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An Analysis on Optimal Cluster Ratio in
Cluster-Based Wireless Sensor Networks
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Abstract— In wireless sensor networks, clustering schemes
have been adopted as an efficient solution to prolong the network
lifetime. In these schemes, the performance of energy-efficient
data transmission is affected the cluster ratio (CR). This paper
analyzes the optimal CR from the perspective of network energy
efficiency, and its impact on the network lifetime. In order to
provide a generic analytic model, various data propagation cases
are mathematically analyzed. In addition, the network lifetime is
extended by jointly optimizing the network transmission count
and link reliability. Our simulation results show that the optimal
CR derived based on the proposed analytical model enhances the
energy efficiency and effectively increases the network lifetime.

Index Terms— Wireless sensor network, cluster ratio, inherent
transmission count, packet reception ratio, network lifetime.

I. INTRODUCTION

AWIRELESS Sensor Network (WSN) is a multi-hop based
network that allows sensor devices to communicate with-

out any network infrastructure. It consists of a large number
of tiny sensor nodes each equipped with a microprocessor,
a memory, sensing modules, radio transceivers, and a battery.
WSNs are widely deployed in environment monitoring, health-
care, intrusion detection, etc., and play a key role in the
Internet of Things (IoT) paradigm. However, sensor nodes
have limited battery power, and therefore, energy efficiency
is crucial for prolonging the network lifetime of WSNs.

In order to prolong the network lifetime, many schemes
have been proposed with energy efficiency in mind, such as
energy efficient Media Access Control (MAC) and routing
schemes. Furthermore, some research efforts have been
made on exploring energy efficient network architectures.
For example, Heinzelman et al. proposed a cluster-based
communication protocol called Low-Energy Adaptive
Clustering Hierarchy (LEACH) [1], which is the most
well-known clustering scheme for WSNs. Recently, clustering
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schemes have been explored to enhance energy efficiency
and communication performance, as well as improve network
scalability [2]–[6]. Clustering schemes in WSNs can decrease
the amount of transmitted traffic at a Cluster Head (CH) using
data aggregation, and thus energy can be saved during data
transmission [7]. In addition, since nodes are managed as a
cluster, the network becomes more robust and the overhead
due to frequent topology changes is reduced.

Prior research efforts in cluster-based WSNs [1], [8]–[10],
[16]–[19] indicate the importance of Cluster Ratio (CR), which
is the ratio of the number of cluster-heads and the total number
of nodes. These studies found that an improper choice of CR
will result in extra energy dissipation, and thus an appropriate
choice of CR is critical for enhancing the network lifetime.
However, their results are only based on specific environments
and transmission cases, and thus not applicable for general
cluster-based WSNs. For example, Yang and Sikdar [8] and
Chen et al. [9] proposed analytical models to determine the
optimal CR, but they do not consider multi-hop transmissions.
Xie and Jia [19] mathematically analyzed the optimal CR
for minimizing the number of network transmissions. Their
analysis was performed based on the assumption that the
network is divided into uniformed sized clusters. However, this
is not the case in most WSN applications, where the location
and shape of each cluster are random. Consequently, there are
no valid analytical models that can be applied using generic
assumptions and various data propagation cases.

This paper analyzes the relationship between CR and
network performance for improving the network energy
efficiency. This is achieved by modeling a cluster-based WSN
as a 2-dimensional Poisson point process and analyzing the
impact of CR on the network performance in terms of
transmission count and Packet Reception Ratio (PRR). Then,
a joint optimization scheme is proposed to derive the optimized
CR that guarantees network energy efficiency and prolongs
network lifetime.

The specific contributions of this paper are as follows:
• The impact of CR on the network performance is

mathematically analyzed in terms of transmission count
and communication reliability.

• The optimal CR is analyzed for a generic and feasible
network environment as well as various data propagation
cases. This allows the proposed analytic model and the
result of optimal CR to be widely applied in cluster-based
WSNs.

• An important Theorem and an accompanying proof are
provided to show that the inherent transmission count
of a cluster-based WSN is a Convex Function of CR.
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(The definition for inherent transmission count will be
given in Sec. IV.) This property indicates that the network
energy efficiency can be guaranteed by optimizing CR.

• A joint optimization is performed to simultaneously
optimize transmission count and PRR. The optimized
results are verified using simulation.

The rest of the paper is organized as follows: Sec. II
discusses the most relevant related work. The system model
under consideration is discussed in Sec. III. Sec. IV formulates
the optimal CR problem, and proposes an analytical model for
various data propagation cases. A set of simulation results and
analyses are presented in Sec. V. Finally, Sec. VI concludes
the paper and discusses possible future work.

II. RELATED WORK

LEACH is one of the earliest proposed hierarchical routing
protocol that utilizes local CHs operating as routers to the sink
node [1]. In addition, it uses an energy efficient clustering
scheme that forms nodes into clusters based on received
signal strength. Before starting the LEACH algorithm, an
initial CR value needs to be defined. Then, CHs are selected
according to a threshold value calculated based on the initial
CR value. However, the selection of CHs is random, and
thus balanced energy consumption among all the nodes is not
guaranteed.

A number of methods have been proposed with the aim
of solving the drawbacks of LEACH and to further improve
network energy efficiency [8]–[10]. The closest one is
LEACH-E [10], which improves the optimal CR calculation
and the cluster formation scheme to balance the energy
consumption among CHs. However, the optimal CR values
obtained in these methods are confined to clustering with direct
transmission, which suffers from high energy-cost required to
perform long distance transmissions. In practice, sensor nodes
have limited battery power; therefore, the results from the
LEACH-based analyses cannot be directly applied to most
applications.

Due to the high cost of long distance transmissions,
Younis et al. proposed the Hybrid, Energy-Efficient and
Distributed (HEED) clustering scheme [11], which adopts
multi-hop, inter-cluster communication and improves the CH
selection scheme of LEACH to balance energy consumption.
However, they did not quantitatively analyze the optimal
CR value, and instead adopted the optimal CR result from
LEACH as their initial CR value and discussed the required
CR based on the cluster radius which is a random value.
Wei et al. aim to relieve the relay load of CHs, which increases
as the distance to the sink node decreases [12]. In order
to achieve balanced load among CHs, the cluster size is
determined based on the distance between a CH and the sink
node. Manisekaran et al. proposed an energy efficient cluster
formation scheme that selects a CH based on data sending
rate and redundancy [14]. However, the authors do not provide
any mathematical model to analyze the impact of CR on the
network performance.

There is only a limited work that mathematically argues the
impact of CR on the network performance. Kim et al. [15],
Kumar et al. [16], and Kumar [17] show the importance of

optimal CR on network performance, and extend the optimal
CR analysis in LEACH to multi-hop transmissions using
different performance metrics. However, a limitation of these
efforts is that their analyses are performed based on specific
energy models, and thus their results cannot be applied to
different network environments. Therefore, their analytical
models for optimal CR do not reveal the vital relationship
between CR and network performance.

Bandyopadhyay and Coyle [18] proposed an analytical
model that is derived based on a general energy model.
In their work, the optimal CR is obtained by minimizing
the network transmission count. However, the approximation
applied to their analysis introduces additional calculation
errors, and packet retransmission is not considered. Therefore,
the optimized CR derived using their analytical model will
not efficiently enhance the network lifetime. Xie and Jia [19]
proposed an analytical model, which is independent of energy
models, to analyze the optimum value for CR. Their analytic
model is derived based on the assumption that the network
is uniformly divided by clusters. However, this assumption is
not generic for most WSN applications, where the location
and shape of each cluster are random.

Based on analyzing the features of the existing analytic
models discussed above, it is clear that none of these can
be efficiently applied in cluster-based WSNs. To fill this gap,
this paper first mathematically analyzes the impact of CR on
the network performance. Then, an efficient analytic model
is proposed and used to derive the optimal CR value for a
generic and feasible network environment where the locations
of sensor nodes and clusters are random. In order to allow the
analytic model to guarantee network energy efficiency, a joint
optimization is performed in terms of inherent transmission
count and communication reliability.

III. SYSTEM MODEL

In order to quantitatively analyze the impact of CR on the
network performance, this section presents the cluster model,
the data propagation model, and the signal propagation model.

A. Cluster Model

Our cluster model is based on the assumption that sensor
nodes are deployed in a network area A using a 2-dimensional
Poisson point process with intensity λ. The network contains
several clusters and each cluster is managed by a Cluster
Head (CH). The CHs are selected based on a predeter-
mined CR. In addition to CHs, the other nodes, called Cluster
Members (CMs), join the CH that is closest to them. The
resulting cluster-based network can be regarded as a Voronoi
tessellation, where each cluster is a Voronoi cell [20], [21].
Foss et al. presented stochastic geometry properties of a
Voronoi cell [21]. This paper models the cluster-based network
by extending these properties. In order to achieve this, the
following parameters are defined:

• p: Cluster ratio defined as p = NC H
N , where NC H and N

represent the number of CHs and total number of nodes,
respectively.

• λC H : The density of CH defined as λC H = N×p
A = NC H

A .
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Fig. 1. Data propagation models. (a) s2s case. (b) m2m case. (c) m2s case.

• λC M : The density of CM defined as λC M = λ(1 − p)
• r : Transmission radius of a node.

B. Data Propagation Model

This paper classifies intra- and inter-cluster data propagation
as either direct or multi-hop. Fig. 1 shows the three data
propagation models in cluster-based WSNs. CMs transmit
sensed data to their CH either directly or using multi-hop,
which is also the case for communications between CHs and
the sink node. Fig. 1a shows the single-hop to single-hop (s2s)
case, where data propagation within intra-cluster and inter-
cluster is performed using direct transmission. Prior research
has shown that when the network range is wide, the energy
consumption for s2s data transmission is excessive, and thus
not applicable in most WSN applications. Therefore, this
data propagation model is not considered in our analysis.
Fig. 1b shows the multi-hop to multi-hop (m2m) case, where
data propagation is performed using multi-hop transmission
with short intra-cluster and inter-cluster communications.
Finally, Fig. 1c shows the multi-hop to single-hop (m2s)
case, which reduces the energy consumed by the nodes
that are near to the sink node by employing long-range,
low-power RF module (such as low-power Buletooth) to
support direct transmission between CHs and the sink
node. Therefore, data propagation is performed using multi-
hop transmission with short intra-cluster communications
and direct transmission with long distance inter-cluster
communications.

C. Signal Propagation Model

The signal propagation model is based on the log-normal
shadowing path-loss model, which provides a relatively
accurate channel model for WSNs. The path-loss model PL is
represented as

P L(d) = P L(d0) + 10µ log10

(
d
d0

)
, (1)

where d denotes the distance between a sender and a receiver,
d0 is a reference distance, and µ is the path loss exponent.
IEEE Std. 802.15.4 specifies a two-segment function for the
path-loss model, and defines µ = 2.0 for the first 8 m and

then µ = 3.3 for the rest [25]. Therefore, the path-loss model
of IEEE Std 802.15.4 is represented as

P L(d) =

⎧
⎪⎨

⎪⎩

P L(d0) + 10µ log10
(
d
)

d ≤ d
′
0

P L(d
′
0) + 10µ log10

(
d

d
′
0

)

d > d
′
0,

(2)

where d0 = 1 m, d
′
0 = 8 m, µ = 2 if d ≤ d

′
0, and µ = 3.3

if d > d
′
0. The path loss at the reference distance (d0) is

given by

P L(d0) = 10µ log10

(
4πd0 f

C

)
, (3)

where f is the signal frequency and C is the speed of light.

IV. ANALYSIS OF OPTIMAL CLUSTER RATIO

In a sensor device, energy is mainly consumed by the
computational component and the RF module. Akyildiz et al.
showed that the energy consumption of the RF module is
10 times that of the computational component [2]. Therefore,
energy efficiency in WSNs is mainly constrained by the
number of wireless communications consisting of both trans-
missions and retransmissions. For this reason, our objective is
to improve the network energy efficiency by minimizing the
number of inherent transmissions and retransmissions.

Sec. IV-A mathematically analyzes the impact of CR on
the inherent transmission count of a network. Sec. IV-B
explores the impact of CR on Packet Reception Ratio (PRR)
to maximize communication reliability. Finally, Sec. IV-C
presents a joint optimization scheme to derive the optimal CR,
which simultaneously optimizes both the inherent transmission
count and the communication reliability, i.e., PRR.

A. Optimal Cluster Ratio for Minimizing Inherent
Transmission Count

In this paper, a densely deployed network is assumed in
which the sensor nodes’ connectivity can be guaranteed. This
is a fair assumption because the node density in sensor network
applications tends to be higher than the minimum node density
requirement, which is just enough to guarantee the network
connectivity to provide network redundancy and to make
sure that a point in a region of interest can be sensed by
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more than one sensor node [22]–[24]. Furthermore, in order to
analyze and quantify the transmission count in cluster-based
WSNs, the following definition is provided for the Inherent
Transmission Count (ITC):

Definition 1: Inherent Transmission Count (ITC) represents
the total number of transmissions in a cluster-based WSN
when all the nodes send a packet to the sink node according
to a predetermined transmission strategy.

ITC is composed of intra-cluster and inter-cluster
transmission counts. The following theorem characterizes the
relationship between CR and ITC:

Theorem 1: For a given routing strategy and a clustering
scheme in a cluster-based WSN, ITC is a convex function of
CR for the m2s and m2m data propagation cases.

Proof: The data propagation models m2s and m2m
employ multi-hop transmission within a cluster. Therefore, the
expected number of transmissions within a cluster needs to be
first analyzed.

As stated in Sec. III-A, a cluster can be regarded as a
Voronoi cell [20], [21]. Foss and Zuyev [21] analyzed the
geometrical properties of a Voronoi cell (i.e., a cluster) in
polar coordinates, and assumed that a CH is in 0 point. One of
the important results they obtained is the expected number of
nodes in a Voronoi cell, E[Ntot ], which is given as (See [21]
for a complete proof of Eq. (4))

E[Ntot ] = λC M 2π

∫ ∞

0
le−λC H πl2

dl,

= λC M

λC H
, (4)

where l denotes the radius of a cluster. In Eq. (4), E[Ntot ]
is derived by integrating 2πlλC M e−λC H πl2

dl, where 2πldl is
the area element and e−λC H πl2

is the probability of a node
belongs to the CH.

The same method is applicable for calculating the number
of nodes located in the i -th hop. For the analysis, the
integration interval (0,∞+) can be subdivided into the
minimum transmission range of CM, rmin . Therefore,
a cluster can be regarded as dividing it into k (k → ∞+)
doughnut-shaped regions where each region has a width equal
to rmin . Let E[Ni

C M ] represent the number of nodes in the
i -th doughnut. Based on Eq. (4), E[Ni

C M ] can be derived as

E[Ni
C M ] = λC M 2π

∫ irmin

(i−1)rmin

le−λC H πl2
dl,

= λC M

λC H
(e−λC H π((i−1)rmin )2 − e−λC H π(irmin )2

). (5)

Eq. (5) satisfies
∑k

i=1 E[Ni
C M ] = E[Ntot ] when k → ∞+,

and the complete proof of Eq. (5) is given in the Appendix.
In addition, simulation results that validate the approximation
efficiency of Eq. (5) are presented in Sec. V-A. Since the
sensor nodes are assumed to be densely deployed, the trans-
mission hop-count of the node in the i -th doughnut can be
approximated by i hops, and the expected total transmission
count of the i -th doughnut is represented as i · E[Ni

C M ]. The
total transmission count in a cluster E[H ] is a cumulative

function of i from 0 to k given by the following equation:

E[H ] =
k∑

i=1

i E[Ni
C M ]

= λC M

λC H
(1 +

k∑

i=1

e−λC H π(irmin )2
)

= λC M

λC H

k∑

i=0

e−λC H π(irmin )2
. (6)

There are N · p clusters in the network; therefore the total
expected transmission count E[Htot] = N pE[H ], and it is
given by

E[Htot] = N p
λC M

λC H

k∑

i=0

e−λC H π(irmin )2
, (7)

where k → ∞. However, the time calculation for
k → ∞+ is time consuming and not necessary because

lim
k→∞+

e−λC H π(krmin )2 = 0, which means that when k → ∞
the node is more likely to be within the range of other CHs.
In actuality, if a node is not within the range of a cluster, l,
the probability e−λC H π(irmin )2 → 0. Therefore, k in Eq. (7)
can be approximated by ⌈l/rmin⌉. Note that both the shape
and radius of a cluster is random; therefore, the average radius
of a cluster l is also a random value. In order to obtain the
expected radius of a cluster, E[l], the result from [21] is
utilized, which showed that the total direct link length of a
cluster is E[Ltot] = λC M/2λ3/2

C H . After obtaining E[Ltot] and
E[Ntot ], E[l] can be derived as follows:

E[l] = E[Ltot]
E[Ntot ]

= 1√
4λC H

=
√

A
4N p

. (8)

Since k = ⌈E(l)/rmin⌉ = ⌈
√

A
4Nr2

min p
⌉, substituting λ(1 − p)

for λC M and (1−p)
p for λCM

λC H
into Eq. (7) yields the total

transmission count in N · p clusters, E[Htot(p)], given as

E[Htot(p)] = N(1 − p)

⌈
√

A
4Nr2

min p
⌉

∑

i=0

e−λpπ(irmin )2
. (9)

Next, the ITC between CHs and the sink node is analyzed.
For the m2s case, the total transmission count E[H

′
tot] is equal

to the number of CHs because they directly transmit both
the generated and received data to the sink node. Thus, the
expected ITC for the m2s case, E[I T Cm2s(p)], is given as

E[I T Cm2s(p)] = N(1 − p)

⌈
√

A
4Nr2

min p
⌉

∑

i=0

e−λpπ(irmin )2 + N p.

(10)

For the m2m case, CHs transmit packets to the sink node
using multi-hop; therefore, the ITC between CHs and the
sink node can be derived using the same method for the
intra-cluster case. However, the densities of CMs and CHs
need to be replaced by the density of CHs and the sink node,
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Fig. 2. The impact of Cluster Ratio on normalized ITC and PRR (k = 3.3 and rmin = 10 m). (a) m2s case. (b) m2m case.

which are denoted by λ′
C H = λp and λsink = 1

A , respectively.
Based on Eq. (5), the transmission count between CHs and
the sink node, E[Htot(p)

′], is given by

E[Htot(p)
′] = λ

′
C H

λsink

⌈ R
r ⌉∑

i=0

e−1/Aπ(ir)2

= N p
⌈ R

r ⌉∑

i=0

e−1/Aπ(ir)2
, (11)

where r and R denote the transmission range of CH and the
network radius, respectively. Based on this, the expected ITC
for the m2m case, E[I T Cm2m(p)], can be derived as

E[I T Cm2m(p)] = N(1 − p)

⌈
√

A
4Nr2

min p
⌉

∑

i=0

e−λpπ(irmin )2

+N p
⌈ R

r ⌉∑

i=0

e−1/Aπ(ir)2
. (12)

Therefore, ITC for both m2s and m2m cases can be
determined based on the cluster ratio p and the static
network parameters, i.e., node density λ, network area A, and
transmission ranges r and rmin .

The convexity of Eqs. (10) and (12) can be proved by
second-order conditions. In Eq. (10), the terms N(1 − p)
(when i = 0) and N p are linear functions, which have both
concave and convex properties. Let f (p) = e−λpπ(irmin )2

for
0 < i ≤ ⌈

√
A

4Nr2
min p

⌉, then the second-order of f (p) is given

by the following equation:

f
′′
(p) = (1 − p)N(λπr2

min i2)2e−λpπ(irmin )2

+2Nλπr2
min i2e−λpπ(irmin )2

, (13)

where 0 < p < 1. Eq. (13) shows that the condition
f

′′
(p) > 0 is always satisfied for any value of i ; therefore,

f (p) is a convex function for 0 < p < 1.

Based on the above results, Eq. (10) is a nonnegative
weighted sum of convex functions that preserves convexity
of functions; therefore, it can be proved that it is a convex
function. The convexity of Eq. (12) can be proved in a similar
fashion, and thus the proof is complete.

Theorem 1 shows an important relationship between cluster
ratio p and ITC, and it indicates that there exists an opti-
mized p to minimize ITC. Fig. 2a and Fig. 2b show the
ITC values as a function of p for the m2s and m2m cases,
respectively. The results in these figures show that for the
m2m case, Eq. (12) is strictly convex, and there is only one
optimum solution for p. However, for the m2s case, Eq. (10)
is not a strictly convex function; therefore, an additional
restricted condition is needed to determine an appropriate p.

B. Optimal Cluster Ratio for Maximizing
Communication Reliability

The optimum p for ITC does not necessarily guarantee
energy efficiency because packet retransmissions will decrease
the performance of the optimized solutions. Therefore, this
subsection explores an energy efficient solution from the
perspective of communication reliability, and analyzes
the trade-off between minimizing ITC and maximizing PRR
in cluster-based WSNs.

Given a network, let P indicate a Bernoulli random value.
If a packet is successfully received, P = 1; otherwise, P = 0.
Assuming P is independent and identically distributed (iid)
and according to the weak law of large numbers, PRR can be
statistically approximated by the following equation:

P = P RR = (1 − Pb)
8F , (14)

where F indicates frame size in bytes and Pb is bit error rate,
which is generally defined by following equation [26]:

Pb(γ ) = αM Q(
√

βMγ ), (15)

where γ indicates Signal to Noise Ratio (SNR), Q(·) denotes
the Gaussian Q-function, and αM and βM are determined by
the type of approximation and modulation.
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Eq. (15) shows that the bit error rate is a function of γ.
On the receiver side, γ = rss − N f loor , where rss is the
receiver sensitivity and N f loor is the noise floor. During signal
propagation, the signal power decreases as distance increases.
This phenomenon is statistically modeled using the path loss
model PL(d) defined in Sec. III-C. For the transmission
power Pt x , the condition rss ≥ Pt x−PL(d) must be guaranteed
at the receiver. Thus, rss can be approximated as Pt x − PL(d).
Let PL(d) denote the average path loss in a cluster, i.e.,
rss = Pt x−PL (d) and γ = θ−PL(d), where θ = Pt x −N f loor .
Then, the average PRR, P RR, can be derived by substituting γ
for γ for Eq. (15) as given below:

P RR(d) = (1 − αM Q
√

βM (θ − PL(d)))8F . (16)

Since a CH is assumed to provide reliable communication
using higher transmission power or enhanced low-power
long-distance RF module (such as low-power Bluetooth),
P RR should be optimized for intra-cluster. Within a cluster,
CMs can be in one of two possible states: ideal-state and
isolated-state. In the ideal state, at least one neighbor node is
located within the transmission range of a CM. In contrast,
in the isolated-state, there are no relay nodes located within
the transmission range of a CM, and thus it has to directly
communicate with the CH. The communication reliability of
CMs that are in the ideal-state can be guaranteed because
the relay nodes are located within their transmission range.
On the other hand, CMs that are in the isolated-state will
incur many packet retransmissions. Therefore, P RR must be
derived after obtaining the probabilities that a node will stay
in either the ideal-state or the isolated-state.

In the Poisson 2-D model, the cumulative distribution func-
tion (CDF) that the distance of a neighbor node d is smaller
than rmin is F(d ≤ rmin) = 1 − e−πλr2

min . Based on this,
the probability that a node remains in the isolated-state can
be derived as 1 − F(d ≤ rmin) = e−πλr2

min , and thus, the
probability that a node is in the ideal-state is 1 − e−πλr2

min .
For an isolated node, it has to directly communicated with
the CH over distance E[l] defined in Eq. (8). Based on these
results and Eq. (16), the average PRR in a cluster is obtained
as follow:

P RR(p) = F(d ≤ rmin) + (1 − F(d ≤ rmin ))P RRisolated

= (1 − e−πλr2
min )

+ e−πλr2
min (1−αMQ(

√√√√βM (θ− PL(

√
A

4N p
)))8F ),

(17)

where P RRisolated denotes PRR of the isolated node.
Eq. (17) shows that if the modulation scheme as well as Q(·)

are known, the average PRR can be optimized in a cluster by
determining the appropriate cluster ratio p.

C. Optimal Cluster Ratio

The aforementioned analysis shows that an appropri-
ate p potentially improves not only ITC but also P RR.
However, the results obtained from Theorem 1 and Eq. (17)

are independently derived. Therefore, this subsection presents
a joint optimization method that optimizes both ITC and P RR
simultaneously.

Without loss of generality, let αM = 1 and βM = 1 (which
is valid when the nodes use the FSK modulation scheme) to
compare the impact of p on ITC and P RR. This yields the
following bit error rate:

Pb(γ ) = Q(
√

γ ) = 1
2

e− Bnγ
2η , (18)

where Bn and η denote the noise bandwidth and transmission
rate, respectively. Substituting Eq. (18) into Eq. (17) results in
the following equation for average PRR:

P RR(p) = (1 − e−πλr2
min )

+ (1 − 1
2

e
− Bn

2η (θ ′−10k log10

√
A

4Np )
)8F , (19)

where θ ′ = θ − 20 log10(
4π
ω ) and ω denotes the wave length.

Fig. 2 shows the impact of p and node density on ITC
and P RR for the m2s (Fig. 2a) and m2m (Fig. 2b) cases.
As mentioned in Sec. IV-B, ITC for the m2s case is not
a strictly convex function. This property can be observed
from Fig. 2a, where the normalized ITC converges as p
increases for the m2s case. Based on this property, the
lower bound of the joint optimization solution p∗ can
be obtained for the m2s case1 with the jointly restricted
condition, which is the minimum required communications
reliability P RRreq = 98%. According to the analytical results
in Fig. 2a, the joint optimization value for p∗ that optimizes
ITC and guarantees P RRreq for various node densities is 0.2.

However, in the m2m case, it is difficult to determine
the joint optimization solution p∗ with a restricted bound
of P RRreq to simultaneously optimize ITC and P RR. The
reason is that the optimized p∗ maximizes P RR in a cluster
by decreasing its area and the distance between CMs and CH.
At the same time, the optimized p∗ causes the network to be
divided into more clusters and thus increases the transmission
overhead.

For the m2m case, a low P RR will result in excessive packet
retransmissions within a cluster. The retransmission count can
be derived as E[Htot(p)]× (1 − P RR(p)), where E[Htot(p)]
is given by Eq. (9), and P RR(p) is given by Eq. (19). On the
other hand, the total number of transmissions is the sum of
ITC and the number retransmissions. Therefore, the problem
of independently optimizing ITC and retransmission count is
converted into a problem of minimizing the total transmission
count. This is formulated by the following joint optimization
function p∗:

p∗ = arg min
p∈(0,1)

(E[Htot(p)] × (2 − P RR(p))

+ E[Htot(p)
′]). (20)

The objective function in Eq. (20) consists of the sum of
ITC and retransmission count for the intra-cluster transmission
(the first term) and ITC for the inter-cluster transmission (the
second term), where the argument p is in the interval (0, 1).

1In order to distinguish the joint optimization from the normal optimization,
notation p∗ is used to denote the result of the joint optimization.
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Fig. 3. Results of joint optimization.

Therefore, p∗ is obtained that simultaneously minimizes the
network transmission hop-count and maximizes P RR with
constant time O(1). Fig. 3 shows the results of Eq. (20), which
indicate that the optimal p∗ values are 0.195, 0.171, and 0.154
for node densities of 400, 500, and 600, respectively, and the
derived p∗ can guarantee 98% communication reliability.

V. PERFORMANCE EVALUATION

This section compares the performance of the proposed
method for determining optimal p∗ values against the methods
presented in [16]–[18]. The simulated area has a radius
of 100 m with the sink node located at the center, and the
number of randomly deployed nodes are 400, 500, and 600.
CHs are also randomly selected based on the given cluster
ratio p. Each node selects the closest CH and performs
either multi-hop or direct transmission depending on the com-
munication distance. Moreover, each sensor node generates
50-byte packets at a transmission rate of 50 kbps. The network
occupies 915 MHz frequency band, and transmission power is
set to 0 dBm and −25 dBm for intra-cluster and inter-cluster
transmission, respectively. The simulator for the performance
evaluation is implemented in C.

A. Validation of the Approximation Efficiency

This subsection validates the approximation efficiency of
Eq. (5) using simulation. Fig. 4 shows the average number of
nodes in i -th doughnut, where solid lines denote the simulation
results (which are averages of 200 runs) and dash lines denote
the calculated results of Eq. (5). Eq. (5) takes the i -th hop as
well as the density of cluster head and cluster members, which
is based on p, as input parameters and calculates the results
for different values of p, i.e., 0.08, 0.12, 0.16, 0.2, and 0.24.

The following two observations can be made from Fig. 4.
The first is the impact of node density on the approximation
efficiency. Our results show that the approximation accuracy
increases as node density increases. The second is that the
approximation error can be ignored if p is sufficiently large.
For example, although the node density is low in Fig. 4a,
the approximation results are close to the simulation results

when p > 0.08, and the proposed optimization point, p∗, is
greater than 0.08 as presented in Sec. IV-C (i.e., p∗ = 0.2
in the m2s case and p∗ = {0.195, 0.171, 0.154} in the
m2m case). Therefore, the approximation suffers from only
few interference errors.

B. Performance of the Proposed Joint Optimization

This subsection compares the performance of the opti-
mized p based on the ITC function in Eq. (12) and the
proposed joint optimization function in Eq. (20). Based on
Eqs. (12) and (20), the optimal p and p∗ for the three node
densities are {0.183, 0.165, 0.15} and {0.195, 0.171, 0.154},
respectively. In order to provide a fair performance compari-
son, the data generation in the simulation is set so that each
node in the network sequentially generates one packet and
sends it to the sink node.

Fig. 5 compares the ITC values obtained from the
proposed joint optimization scheme and optimizing only the
ITC function for various node densities. The numbers on
histograms are used to indicate the optimal p which are
obtained by the analytic models. These results show that
the optimal p∗ obtained using the joint optimization scheme
can reduce ITC by 2.18%, 1.68%, and 1.14% compare to
p obtained from only optimizing the ITC function. Fig. 6
shows that the communication reliability is also enhanced
by the joint optimization. The reason for this is that the
proposed method simultaneously optimizes the network
ITC and PRR, and thus, higher PRR is guaranteed and the
number of retransmissions is effectively reduced resulting in
lower ITC. Therefore, these results verify that the proposed
joint optimization leads to a more energy efficient network.

C. Comparison With Existing Optimal Cluster
Ratio Analytical Models

This subsection compares the proposed joint optimization
with the existing analytical models by Kumar et al. [16] and
Kumar [17] and Bandyopadhyay and Coyle [18]. According
to their results, the optimal p values are {0.06, 0.054,
0.049} [16], [17], and {0.101, 0.093, 0.087} [18] for the three
node densities.

Fig. 7 shows the network ITC results for different optimum
p and p∗ values and node densities. The figure shows that
the cluster ratio optimization techniques proposed in [16]–[18]
do not minimize the network ITC. The reason is that the
analytic model in [16] and [17] is an extension of LEACH
for multi-hop communications, which does not take into
account the important factors in energy efficiency, which
are ITC and PRR. The optimization technique proposed by
Bandyopadhyay and Coyle [18] shows better performance
than the one provided in [16] and [17], and this is because
their analysis is performed with minimizing the network ITC
in mind. However, there is a performance gap between the
optimal p∗ provided by the proposed joint optimization
scheme and the one by Bandyopadhyay et al. This gap is
caused by their estimation errors, and is also related to the
fact that they do not take communication reliability into
consideration.
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Fig. 4. Comparison of simulation and approximation results (rmin = 10 m and p = {0.08, 0.12, 0.16, 0.2, 0.24}). (a) Number of nodes deployed is 400.
(b) Number of nodes deployed is 500. (c) Number of nodes deployed is 600.

Fig. 5. Comparison of the network ITC for different node densities.

Fig. 6. Comparison of the average PRR for different node densities.

Fig. 8 shows the average PRR for the three node densities.
This figure shows that the existing optimization techniques
result in low average PRR, and this will cause a lot of
packet retransmissions and extra energy dissipation. With
an improper choice of p, the average PRR will be low
as shown in the mathematical analysis results in Fig. 2,

Fig. 7. Network ITC.

Fig. 8. Average PRR.

and it becomes worse as the hop-count increases. As shown
in Fig. 8, the average PRR can be improved by increasing the
node density. The reason is that if nodes are more densely
deployed, the probability of maintaining good communication
links increases. However, simply increasing node density is
not feasible in most applications. Therefore, properly setting
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Fig. 9. Average energy consumption.

Fig. 10. Received packet before FND.

the p value is a more efficient way to improve the network
PRR and enhance network energy efficiency.

These simulation results also show that the performance
improvement in m2s is higher than m2m. This is because
low-power, long-distance RF module is assumed in m2s;
therefore, the connection between CHs and the sink node is
ideal, and thus ITC is equal to the number of CHs, which is
lower than for multi-hop communications.

D. Network Life Time
This subsection studies the impact of various cluster ratio

optimization techniques on the network energy efficiency.
In order to evaluate energy consumption, simulation is per-
formed for 100 iterations, and in each iteration, each sensor
node sends 1000 packets to the sink node. In this paper,
the network life time is defined as the time until the FND
(First Node “Dead”) [1]. The initialized energy is set to 10 J,
and the abstract time is represented by a more specific metric,
which is the number of packets received at the sink node
before FND.

Fig. 9 shows that the proposed joint optimization technique
significantly reduces the energy consumption of sensor nodes,
which clearly indicates the benefits of optimizing both ITC
and PRR.

Fig. 10 shows that proposed analytical model outperforms
existing schemes in terms of network lifetime. By setting

optimal p∗, the number of received packets is approximately
14% ∼ 39% higher than the methods in [16]–[18] for the
m2m case. The results for the m2s case is significantly better
than the existing methods (by at least 72%) because data from
each sensor node is aggregate at a CH and then transmitted
directly to the sink node.

Our study shows that the proposed joint optimization
technique significantly improves the network energy efficiency
in term of ITC and PRR, and increases the network lifetime.
Another notable result is that energy efficiency of the m2s case
is better than the m2m case. This is because even though more
energy is consumed during long distance transmissions, the
benefits of lower ITC and higher average PRR lead to longer
network life time than the m2m case.

VI. CONCLUSION

This paper presented a novel analytical model to analyze
the optimal CR for cluster-based WSNs to enhance the
network energy efficiency. The impact of CR on the network
performance was analyzed without any specific assumptions
about energy models and network environment. Furthermore,
the analysis considers various data propagation models. There-
fore, the analysis is applicable to generic cluster-based WSNs.
Based on the analytic model, a joint optimization scheme
was proposed to improve the network energy efficiency by
simultaneously optimizing ITC and PRR. The performance of
the optimal CR derived using the proposed joint optimization
scheme was validated through simulations. Our simulation
results clearly showed the benefits of the optimal CR over
existing optimization methods in terms of PRR and energy
efficiency. Our future plan is to extend the proposed analytic
model to consider other issues such as impact of data
aggregation scheme and specific application environments.

APPENDIX

PROOF OF FORMULA (5)
In a given cluster, CHi , the expected number of CMs within

radius r ′, E[Nr ′ ], can be derived as

E[Nr ′ ] =
∫ r ′

0
λC M 2πlP(C M j ∈ C Hi)dl, (21)

where P(·) denotes a Plam distribution. The sensor nodes are
deployed within the network based on a homogeneous Poisson
point process, and CM j belongs to CHi if and only if a disc
with the radius l around C Mi does not contain any other CHs.
Therefore, P(C M j ∈ C Hi) = e−λC H πl2

and Eq. (21) can be
rewritten as shown below:

E[Nr ′ ] = λC M 2π

∫ r ′

0
le−λC H πl2

dl,

= λC M

λC H
(1 − e−λC H πr ′2

). (22)

When r ′ → ∞, e−λC H πr ′2 = 0 and thus E[Nr ′ ] =
E[Ntot ] = λCM

λC H
. (A complete proof of Eq. (4) (or Eq. (22)) is

given in [21].)
According to Eq. (22), the expected number of CMs

within radiuses rmin and 2rmin are λCM
λC H

(1 − e−λC H πr2
min ) and

λCM
λC H

(1 − e−λC H π(2rmin )2
), respectively. Suppose the region of
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the i -th donut is defined as π(irmin)2−π((i−1)rmin)2, then the
expected number of CMs in the 2-nd donut (i = 2), E[N2

C M ],
is given as

E[N2
C M ] = λC M

λC H
(1 − e−λC H π(2rmin )2

)

−λC M

λC H
(1 − e−λC H πr2

min )

= λC M

λC H
(e−λC H πr2

min − e−λC H π(2rmin )2
). (23)

Using the same method that analyzes the expected number
for the simple case (where i = 2), Eq. (23) can be normalized
to a general case for a non-negative integer, i .

E[Ni
C M ] = λC M

λC H
(1 − e−λC H π(irmin )2

)

−λC M

λC H
(1 − e−λC H π((i−1)rmin )2

)

= λC M

λC H
(e−λC H π((i−1)rmin )2 − e−λC H π(irmin )2

). (24)

The calculation of Eq. (24) can be represented with a simple
integral operation, and then Eq. (5) is obtained as below.

E[Ni
C M ] = λC M 2π(

∫ irmin

0
le−λC H πl2

dl

−
∫ (i−1)rmin

0
le−λC H πl2

dl),

= λC M 2π

∫ irmin

(i−1)rmin

le−λC H πl2
dl. (25)
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