par-
tition nodes execute.
No arc connects a partition node to an input node of
the same partition. The partitions merge into larger
partitions based on rules that generate safe partitions.

When the general partitioning is complete, opti-
mization reduces the synchronization cost. In short, the
partitioner output is a set of threads where the nodes in
each thread execute sequentially and the synchroniza-
tion requirement, determined statically, occurs only at
the beginning of a thread.

Design principles for dataflow
caches
In the static dataflow paradigm, an actor executes only
when all the tokens are available on its input arcs and
no tokens exist on any of its output arcs. Because only
one instance of the node will be fired, regardless of the
number of instructions referenced at any time, locali-
ties can be exploited and enhanced more effectively by
concentrating on the dataflow program’s execution
fringe rather than its reference fringe. Cache imple-
mentation in the static model depends largely on the
way we interpret programs’ execution fringes.

The dynamic dataflow approach, however, permits
multiple node activation during runtime. To distinguish
between different nodes, each token has a tag that iden-
tifies the context in which a particular token was gener-
ated. An actor is executable when its input arcs contain
a set of tokens with identical tags. In a dynamic envi-
ronment, both reference and execution fringes can help
us understand localities and hence caches. T o exploit
temporal and spatial localities in dynamic dataflow pro-
grams, we must separate instruction memory from the
operand memory. However, asynchronous dataflow
instructions means frequent context switching and a lack
of temporal and spatial localities in accessing instruc-
tion and operand memories.8

T o cope with these problems, a designer must control
the load and manage resources in the processing ele-
ments. This involves partitioning the dataflow graphs
into subgraphs and allocating subgraphs among pro-
cessing elements, combined with controlling subgraph
activation in a processing element. Asynchronous
dataflow instructions mean that node addresses in a
dataflow graph can be set as desired without affecting
execution outcome.

T o derive full benefit of the cache organization, we
should study the effectiveness of traditional replacement
algorithms (such as LRU) for instruction and operand
memories apt to cause incorrect replacement. This
means that a properly load-controlled PE requires a
sophisticated deterministic algorithm to replace
dataflow blocks.

Finally, because operand memory is crucial in achiev-
ing satisfactory dataflow machine performance, the
operand cache must be effectively managed. In a
dataflow machine, it’s as necessary to maintain spatial
locality for the input arguments of a code block (frame)
as it is to maintain spatial locality for the result tokens
of the code block. Cache management must keep track
of several active frames to avoid cache misses in access-
ing arguments while storing the results.

DATAFLOW CACHE EXAMPLES

Two examples of dataflow systems in which designers
have introduced cache memory are the Dataflow
Machine-118 and the Super-Actor M a ~ h i n e . ~

Dataflow Machine-11
Designers introduced cache in the DFM-I1 (see
“Dataflow Machine-11” sidebar) on the basis of four
design principles: controlling the number of active
processes, partitioning dataflow graphs, applying block-
structured operand memory, and using a suitable
replacement policy. With these principles, even small
instruction and operand caches can achieve a sufficiently
low miss ratio.

Operand cache. The instruction memory, the operand
memory blocks, and the operand cache memory are each
a group of S sets (the number of stages in the instruction
pipe determines the value of S; see Figure D in the
“Dataflow Machine-11” sidebar). The system assigns
each operand memory block to a process, and the active
process controls the cache memory.

The system organizes OM cache into two levels of
set-associative memories (see Figure 4): an operand

Winter 1996 57

Dataflow Machine-II

Figure D shows a DFM-11 processing element block
diagram. It consists of a circular pipeline of four stages:
result packet unit (RPU), key matching unit (KMU),
data memory unit (DMU), and functional unit (Fuv).
The system forwards a result packet @P)-an operand
composed of a value and a destination (combination of
the instruction address and color)-from the FUU to
an RP buffer register (RPB) or to the RP memory
(RPM) depending on the KMU’s status. The KMU
attempts to match operands of a dyadic operation
comparing the destination in the RPB with locations
the key memory (KM).

With a successful match, the KM
sponding destination in the KM. Otherwi
the result packet’s destination in the
the destination fetches the operation code and the new
destination of the corresponding instruction from the
instruction memory 0. The operation code, the des-
tination, the key matching result (matchho match), and
the operand value form an instruction packet. If the key
matching result shows a match, the system activates the
DMU to read out a mate operand from the data mem-
ory (DM) to complete the instruction packet. Other-
wise, the system stores the operand value in the DM.
For a monadic operation, the KM and DM are not used.

‘

KMU I
DMu4
FUU 1

i

Result packet 1

Operand
memory

~

I F
Networks

ALU: Arithmetic logic unit KMU: Key matching unit
OM: Data memory OM: Operand memory
DMU: Data memory unit OPR: Operand packet register
FUU: Functional unit RPB: Result packet buffer
IM: Instruction memory RPM: Result packet memory
IPR: Instruction packet register RPR: Result packet register
KM: Keymemory RPU: Result packet unit

cessing element in the

address translation buffer and an operand cache mem-
ory. The OCM is composed ofp planes, each with the
same structure as the OATB. An OATB entry corre-
sponds top entries in the OCM blocks with the same
relative addresses, and each OATB can be in one of the
active, waiting, or idle states.

For address resolution, the token tag selects a set
within an OATB. The system associatively matches the
key portion of the operand token against key portions of
the active or waiting entries in the designated set. If it
finds no match, it allocates an idle entry in the set (if one
exists), changes its validity bit, and loadsp blocks of the
cache corresponding to that entry from the OM. If there
is no available entry, the system selects one of the wait-
ing entries in the set and swaps p corresponding cache
blocks.

bzstl-iution cache. The instruction cache organization, its
replacement policy, and its address resolution proce-
dure are similar to those of the operand cache memory
(see Figure 4). Instruction cache is composed of an
instruction address translation buffer, an instruction-
memory-block token count memory (ITCM), and an
instruction cache memory. The LATB is a set-associative
memory, and has the same structure as the ICM. The
system assigns an entry in the IATB to a dataflow block,
and allocates an entry of the ITCM to a process as
defined by the dataflow blocks. The system uses a

portion of the operand address to address a set of the
IATB blocks. Again, the key portion of the result token
associatively searches the selected blocks. In a success-
ful match, the system accesses the instruction from the
corresponding instruction cache block. Otherwise, it
selects an idle (or waiting) cache block to house the new
instruction block.

Takesau8 simulated this cache design and analyzed its
performance measures, then experimented with three
different programs with varying degrees of parallelism.
His model tried to overlap cache block swapping with
normal cache accesses to allow multiple processes to
share the same program blocks. H e observed that if
locality can be enforced in the programs, the LM cache
of 1K words and the OM cache of 2K words suffice in
offering low miss ratios. In addition, because of frequent
interprocess switching in the dataflow environment,
classical replacement algorithms could replace active
blocks, which encourages development of more sophis-
ticated replacement algorithms.

Super-Actor Machine
(See the “Super-Actor Machine” sidebar). Hum and
Gao‘ proposed the operand and instruction caches in
this system on the basis that (1) in a multiprocessor sys-
tem, the explicit use of programmable registers results
in reduced memory latencies, and (2) conventional caches
cannot handle multithreaded architectures. Therefore,

~

58 IEEE Parallel & Distributed Technology

SAM features a set of high-speed
memories for data and instructions,
register caches (R-caches). These are
organized both as a register file and a
cache (see Figure S). Similar to gen-
eral register addressing in conven-
tional CPUs, the execution unit ac-
cesses R-caches using relatively short
addresses, and from the actor pro-
cessing unit perspective, their con-
tents are tagged just as in conventional
caches. R-caches are transparent to
the compiler, and R-cache line allo-
cation occurs a t runtime, aided by
cache update and replacement algo-
rithms. Afterward, the super-actor
execution unit can directly access the
locations in an R-cache line as if they
were general registers.

In this scheme, a partitioner parti-
tions a dataflow program into a
number of super-actors (instruction
threads). A super-actor is executable
only if it satisfies the firing rule and
the spatial locality conditions-that
is, the input data resides in the R- Figure 4. Operand and instruct ion caches for t h e Da ta f l ow Machine-ll.

Super-Actor Machine

SuDer-Actor Machine (SAM) is a mal- I
ti<rocessor system with multithreadinW 1

Main
memory

capabilities, in which each PE has five
basic components (see Figure E): the
actor preparationunit (MU), the super-

latency-actor execution unit

to the LEU for n o d d memory-access
operations. The result from these units

the main memory or the APU for
ther processing.

I/lnstructlonl I

unit

I ___I_)

L-actor
Support actor Actor execution - execution preparation unlt 7 v

Pipe unit

Actor scheduling unit

~

Winter 1996 59

Figure 5. A register cache.

cache and the system had reserved space to hold the
results. Therefore, the execution unit of the SAM will
never stall when accessing instructions or data, as hap-
pens in conventional systems due to cache misses. A
loader attached to the R-caches detects and schedules
the ready super-actors for execution in the high-speed
buffer memory.

Hum and Gao used three benchmark programs to
test the effectiveness and the feasibility of the proposed
architecture, which had an instruction R-cache of IK
words and a data R-cache of 1Kwords. The preliminary
simulation results have shown the effectiveness of the
register cache in hiding local memory la ten~ies .~

Adding cache to Monsoon

Our research focused on adding cache to Monsoon, an
example of a pure dataflow system based on the concept
of the Explicit Token Store (ETS). The following dis-
cussion details, from the perspective of our experiments,
the architectural changes that would need to be made
to Monsoon in order for cache to be effective in improv-
ing system performance.

Because the self-scheduling of instructions in a pure
dataflow program precludes the use of cache, reorder-
ing those program instructions can produce synthetic
localities that justify a cache. Executed instructions can

produce operands relating to instructions in subsequent
blocks; thus, we must consider multiple blocks of
operand locations from the operand memory. These
blocks are a worhng set. (The working set for a
dataflow program is the minimum set of instructions
that keep the execution unit busy, and we can deter-
mine it by analyzing the dataflow graph.*) We can opti-
mize block size and working set size, for a given cache
configuration, to achieve a desired performance. We
found that for instruction blocks of two instructions,
working sets of 4 to 8 instructions yield significant per-
formance improvements.

T h e locality for the operand cache relates to the
ordering of instructions in the instruction cache. When
the system references a block's first instruction, it brings
the corresponding block into the instruction cache.
Simultaneously, the system allocates locations in the
operand cache for all the operands corresponding to the
working set. The operand cache will satisfy any subse-
quent references to the operand cache caused by the
instructions in this block. (The operand cache block
consists of waiting operands or empty locations.)
Prefetching ensures that future stores and matches
caused by executing the block instructions will occur in
the operand cache.

INSTRUCTION CACHE DESIGN

Figure 6 shows the instruction cache structure, which
resembles a conventional set-associative cache, except
for the additional information. The instruction address's
low-order bits map instruction blocks into N sets; in
each set, the blocks are associatively searched. Each
block has a tag, a valid bit, and a process count. The tag
and the valid bits function as in conventional caches.
The process count refers to the number of activation
frames referring to this block's instructions. This infor-

mation could be the basis for a context-sen-
sitive cache replacement policy: an instruc-
tion block used by many activation frames
(loop iterations) is a poor candidate for
replacement.

PERAND CACHE DESIGN

We examined the use of two-level set asso-
ciativity for operand cache memories, which
is similar to the DFM-I1 design.* At the first
level, we partitioned the operand cache into
superblocks. (At the second level the system
accesses individual locations in a frame.) A

Figure 6. Instruction cache organization. superblock is composed of three parts:

I
60 IEEE Parallel & Distributed Technology

A cold bit that indicates whether or not
the superblock is occupied. This
information eliminates misses result-
ing from cold starts. In the dataflow
model, because the first operand to
arrive will be stored (written), there
is no need to fetch an empty location
from memory. The cold bit with a

Cold bits
I

WS address, ... WS address,
WS pattern Tag ws pattern

Cold bits

Figure 7. Operand cache organizat ion.

I
WS address, ... WS address,

WS pattern Tag ws pattern

superblock allocates an entire frame
(or context) and is set when the first operand is writ-
ten into the frame. This eliminates the compulsory
misses1* on writes.
A tug that identifies the context (frame) occupying
the superblock. This is based on the frame pointer
address obtained from a token tag.
Working set identifiers. The system divides memory
locations within an activation frame into blocks and
working sets, associating an instruction block with
its corresponding working set. Thus, a superblock
contains multiple working sets, which are accessed
at Level 2 of set associativity.

Figure 7 depicts the operand cache organization. Our
simulation results indicated that no significant benefit
will be gained by using two-level set associativity.

The two-level set associativity we used presented sev-
eral new issues:

Cache replacement strategies
For working set replacement, we investigated a used-
words policy that replaces working sets containing mem-
ory locations already used for matching operands. This
policy will lead to the reuse of operand memory loca-
tions within an activation frame. At the termination of
an instruction, the memory locations used for match-
ing the input operands can be reused for matching
operands of other instructions. Such an optimization
could improve the operand cache memory's perfor-
mance. For superblock replacement, we studied the
dead-context replacement policy that replaces a super-
block representing a completed context (or frame).

Process control
The operand cache must accommodate several frames
(contexts or threads) corresponding to different loop
iterations, as well as frames belonging to other code
blocks. T o minimize the possibility of thrashing, the
system must carefully manage the number of active con-
texts (threads). The number depends on cache size and
activation frame size. For tolerating remote memory

latencies, however, the processor must keep a larger
number of contexts. By reusing locations within a frame,
we can reduce the size of an activation frame and
increase the process count. We can also exploit this con-
cept for cache memories within the scope of conven-
tional multithreaded systems.

PERFORMANCE EVALUATION

Our preliminary experiments on cache memories were
very encouraging.12 We believe that dataflow machines
can derive performance benefits by using cache memo-
ries in a manner similar to control-flow machines. In
addition, the results for process control can be easily
extended to optimal use of cache memories in super-
scalar (multithreaded) implementations.

T o analyze cache memory's effectiveness in a dataflow
environment, we developed a simulator to mimic the
behavior of the ETS model enhanced by the instruction
and data caches. We also developed a translator that
takes IF1 graphs from a Sisal compiler and generates
ETS instructions for our simulator. The IF1 graphs are
further preprocessed to enhance locality.12

In our studies, we used a fast Fourier transform pro-
gram, a matrix multiplication program, Loop 5 of Liv-
ermore Loops, and a random graph. We used the ran-
dom graph to study the effectiveness of our techniques
for reordering instructions. Table 1 lists the character-
istics of these programs. Unlike conventional cache
experiments, benchmark programs and traces for
dataflow architectures are not readily available. We plan

Table 1. Characteristics (number of references)
in t h e benchmark programs.

NAME INSTRUCTIONS OPERAND I-STRUCTURE
REFERENCED REFERENCES REFERENCES

Fast Fourier transform 179,050 128,524 38,553
Livermore Loop 5 158,074 134,620 28,386
Matrix multiplication 115,682 69,292 18,128
Random 281,960 196,204 36,786

Winter 1996 61

Figure 8. Miss ratio versus instruction cache block size.

Figure 9. Miss ratio versus operand working set size. (FFT and Loop 5
coincide .)

to extend the benchmarks by rewriting some standard C
or Fortran programs in Sisal.

Experiments with cache parameters
In our initial experiments, we evaluated the cache size,
the worlclng set, and the block size. The effects of these
parameters on the miss ratio are similar to those
obtained with a conventional cache. For example, as we
increase instruction cache size, the miss ratio decreases.
Set associativity adversely affects the instruction cache.
The miss ratio increases almost linearly with instruc-
tion cache set associativity, indicating that a direct-
mapping scheme is better for instruction caches.

Nearly all instruction cache misses result from cold-
start misses, and increasing block size can reduce these
misses (see Figure Sj. Increasing block size, however,

62

negatively affects the operand cache
memories, as will be discussed shortly.
Similarly, the miss ratio drops as we
increase the operand cache memory
size. But unlike the instruction cache,
the operand cache miss ratio increases
as we increase the block size (and
worlung set size) (see Figure 9j. W e
expected this behavior: in dataflow
environments, efficient cache utiliza-
tion implies that both input operands
and memory for result tokens be kept
in the cache. With larger working sets,
it’s difficult to assure that operands
and memory for results are in the
operand cache.

In one of our experiments, we mea-
sured the miss ratio against the asso-
ciativity degree of both the superblock
and the workmg set. Superblocks are
somewhat similar to base addresses
and paging of conventional virtual
memory systems. Increasing the work-
ing set associativity (second level of
operand cache), however, reduces the
miss ratio (for fast Fourier transform
and Loop Sj up to a point beyond
which the miss ratio starts to increase:
the initial decrease occurs when con-
flict misses are eliminated, while the
increase at higher associativities results
from fewer sets in the cache (for a
given cache size). Cold-start misses in
operand cache memories are elimi-

nated because cache blocks are allocated on writes.

Effect ofprocess control
Process control prevents too many active processes (con-
texts) from contending for the limited operand cache
resources. An appropriate threshold value permits dis-
ciplined use of the cache resources and better utiliza-
tion and performance. The best value for the threshold
depends on the number of superblocks that can be held
in the operand cache.

Effect of replacement strategies
We explored performance gains achieved through dead-
context replacement for superblocks and used-words
replacement for working sets. The dead-context
replacement policy showed significant improvements for

I E E E Parallel & Distributed Technology

small caches (as much as 70% fewer
superblock misses when compared to
random replacement policy, for 2K or
smaller cached2). We applied the used-
words scheme for the working set
replacement (within a superblock).
Here, the system replaces a working set
(if one exists) containing operand loca-
tions that have already been used by
instructions.

Figure 10 shows the percentage of
operand cache misses that can be satis-
fied by the used-words policy. The
improvement resulting from this pol-
icy indicates that dataflow systems can
be designed to reuse operand cache
memory locations for matching op-
erands of more than one instruction
within a frame. In other words, instead
of replacing used words in a frame, the
system can reuse them for storing
and matching other operands. Many
operand cache misses can then be elim-
inated. Reusing operand locations is
akin to using registers to keep tempo-
rary variables during a computation,
bringing the dataflow processing even
closer to control-flow architecture.

Throughput improvement with
cache
We measured the throughput improve-
ment against various operand cache
sizes. Because of the small code size of
the benchmark programs and the fact
that instruction cache misses are rare,
we didn’t experiment with the effect of
various instruction cache sizes. Figure

Instruction cache size = 1 K words, Instruction block size = 1 word,
Working set associativity = 2, Working set size = 1 word,

Process threshold = 8, Superblock associativity = 4

Figure IO. Significance of used-words replacement policy.

uction cache size = 1 K words, Working set associativity = 2

0 Fast Fourier transform
Working set size = 8 words, Process threshold = 8

Figure 11. Uniprocessor throughput gains versus operand cache size.

11 shows the gains (reduced execution times) that can be
achieved relative to a platform with no cache memory.

ache memories have proved their useful-
ness in conventional systems, while in
dataflow models cache has shown un-
equaled effectiveness in improving sys- C tem performance. Intuitive ideas, gained

through experience with control-flow systems, gener-

ally apply to the dataflow environment, especially in a
hybrid machine in which a control-driven model exe-
cutes intraprocess instructions and a data-driven model
executes interprocess communication and synchroniza-
tion. The ultimate goal is to develop a computational
environment that competes with today’s FUSC proces-
sors in performance without the shortcomings of con-
trol-flow organization. We can achieve this by bring-
ing the dataflow computation model closer to the
control-flow model of computation, and by using con-
ventional technological innovations such as hierarchical
memories, branch prediction, and superscalars.

Winter 1996 63

Cache, if properly designed, generally shows more
promise in dataflow organization when we can rely on
compiler optimization to exploit locality. In a dataflow
environment, designers can implement a workmg set
concept for an active process to devise sophisticated
prefetching and replacement policies. As an example,
because the program can reference an instruction block
in more than one context in a dataflow environment, a
simple process count attached to each block can help
effectively select suitable blocks for replacement.

The impact on dataflow architecture performance by
memory hierarchy and caches with mixed data and
instructions needs to be explored further. How a partic-
ular partitioning algorithm can be used efficiently to
establish or to enhance the localities within dataflow pro-
grams is another question for today’s computer architects
to explore. Finally, there are few algorithms for accom-
plishng various tasks in dataflow caches, and researchers
must direct their efforts toward this issue as well. a

ACKNOWLEDGMENTS
This work has been supported in part by the National Science Foun-
dation under Grants MIP-9622836 and MIP-9622593.

REFERENCES
1. N.P. Jouppi and D.W. Wall, “Available Instruction-Level Par-

allelism for Super-scalar and Super-pipelined Machines,” Proc.
Third Int ’I Con$ Architectural Supportfor Programming Languages
and Operating Systems, ACM Press, New York, 1988, pp. 272-282.

2. B. Lee and A.R. Hurson, “Dataflow Architectures and Multi-
threading,” Computer, Vol. 27, No. 8, Aug., 1994, pp, 27-39.

3 . G.R. Gao, L. Bic, and J.L. Gaudiot, Advanced Topics in Dataflow
Computing and Multithreading, IEEE Computer Society Press,
Los Alamitos, Calif., 1995.

4. S.A. Thoreson and A.N. Long, “Locality, a Memory Hierarchy,
and Program Restructuring in a Dataflow Environment,”J. Sys-
temxand Sofiware, Vol. 9, No. 4, 1989, pp. 245-252.

5. B. Lee, A.R. Hurson, and T.Y. Feng, “Avertically Layered Allo-
cation Scheme for Dataflow Systems,”J. Parallel and Distn’buted
Computing,Vol. 11, No. 3,Mar. 1991, pp. 175-187.

6. W.D. Weber and A. Gupta, “Exploring the Benefits ofMultiple
Hardware Contexts in a Multiprocessor Architecture: Prelimi-
nary Results,” Proc. 16th Ann. Int’l Symp. Computer Architecture,
ACMPress, 1989, pp. 273-280.

7. K.E. Schauser et al., “Compiler-Controlled Multithreading for
Lenient Parallel Languages,” Proc. FZ$h AGM Con& Functional
Propamming Languages and Computer Architecture, AGM Press,
1991, pp. 50-72.

8. M. Takesau, “Cache Memories for Dataflow Machines,” IEEE
Trans. Computers, Vol. 41, No. 6, June S992, pp. 677-687.

9. H.H.J. Hum and G.R. Gao, “A High-speed Memory Organi-
zation for Hybridhon Neumann Computing,” Futzlre Genera-
tion Computer Systems, Vol. 8, No. 4, 1992, pp. 287-301.

10. M. Sat0 et al., “Thread-Based Programming for EM-4 Hybrid
Dataflow Machine,” Proc. 19th Ann. Int’l Symp. Computer Archi-
tectwe, ACM Press, 1992, pp. 146-155.

11. Arvind, B.S. Ang, and D. Chiou, “StarT the Next Generation:
Integrating Global Caches and Dataflow Architecture,” Proc.
ISCA Dataflow Workshop, ACM Press, 1992.

12. K.M. Kavi et al., “Design of CacheMemories for Multithreaded
Dataflow Architecture,” Int’l Symp. Computer Architecture, ACM
Press, 1995, pp. 253-264.

A.R. Hurson is a computer science and engineering faculty member a t
Pennsylvania State University. His research interests include computer
architecture, dataflow architecture, multidatabases, object-oriented
databases, and VLSI algorithms. He cofounded the IEEE Sympo-
sium on Parallel and Distributed Processing. He was a member of the
IEEE Computer Society Press Editorial Board and an IEEE Distin-
guished Speaker and now serves on the IEEE/ACM Computer Sci-
ences Accreditation Board. Readers can contact Hurson a t the Com-
puter Science & Engineering Dept., Pennsylvania State Univ., 202
Pound Laboratory, University Park, PA 16802; hurson@cse.psu.edu;
http://www.cse.psu.edu/gradbroc/ghFhurson.html.

Krishna M. Kavi i s a professor of computer science and engineering
at the University ofTexas at Arlington. Previously, he was a program
manager at the NSF. His research interests include computer systems
architecture (dataflow systems, cache memories, multithreading,
microkernels), formal specification of concurrent processing systems,
performance modeling and evaluation, load balancing, and schedul-
ing of parallel programs. He was an IEEE Computer Society Distin-
guished Visitor and now serves on the editorial hoard of the IEEE
Transactions on Computers.

Ben Lee is an assistant professor in the Department of Electrical and
Computer Engineering at Oregon State University. His research
interests include computer architecture, parallel and distributed sys-
tems, program partitioning and scheduling, and multithreaded sys-
tems. Lee received a BE in electrical engineering from the State Uni-
versity of New York at Stony Brook in 1984, and a PhD in computer
engineering from Pennsylvania State University in 1991. He is a mem-
ber of the IEEE Computer Society and the ACM.

Behrooz Shirazi is a professor of computer science and engineering
at the University of Texas at Arlington. Previously, he taught com-
puter science and engineering at Southern Methodist University. Shi-
razi’s research interests include parallel and distributed systems,
dataflow computing, cache designs, task partitioning and scheduling,
and computer architecture. He is on the editorial board of theyour-
nal ofparallel and Distributed Computing. He is an IEEE Distinguished
Visitor and an ACM Lecturer.

64 IEEE Parallel & Distributed Technology

http://www.cse.psu.edu/gradbroc/ghFhurson.html

