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Optimizing Spectrum Sensing Time With Adaptive
Sensing Interval for Energy-Efficient CRSNs
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Abstract— The cognitive radio (CR) technology allows sec-
ondary users (SUs) to occupy the licensed bands opportunistically
without causing interferences to primary users (PUs). SUs per-
form spectrum sensing to detect whether PUs are busy or idle.
Therefore, spectrum sensing directly affects the performance of
the PU protection and the secondary throughput. The sensing
time is a critical parameter for spectrum sensing performance,
and the optimum sensing time is a tradeoff between the spectrum
sensing performance and the secondary throughput. In this paper,
a novel spectrum sensing scheme is proposed to maximize both
sensing accuracy and network energy efficiency. In order to
provide a better protection for the PU, another spectrum sensing
is adaptively performed according to the first sensing result.
In other words, SU will perform spectrum sensing again to
confirm that the PU is indeed idle when the first sensing result
indicates the PU is idle. Due to the energy constraint in CR sensor
networks, this adaptive sensing interval can also be adjusted
according to the varying activity of the PU to maximize the
network energy efficiency. Finally, our simulation study validates
that the proposed scheme improves both the spectrum sensing
performance and the energy efficiency compared with other
existing methods.

Index Terms— Cognitive radio sensor networks, sensing time,
sensing interval, energy efficiency, miss detection probability,
bisection method.

I. INTRODUCTION

DUE to the rapid growth of wireless communications,
the spectrum scarcity problem is becoming more severe.

The limited usable spectrum cannot meet the increasing
demand of wireless communications because of the fixed spec-
trum allocation policy. Moreover, Federal Communications
Commission (FCC) has confirmed that most licensed wireless
spectrum bands are severely underutilized – the utilization
of the licensed bands only ranges from 15% to 85% [1].
In order to mitigate the problem of spectrum scarcity,
the Cognitive Radio (CR) technology has been proposed
to improve the spectral efficiency [2]. The unlicensed Sec-
ondary Users (SUs) are allowed to occupy the licensed
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Fig. 1. Dynamic spectrum access.

bands opportunistically using the CR technology when the
licensed Primary Users (PUs) do not occupy them. Since
the CR technology allows SUs to share the licensed bands
with PUs in a collision-free manner, it has been widely
applied in various wireless networks to improve spectral
efficiency [3]–[5].

In Cognitive Radio Sensor Networks (CRSNs), the CR tech-
nology enables sensor nodes to detect available licensed bands
by performing spectrum sensing, and SUs can opportunisti-
cally use spectrum holes or white spaces to improve spectral
efficiency when PUs are detected to be idle. This dynamic
spectrum access is shown in Fig. 1. Since PUs should not be
interfered by SUs, spectrum sensing is very important for SUs
to accurately detect the presence of PUs. The performance of
spectrum sensing depends on miss detection and false alarm
probabilities. A miss detection occurs when the SU fails to
detect the presence of the PU. A false alarm occurs when the
SU falsely detects the presence of the PU. Therefore, a miss
detection causes interference to the PU, while a false alarm
leads to lower secondary throughput. The sensing time is a
key parameter that can affect the sensing performance. More
specifically, a longer sensing time will reduce the sensing
errors and provide a better protection for the PU. However,
less time will be left for data transmission and the secondary
throughput will be reduced. Therefore, the optimal sensing
time leads to a tradeoff between sensing performance and
secondary throughput.

In CRSNs, energy consumption is the most crucial factor
because wireless sensor devices are powered by batteries,
which are hard or even impossible to recharge or change due to
the application environment. Therefore, improving the network
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energy efficiency and prolong the network lifetime are the
most important challenges.

Deepak et al. proposed a spectrum sensing method based on
a cognitive monitoring network, where a network of sensors
is deployed in the network coverage area to perform the
cooperative spectrum sensing [6]. In their method, SUs take
extremely short time to send a query to monitoring sensors,
and then receive the sensing result. Therefore, the secondary
throughput can be maximized irrespective of the sensing
duration. However, there will be delay due to the commu-
nication between SUs and monitoring sensors. In addition,
the monitoring sensors will still consume energy for spectrum
sensing and the feedback of sensing results, but the authors do
not consider this issue and simply focus on how to maximize
the time for data transmission. Jiang et al. investigated a joint
energy-efficient optimization method for spectrum sensing
and nodes selection [7]. In this work, a dynamic censored
spectrum sensing scheme is employed, where each sensor node
compares the received power with a censoring threshold, and
then decides when to stop sensing. This allows the sensing
time to be shortened and the unnecessary energy consumption
to be avoided. However, the probability of sensing error will
be high if a sensor node collects just a few samples and stops
sensing.

Based on the aforementioned discussion, this paper pro-
poses a novel spectrum sensing scheme for CRSNs. Since
miss detection probability and false alarm probability are
unrelated, the proposed method focuses on reducing the miss
detection probability to provide a better protection for the
PU. This is achieved by having the SU dynamically decide
whether or not to perform another spectrum sensing based
on the result of the first spectrum sensing. More specifically,
the SU performs spectrum sensing once and then remains
silent if the sensing result indicates that the PU is busy.
If the sensing result shows that the PU is idle, the SU will
perform spectrum sensing again to confirm the idle state of
the PU. If the second sensing result still shows that the
PU is idle, the SU will transmit data; otherwise, the SU
will remain silent. This reduces the possibility of interference
caused by miss detections. In addition, the number of invalid
data transmissions, and thus the amount of unnecessary energy
consumption is reduced. The proposed method also considers
the activity of the PU to improve the network energy efficiency.
More specifically, if the PU is relatively active, the probability
that it will remain busy during the next frame will be high.
As a consequence, performing spectrum sensing for each and
every frame is unnecessary, and the sensing interval, which is
defined as the time interval during which the spectrum state
will remain unchanged and thus no further spectrum sensing is
needed [8], can be increased (i.e., more than one frame) to save
energy for spectrum sensing. Therefore, the network energy
efficiency can be improved further. On the other hand, if the
PU is relatively inactive, the SU will perform spectrum sensing
at the beginning of each frame. Therefore, the opportunities
for data transmission can be improved by providing better
protection for the PU. Finally, an optimization system model is
developed to derive the optimal sensing time to maximize the
network energy efficiency. Our simulation study validates that

the proposed scheme can significantly improve the network
energy efficiency and reduce miss detection probability.

The rest of the paper is organized as follows. Sec. II
discusses the related work. In Sec. III, the system model of the
proposed method is presented. In Sec. IV, an energy-efficient
optimization problem is formulated to obtain the optimal sens-
ing time. In Sec. V, the performance of the proposed scheme
is evaluated using simulations. Finally, Sec. VI concludes the
paper and discusses possible future work.

II. RELATED WORK

Some recent works on sensing time optimization have been
presented in [9]–[11]. Ewaisha et al. proposed a joint opti-
mization of channel sensing time, energy detection threshold,
and channel sensing order [9]. To formulate the objective
function, the secondary throughput and the sensing errors are
considered as the reward and the penalty for collisions with
the PU, respectively. The secondary throughput is maximized
by finding the optimal sensing time for the objective function.
Hao et al. developed an adaptive spectrum sensing scheme to
improve the average throughput and at the same time ensure
protection for PUs [10]. The variation of time-varying chan-
nels is considered, and the probability of missed transmission
opportunity can be adjusted to improve the average throughput.
More specifically, their method reduces the missing trans-
mission probability when the channel state good and allows
for a high missing transmission probability when channel
state is bad. Based on the previous sensing results and the
channel state information, the current channel state is predicted
and the sensing time, which affects the missing transmission
probability, is adjusted accordingly. Shokri-Ghadikolaei et al.
proposed a learning-based sensing time optimization scheme
to maximize the average throughput [11]. The authors
use a multilayer feedforward neural network to learn the
actual behavior of the secondary link, and based on this,
a Kennedy-Chua neural network is employed to find the
optimal sensing time.

However, the above-mentioned proposals on sensing time
optimization are specific to CRNs and they do not consider
the energy consumption, which is the most important fac-
tor in CRSNs. Therefore, these schemes cannot be directly
applied to CRSNs. In recent years, energy efficiency maxi-
mization through optimizing spectrum sensing time has also
spurred great interest, and some related work have been
proposed [12]–[16].

Zhong et al. formulated a joint optimization problem for
energy-efficient cooperative spectrum sensing and transmis-
sion in a multi-channel CR system [12]. The energy effi-
ciency is maximized by jointly optimizing the sensing time,
the number of cooperative sensing SUs, and the transmission
bandwidth. Awin et al. considered a joint optimal transmission
power and sensing time for energy-efficient spectrum sens-
ing [13]. The optimization problem is formulated with these
two variables (i.e., transmission power and sensing time) with
the goal of maximizing PU protection. This is achieved by
applying an iterative algorithm to determine the optimal trans-
mission power and sensing time that maximizes the energy
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efficiency of a CR system. Zhang et al. also investigated the
power control and sensing time optimization problem in a
cognitive small cell network [14]. The cross-tier interference
mitigation, imperfect hybrid spectrum sensing, and energy
efficiency are considered. The hybrid spectrum sensing that
combines spectrum sharing access and opportunistic spectrum
access is considered in the optimization problem. An iterative
resource allocation algorithm is developed to achieve the
optimal sensing time and power allocation, which in turn
maximizes the energy efficiency. Luo et al. proposed a min-
imizing mean detection time scheme [15]. More specifically,
based on the premise of meeting the basic requirements of
a secondary network (i.e., the detection probability must not
be smaller than a pre-defined threshold and the false alarm
probability must not be larger than a pre-defined threshold),
the sensing time is minimized and the remaining time left for
data transmission is maximized. Li et al. proposed an energy-
efficient technique for cooperative spectrum sensing [16].
All SUs perform cooperative spectrum sensing for one period.
If the PU is detected to be idle, SUs will transmit data. The
optimal sensing time is achieved by optimizing the network
energy efficiency, which is defined as the ratio of the secondary
throughput and the total energy consumption.

All the above-mentioned proposals only perform spectrum
sensing once and then find the optimal sensing time to
maximize the energy efficiency. However, if sensing errors
occur, no attempt is made to correct them. The PU will be
interfered by SUs’ communication, and energy and available
spectrum opportunities will be wasted. In addition, existing
methods perform spectrum sensing at the beginning of each
frame. However, this is unnecessary since the state of the
PU always lasts for several time slots, i.e., frames. The fact
that activity of the PU follows the Markov process has been
verified in [17]. Therefore, performing spectrum sensing for
each slot will waste energy if the activity of the PU is not
considered.

The problem of sensing interval optimization has been
studied in [8] and [18]. Xing et al. investigated a technique
where the spectrum sensing interval is adjusted based on the
network environment and requirements of SUs [8]. This is
achieved by finding a balance between energy consumption
and network throughput while considering the interference
to the PU. Liu et al. investigated a method for optimizing
the spectrum sensing interval [18], which is similar to the
work in [8]. However, in contrast to the work in [8] where
perfect sensing is assumed (i.e., no sensing errors can occur),
the authors considered imperfect spectrum sensing (i.e., sens-
ing errors can occur). The optimal spectrum sensing interval is
obtained by trading off among the average energy consumption
for spectrum sensing, the average secondary throughput, and
the average interference to the PU. However, these methods
only focus on the sensing interval and ignore the spectrum
sensing time.

III. SYSTEM MODEL

This paper considers a simple CRSN comprised of a single
PU and one secondary link with a transmitter-receiver pair.

Fig. 2. Frame structure of spectrum sensing.

The time is divided into equal sized frames, where each frame
consists two phases: the sensing phase and the data trans-
mission phase. The spectrum sensing by the SU is assumed
to be imperfect, and thus sensing errors (i.e., miss detection
and false alarm) can occur. During the sensing phase, the SU
performs spectrum sensing to detect the PU’s activity. If the
sensing result shows that the PU is idle, the SU always has
data to transmit during the data transmission phase; otherwise,
the SU will remain silent. In order to simplify the problem,
the activity of the PU is assumed to follow a time framed
structure. In other words, during one frame time, the spectrum
is either occupied by the PU or vacant (i.e., the state of the PU
does not change within a frame). Moreover, the activity of the
PU is independent from one frame to another. It is also worth
noting that the data transmission of the SU is considered to
be valid only when the PU is actually absent.

Fig. 2 shows the frame structure for spectrum sensing,
where T represents the frame time, ts denotes the spectrum
sensing time, and D0 and D1 indicate sensing results that the
PU is idle and busy, respectively. In the proposed scheme,
the SU dynamically performs the second spectrum sensing
based on the first spectrum sensing result. More specifically,
the SU performs spectrum sensing for time ts , and then
remains silent if the sensing result is D1. If the sensing result
is D0, the SU will perform spectrum sensing again for time ts
to confirm the absence of the PU to provide better protection.
If the second sensing result is still D0, the SU will transmit
data; otherwise, it will remain silent. Note that if the first and
the second spectrum sensing results are different, the second
spectrum sensing result will be taken as the final sensing
decision.

The proposed scheme also considers the activity level of
the PU. When the PU is relatively active and the final sensing
result shows that the PU is busy, the sensing interval will be
extended to multiple frames. This is because the probability
that the PU will continue to be busy is higher than the
probability that the PU will become idle in the next frame,
and thus performing spectrum sensing at the beginning of
each frame is unnecessary. Therefore, the energy required for
spectrum sensing can be saved. When the PU is relatively
inactive and the final sensing result shows that the PU is busy,
the SU will perform spectrum sensing at the beginning of
the next frame. This allows the SU to transmit data normally
if the PU is idle during the next frame. In addition, if the
final sensing result shows that the PU is idle, the SU will
transmit data and perform spectrum sensing at the beginning
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Fig. 3. Frame structure of sensing time and sensing interval.

of the next frame regardless whether the PU is relatively
active or inactive. This leads to not only more opportunities for
data transmission, but also the sensing error can be corrected
during the spectrum sensing of the next frame.

Based on the first and the second spectrum sensing results,
the six possible cases are listed below. Fig. 3 also shows the
detailed frame structure of sensing time and sensing interval,
where U0 and U1 denote the actual idle and busy states of
the PU, respectively.

Case 1: The actual state of the PU is U1, and the spectrum
sensing result is D1. In this case, the SU correctly detects
the activity of the PU during the first spectrum sensing. Thus,
the SU performs spectrum sensing only once, and then remains
silent for n frames. Note that the current frame is included in
the n frames. In other words, except for the current frame,
the SU has to remain silent state for n − 1 frames. When the
PU is relatively inactive, i.e., n = 1, the spectrum sensing
will be performed at the beginning of the next frame. On
the other hand, n is greater than 1 when the PU is relatively
active. The detailed calculation process of n will be presented
in Sec. IV-B (see Eqs. (23), (24), and (25)).

Case 2: The actual state of the PU is U1, but the first
spectrum sensing result is D0 and the second spectrum sensing
result is D1. In this case, since the first spectrum sensing
result is D0, the SU performs spectrum sensing again to
confirm the correctness of the first sensing result. Even though
a miss detection occurs during the first spectrum sensing,
the PU’s activity is successfully detected during the second
spectrum sensing. This results in better protection. Since the
final sensing result is D1, the SU remains silent for n frames.

Case 3: The actual state of the PU is U1, but both the
first and the second spectrum sensing results are D0. In other
words, miss detection occurred during the first and the second
spectrum sensing process. Since the data transmission of SUs
is assumed to be valid only when the actual state of the PU
is U0, there is no valid secondary throughput in this case.
Since the final sensing result is D0, the SU performs spectrum
sensing at the beginning of the next frame.

Case 4: The actual state of the PU is U0, but the sensing
result is D1. In this case, a false alarm occurred. Since the

sensing result is D1, the SU performs spectrum sensing only
once, and then remains silent for n frames.

Case 5: The actual state of the PU is U0, and both the first
and the second sensing results are D0. In other words, the SU
successfully detects the idle state of the PU during the first
and the second spectrum sensing process. This will result in
valid data transmission. The SU performs spectrum sensing at
the beginning of the next frame.

Case 6: The actual state of the PU is U0, but the first and
the second spectrum sensing results are D0 and D1, respec-
tively. In this case, a false alarm occurred during the second
spectrum sensing process. Therefore, the SU remains silent for
n frames.

Based on the above-mentioned six cases, Cases 1 and 2
successfully detected the activity of the PU. Case 3 caused
the problem of miss detection, while Cases 4 and 6 led to the
problem of false alarm. A valid throughput was achieved only
for Case 5.

IV. FORMULATION OF OPTIMIZATION PROBLEM

This section develops the optimization model for the pro-
posed scheme. The goal of the proposed scheme is to decrease
the sensing errors to provide a better protection for the PU.
The benefit of a higher spectrum sensing accuracy is that
the number of invalid data transmissions can be decreased.
This in turn avoids unnecessary energy consumption caused
by invalid data transmissions, and thus the energy efficiency
is improved. In addition, the PU activity level is considered
by increasing the sensing interval as the activity of the PU
increases. Because of the increased sensing interval, energy
consumption for spectrum sensing can be reduced and the
network energy efficiency can be further improved.

A. Energy Detection Based Spectrum Sensing

A binary hypothesis is used to formulate the spectrum
sensing. H0 and H1 denote the hypothesis of the idle and
the busy states of the PU, respectively. p0 and p1 indi-
cate the probabilities of H0 and H1, respectively. Therefore,
p0 + p1 = 1.
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Currently, matched filter detection [19], [20], energy detec-
tion [21], [22], cyclostationary detection [23], [24], and
eigenvalue-based detection [25], [26] are the most common
spectrum sensing methods. The comparisons of these methods
have also been performed in [27] and [28]. The matched
filter detection method has the lowest execution time, but the
information of the PU signal is necessary. The cyclostationary
detection method is robust to the noise uncertainty, but it
is complex and the knowledge of cyclic frequencies of the
PU is required. The eigenvalue-based detection method does
not require the information of the PU’s signal properties, but
the computation is complex. The energy detection method is
sensitive to noise uncertainty and interference level, but it is
very simple and does not need the priori knowledge of the PU.
For this reason, it is the most widely used spectrum sensing
method [29]–[31].

The proposed method also employs the energy detection
method to detect the activity of the PU. The SU compares the
received energy power with the predefined threshold. If the
received energy power is higher than the threshold, the PU is
considered busy; otherwise, the PU is considered to be idle.
The test statistic for the energy detector T (y) can be expressed
as follows:

T (y) = 1
σ 2

u

N∑

n=1

|y(n)|2, (1)

where y(n) is the sampled signal and N is the number of
samples performed during the sensing phase. When the state
of the PU is H1, y(n) = s(n) + u(n), where s(n) is the
signal of the PU, which is assumed to be iid random process
with a mean of zero and a variance of σ 2

s , and u(n) is a
white Gaussian noise with a mean of zero and a variance
of σ 2

u . On the other hand, when the state of the PU is H0,
y(n) = u(n). The test statistic follows the central and non-
central chi-square distribution with 2N degrees of freedom
under hypothesis H0 and H1, respectively [32]. The test
statistic can be approximated as Gaussian because the central
limit theorem can be applied to it when the value of N is large
enough [33]. Then, the test statistic can be defined as follows:

T (y) ∼ N (N, 2N) H0
N (N(1 + γ ), 2N(1 + γ )2) H1,

(2)

where γ = σ 2
s /σ 2

u is the received Signal to Noise Ratio (SNR)
from the PU. Based on this, the detection probability pd and
the false alarm probability p f can be defined as follows:

pd = p(H1|H1) and (3)

p f = p(H1|H0). (4)

Based on the statistics of T (y), pd and p f can be rewritten
as follows:

pd = Q(
λ√

2N (1 + γ )
−

√
N
2

) and (5)

p f = Q(
λ√
2N
−

√
N
2

), (6)

where λ is the sensing threshold, which is used to compared
with the received energy power. More specifically, when

the SU detects the PU and the received power is higher
than λ, the PU is considered to be busy; otherwise, the PU is
considered to be idle. Q(·) is the Q-function, which is given
as

Q(x) = 1√
2π

∫ ∞

x
ex p(− t2

2
)dt . (7)

Eq. (7) shows that Q(x) is a monotonically decreasing
function. The number of samples N can be calculated using
the following equation [32]:

N = 2tW, (8)

where t denotes the sensing time and W is the bandwidth of
the PU signal. The sensing threshold λ can be derived using
Eq. (5) as below:

λ =
√

2N(1 + γ )(Q−1(pd) +
√

N
2

), (9)

where Q−1(·) denotes the inverse of the Q-function. By sub-
stituting λ into Eq. (6), p f can be obtained as

p f = Q((1 + γ )Q−1(pd) + γ

√
N
2

). (10)

In order to guarantee essential protection for the PU in
CRSNs, pd should be greater than or equal to a predefined
threshold pth

d . According to Eq. (10), p f decreases as sensing
time increases when pd is a fixed value. In addition, the value
of Q−1(pd) increases as pd decreases, and p f decreases as
Q−1(pd) increases. Therefore, for the purpose of maximiz-
ing the available secondary throughput, pd is fixed as pth

d ,
i.e., pd = pth

d .
Based on the six cases discussed in Sec. III, only

Case 3 leads to the problem of miss detection. Hence, the prob-
ability that the SU cannot detect the presence of the PU, p1

m ,
can be expressed as

p1
m = p1(1− pd)2. (11)

B. Optimization Problem Formulation

Fig. 3 showed that the SU can either transmit data or remain
silent for up to n frames, and this is decided based on the
different final sensing results. Therefore, the sensing interval
varies depending on the different final sensing results and the
activity level of the PU. In order to optimize the network
energy efficiency, the proposed scheme focuses on the average
secondary throughput and energy consumption per average
frame time. In order to analyze the optimization problem and
calculation process, in addition to the six cases summarized
in Fig. 3, four new spectrum sensing cases based on all
the possible two consecutive final sensing results are shown
in Fig. 4 and discussed below:

Case 1: The two consecutive final sensing results are D0
and D1. In this case, the SU transmits data during the current
frame after detecting that the PU is idle. During the next frame,
the SU detects that the PU is busy, and then remains silent for
n frames.
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Fig. 4. Summary of spectrum sensing cases.

Case 2: The two consecutive final sensing results are
both D1. Since the PU was detected to be busy twice, the SU
remains silent for n frames for two consecutive times.

Case 3: The two consecutive final sensing results are
both D0. Therefore, the SU transmits data in the current and
the next frame after detecting that the PU is idle.

Case 4: The two consecutive final sensing results are D1
and D0. After detecting that the PU is busy, the SU remains
silent for n frames. Then, since the next final sensing result
indicates that the PU is idle, the SU transmits data.

Note that sensing errors (i.e., false alarm and miss detection)
can occur in these four cases. That is, the data transmission
will be invalid if a miss detection occurs, and the opportunities
for data transmission will be wasted if a false alarm occurs.

According to Fig. 3, if a data transmission occurs (i.e.,
Case 3 and Case 5), spectrum sensing must be performed
twice. As mentioned before, a data transmission is valid only
when the actual state of the PU is U0. Therefore, the proba-
bility of invalid throughput caused by miss detection Po1 and
the probability of valid throughput Po2 can be calculated by
the following equations:

Po1 = p1(1− pd)2, (12)

Po2 = p0(1− p f )
2. (13)

Therefore, the probability that the SU transmits data can be
calculated using

Po = Po1 + Po2. (14)

The SU remains silent when the PU is busy or a false alarm
occurs. Here, the silent situation is classified into the following
two conditions based on the number of times spectrum sensing
is performed: (1) the SU performs spectrum sensing just
once and remains silent and (2) the SU performs spectrum
sensing twice and remains silent. According to Fig. 3, when
Cases 1 and 4 occur, spectrum sensing is performed only once.
When Cases 2 and 6 occur, spectrum sensing is performed
twice. These two conditions can be represented by the follow
equations:

Pv1 = p1 pd + p0 p f , (15)

Pv2 = p1(1− pd)pd + p0(1− p f )p f , (16)

where Pv1 and Pv2 are the probabilities of performing
spectrum sensing once and twice, respectively, when the final

sensing result is D1. Thus, the probability that the final sensing
result is D1, Pv, is given as follows:

Pv = Pv1 + Pv2, (17)

When Po and Pv are known, the optimization model based
on Fig. 4 can be established.

Cases 1, 3, and 4 in Fig. 4 yield valid secondary throughputs
T p1, T p3, and T p4, respectively, which are defined by the
following equations:

T p1 = Po2 Pv(T − 2ts)C
n + 1

, (18)

T p3 = Po2
2(T − 2ts)C + Po1 Po2(T − 2ts)C, (19)

T p4 = Po2 Pv(T − 2ts)C
n + 1

, (20)

where C is the SU’s channel capacity without interference
from the PU, which can be expressed as follows according to
the Shannon theorem:

C = log2(1 + γs), (21)

where γs denotes the SNR received from the SU transmitter.
In addition, n denotes the number of frames that the SU
remains silent. For T p3, the term Po2

2(T − 2ts)C represents
the valid secondary throughput achieved by the two frames
(i.e., the current and the next frames), and the term
Po1 Po2(T − 2ts)C represents the valid secondary throughput
achieved by one of the two frames when a miss detection
occurs during the other frame. Therefore, the average total
valid secondary throughput per average frame T p is repre-
sented as

T p(ts) = T p1 + T p3 + T p4, (22)

In this paper, n is set to a positive integer, which can be
adjusted based on the activity of the PU. In another words,
the value of n is dependent on the values of p0 and p1. Since
the sensing interval is increased only when the PU is busy,
the proposed method focuses on the probability that the busy
state of the PU will continue. Suppose the current state of the
PU is U1, then the probability that it will continue to be busy
for exactly n frames, pp(n), can be calculated by

pp(n) = pn−1
1 (1− p1), n ∈ {1, 2, 3, . . .}. (23)

Therefore, the probability that the PU will be busy for at most
n frames, Pp(n), can be expressed as

Pp(n) =
n∑

i=1

pp(i). (24)

Here, a threshold θ is set for Pp (n), which satisfies 0 ≤ θ ≤ 1.
The value of n is a function of θ based on the following
equation:

n = min{n : Pp(n) ≥ θ}. (25)

Eq. (25) indicates that n increases as θ increases. Therefore,
if θ is too large, the longer sensing interval n will result in less
opportunities for data transmission, which in turn degrades the
secondary throughput. If θ is too small, the shorter sensing
interval will waste more energy for spectrum sensing when
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p1 ≥ p0. Moreover, this problem will become more servere
when p1 becomes much larger than p0.

According to Cases 1, 2, 3, and 4 shown in Fig. 4, the corre-
sponding energy consumptions Ea, Eb, Ec, and Ed , respec-
tively, can be formulated. For Case 1, the energy consumption
required for the SU to perform spectrum sensing once and
twice, Ea1 and Ea2, respectively, to obtain the second final
sensing result are formulated as

Ea1 = PoPv1(2Ests + Et (T − 2ts) + Ests)
n + 1

, (26)

Ea2 = PoPv2(2Ests + Et (T − 2ts) + 2Ests)
n + 1

, (27)

where Es and Et are the energy consumption of spectrum
sensing and data transmission for a unit time, respectively.
Therefore, the energy consumption for Case 1, Ea, can be
calculated using

Ea = Ea1 + Ea2. (28)

For Case 2, the energy consumptions required to perform
spectrum sensing twice for 0, 1, and 2 times, Eb1, Eb2,
and Eb3, respectively, to obtain two final sensing results are
formulated as

Eb1 = Pv1 Pv1(Ests + Ests)
2n

, (29)

Eb2 = 2Pv1 Pv2(Ests + 2Ests)
2n

, (30)

Eb3 = Pv2 Pv2(2Ests + 2Ests)
2n

. (31)

Therefore, the energy consumption for Case 2, Eb, can be
calculated by the following equation:

Eb = Eb1 + Eb2 + Eb3. (32)

As mentioned before, if a data transmission occurs, spec-
trum sensing must be performed twice during a single frame
time. Therefore, in Case 3, the SU performs spectrum sensing
twice and then transmits data. The energy consumption for
Case 3, Ec, can be calculated by

Ec = Po2(2Ests + Et (T − 2ts)). (33)

Case 4 is the same as Case 1, where the energy consump-
tions required when the SU performs spectrum sensing once
and twice, Ed1 and Ed2, respectively, to obtain the first final
sensing result are as follows:

Ed1 = PoPv1(2Ests + Et (T − 2ts) + Ests)
n + 1

, (34)

Ed2 = PoPv2(2Ests + Et (T − 2ts) + 2Ests)
n + 1

. (35)

Therefore, the energy consumption for Case 4, Ed , can be
calculated by

Ed = Ed1 + Ed2. (36)

Finally, the total average energy consumption φ is given by

φ(ts) = Ea + Eb + Ec + Ed. (37)

In this paper, energy efficiency is defined as the number
of bits transmitted per unit of energy consumption [34].

Therefore, the energy efficiency function η can be expressed
as

η(ts) = T p(ts)
φ(ts)

. (38)

In the above objective function, sensing time ts is the only
unknown variable when the value of θ is given. Therefore,
the energy efficiency can be maximized by finding the optimal
sensing time ts .

C. Bisection Method

In this paper, the bisection method is applied to find the
optimal sensing time ts . If the function y = f (x) is continuous
during the interval [a, b] and the condition f (a) · f (b) < 0
is satisfied, the bisection method can be utilized to solve the
equation f (x) = 0 for the variable x . The bisection method
is a root-finding method, where an interval is bisected then
a subinterval that the root lies in is selected to be bisected
further, and this process is repeated. Finally, the approximation
of the root is obtained when the two endpoints of an interval
are close enough.

The pseudo-code description of the bisection method is pre-
sented in Algorithm 1. In line 1, the lower and upper bounds
of interval and the limit of error are given, which are denoted
as a, b and ϵ, respectively. Note that the limit of error ϵ
should be a small value. Then, the midpoint of interval c (line
2) and the derivative of the objective function η′(x) (line 3)
are calculated. In lines 4-9, a check is made to determine
whether the condition |a − b| ≤ ϵ is satisfied. If |a − b| ≤ ϵ
is satisfied, the solution can be approximated as a or b or c
(line 10); otherwise, the procedure starts again from line 4.

Algorithm 1: The Pseudo-Code of the Bisection Method
1: procedure BISECTION_METHOD(a, b, ϵ)
2: c = (a+b)

2
3: Calculate the derivative of η(x), denoted as η′(x)
4: while |a − b| ≥ ϵ, and η′(x) ̸= 0 do
5: if η′(a) ∗ η′(c) < 0 then
6: b← c
7: else
8: a ← c
9: c← (a+b)

2
10: return a or b or c

V. PERFORMANCE EVALUATION

This section discusses the performance evaluation of the
proposed scheme using MATLAB. The proposed scheme is
compared with other two sensing time optimization schemes
presented in [15] and [16].

A. Simulation Parameters

The simulation environment is a simple CRSN, which con-
sists of a single PU and one secondary link with a transmitter-
receiver sensor node pair that is randomly allocated within the
communication range of the PU. The licensed band occupied
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TABLE I

SIMULATION PARAMETERS

Fig. 5. The variation of energy efficiency as function of sensing time
and p0.

by the PU is assigned to the SUs. The parameters used for
the simulation study are shown in Table I. According to the
IEEE 802.22 cognitive radio WRAN standard, pth

d is set to
0.9 [35]. The frame time T is 0.2 s and W is 6 MHz. The SNR
received from the PU γ is -20 dB. The SNR received from
the SU transmitter γs is 20 dB, so the SU’s channel capacity
C is log2(1 +γs) = 6.6582 bits/sec/Hz. The energy consumed
by spectrum sensing (Es) and data transmission (Et ) for unit
time are assumed to be 0.1 W and 3 W, respectively, which are
set to the same values as in [16]. To achieve both secondary
throughput and energy efficiency, θ is set to 0.5. In other
words, the sensing interval is set to n that satisfies Eq. (25)
when θ is given as 0.5. The level of the PU activity is defined
as the probability that the PU is idle p0, where 0 < p0 < 1.

B. Simulation Results

Fig. 5 shows the energy efficiency as a function of the
sensing time ts and the idle probability of the PU p0. As can
be seen, for the fixed value of p0, the energy efficiency at
first increases as the sensing time increases. Then, after the
optimal sensing time, the energy efficiency decreases again
as the sensing time increases. Fig. 6 is the Fig. 5 when p0
is fixed as 0.5. Therefore, for different values of p0, there is
always an optimal spectrum sensing time that maximizes the
energy efficiency. The reason for this can be more clearly seen
in Fig. 6 and Fig. 7.

Fig. 6 shows the energy efficiency as a function of the
sensing time when p0 is fixed at 0.5. Note that p0 can be
fixed to any value within the interval (0, 1). The energy

Fig. 6. The energy efficiency as a function of spectrum sensing time when
p0 = 0.5.

Fig. 7. The sensing interval as a function of p0.

efficiency at first increases as the sensing time increases. The
energy efficiency peaks at 2.18 bits/Hz/J when the optimal
sensing time ts is 0.012 s. After the optimal sensing time,
the energy efficiency decreases again as the sensing time
increases. The reason for this is that the false alarm probability
decreases as the sensing time increases. This implies that
there are more opportunities to utilize spectrum holes, and
thus higher secondary throughput can be achieved. However,
due to the fixed frame time T , the remaining time left for
data transmission decreases as the sensing time increases. This
directly affects the secondary throughput, especially when the
sensing time becomes large. This is the reason why the energy
efficiency decreases again after the optimal sensing time. Fig. 6
also shows that the bisection method can be utilized to find
the optimal sensing time since the energy efficiency function
continuous and the derivative of energy efficiency is larger
than 0 before sensing time reaches the optimal value, and the
derivative of energy efficiency function is smaller than 0 after
the sensing time becomes bigger than optimal value.

Fig. 7 shows the sensing interval n as a function of p0
when the threshold θ is fixed at 0.5 and the sensing result
is D1. As can be seen, the sensing interval n decreases
as p0 increases. When p0 is larger than 0.5, the sensing
interval n is always 1. In other words, the SU performs
spectrum sensing at the beginning of each frame when p0
> 0.5. The sensing interval n decreases as p0 increases, and
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Fig. 8. The optimal energy efficiency as a function of frame time.

Fig. 9. Comparison of optimal energy efficiency.

thus the SU performs spectrum sensing more frequently and
there are more available opportunities to exploit spectrum
holes to improve the secondary throughput. On the other hand,
the sensing interval increases as p0 decreases, and thus energy
consumption for spectrum sensing is reduced to improve the
energy efficiency. Guaranteeing both the energy efficiency and
the secondary throughput is the reason why θ is set to 0.5.
In fact, the threshold θ depends mainly on the preference
between energy efficiency and secondary throughput.

Based on Eq. (38), Fig. 8 shows the optimal energy
efficiency as a function of the frame time T when p0 is
fixed at 0.5. As can be seen, the network energy efficiency
increases as T increases. In other words, the performance of
the proposed scheme improves when T becomes longer. The
reason for this is that the problem of miss detection can have a
greater negative impact on energy efficiency when T becomes
longer. If a miss detection occurs, the PU will be interfered
for a longer time and more energy will be wasted for invalid
data transmission as T increases. However, the miss detection
probability can be decreased significantly by our proposed
scheme according to Eq. (11). Therefore, the energy efficiency
can be improved when T becomes longer.

Fig. 9 compares the optimal energy efficiency η(ts)∗ of the
proposed scheme with other two schemes proposed in [15]

Fig. 10. Comparison of secondary throughput.

Fig. 11. Comparison of miss detection probability.

and [16] as a function of p0 (where p0 is in the interval
[0.1, 0.9]) with the frame length T fixed at 0.2 s. As can
be seen, the proposed scheme outperforms the other two
schemes, particularly when p1 > p0. The reason for this can
be explained by Fig. 10 and Fig. 11.

Fig. 10 compares the secondary throughput of these three
schemes as a function of p0 for T fixed at 0.2 s. As can
be seen, the secondary throughput of the proposed scheme
is lower than the ones proposed in [15] and [16]. This is
because when the sensing result shows that the PU is idle,
the SU will perform spectrum sensing again to guarantee the
first sensing result. This reduces the remaining time left for
data transmission. In addition, the sensing interval will become
longer when the PU becomes more active and sensing results
show the PU is busy. This reduces the energy consumption
for spectrum sensing; however, the opportunities for data
transmission is also lost when the SU remains silent for
n frames. These are two main reasons why the secondary
throughput of the proposed scheme is lower than other two
schemes.

Fig. 11 compares the miss detection probability p1
m of the

proposed scheme with the ones proposed in [15] and [16].
As can be seen, the miss detection probability of the proposed
scheme is always lower than other two schemes. Since the SU
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performs spectrum sensing only once in [15] and [16], these
two methods have the same miss detection probability p2

m ,
which is given as

p2
m = p1(1− pd). (39)

According to Eq. (11) and Eq. (39), it can be seen that the
ratio between p1

m and p2
m is 1− pd . Since pd is set to the same

value as the other two schemes (i.e., 0.9), the miss detection
probability decreases by a factor 10 with our proposed scheme.
In particular, the difference between p1

m and p2
m becomes

larger as p0 becomes smaller. Even though more time is
spent detecting the PU when the sensing result is D0 and the
secondary throughput for average frame is lower, the PU can
be better protected due to the lower miss detection probability.
Therefore, the number of invalid data transmissions can be
decreased, and in turn energy consumption can be reduced.
This improves the network energy efficiency and prolongs
the network lifetime. Therefore, the network can be utilized
more within the prolonged lifetime to offset the lost secondary
throughput.

VI. CONCLUSION AND FUTURE WORK

This paper proposed a novel spectrum sensing scheme for
CRSNs, where the SU adaptively performs spectrum sensing
for either one or two periods based on the first sensing
result. This allows the SU to perform the spectrum sensing
again to confirm that the PU is indeed idle when the first
sensing result indicates the PU is idle, which leads to a
better protection for the PU. In addition, the proposed method
considers the activity level of the PU. Based on the different
activity level of the PU, the sensing interval can be adjusted to
further improve the energy efficiency. Finally, an optimization
model is established, and the network energy efficiency is
maximized by optimizing the spectrum sensing time using
the bisection method. Our simulation study validates that the
proposed scheme results in better spectrum sensing perfor-
mance and higher energy efficiency. As a future work, a better
method to optimize the sensing interval will be investigated
using OpenBTS, which supports the Universal Software Radio
Peripheral (USRP) [36].
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