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Abstract— Wireless LANs (WLANs) have been widely adopted
and are more convenient as they are inter-connected as wireless
campus networks and wireless mesh networks. However, time-
sensitive multimedia applications, which have become more
popular, could suffer from long end-to-end latency in WLANs.
This is due mainly to handoff delay, which in turn is caused
by channel scanning. This paper proposes a technique called
Global Path-Cache (GPC) that provides fast handoffs in WLANs.
GPC properly captures the dynamic behavior of the network and
MSs, and provides accurate next AP predictions to minimize the
handoff latency. Moreover, the handoff frequencies are treated
as time-series data, thus GPC calibrates the prediction models
based on short term and periodic behaviors of mobile users. Our
simulation study shows that GPC virtually eliminates the need to
scan for APs during handoffs and results in much better overall
handoff delay compared to existing methods.

Index Terms— Wireless LANs, handoff, channel scanning,
mobility prediction, time series analysis.

I. INTRODUCTION

Wireless communication technology together with the ad-
vancements in systems and network software allow users to be
connected and be productive while on the road. Wireless LANs
(WLANs) based on the IEEE 802.11 standard [2], better known
as Wi-Fi hot spots, are already prevalent in residential as well
as public areas, such as airports, university campuses, shopping
malls, coffee shops, etc. Moreover, numerous efforts have already
been underway to connect Wi-Fi hot spots to offer a better
connectivity over a larger geographical area such as community
networks that cover metropolitan areas of major US cities [3]–[6].

One of the greatest benefits of Wi-Fi hotspots or community
networks is mobility support, which allows a user, for example, to
continually talk on a Voice over IP (VoIP) application or watch a
video stream while walking or riding a bus between city blocks.
However, mobility incurs a large handoff delay when a mobile
station (MS) switches connection from one access point (AP) to
another. The key to reducing the handoff delay is to minimize the
scanning process, which involves probing all the communication
channels in order to find the best available AP. Recent studies
found that passively scanning for APs during a handoff can be as
much as a second [7] and actively scanning for APs requires
350∼500 ms [7]. This becomes a major concern for mobile
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multimedia applications such as VoIP where the end-to-end delay
is recommended to be not greater than 50 ms [8].

Since the scanning process represents more than 90% of the
overall handoff delay, a number of techniques have been proposed
to specifically optimize the scanning process [9]–[12]. These
methods employ extra hardware, either in the form of additional
radios [9] or an overlay sensor network [12], to detect APs,
selectively scan channels to probe based on the topological
placement of APs [10], and predict the next point-of-attachment
based on signal strength [11]. Unfortunately, these techniques
either do not provide next AP predictions that can eliminate
the need to scan for APs or consider the mobility patterns of
MSs, which are dictated by the structure of a building or a city
block and the past behaviors of MSs. There are also methods that
consider mobility history of MSs to provide next-AP predictions
[13]. However, these methods tend to be general and thus they
do not consider the special characteristics of WLANs, such as
highly overlapped cell coverage, MAC contention, and variations
in link quality.

In order to illustrate these characteristics of WLANs, Figure 1
shows the coverage areas of the four-story, 153,000-ft2 Kelley En-
gineering Center (KEC) at Oregon State University, and MetroFi,
which is a public WLAN service that covers 2.5-mile2 area of
Portland, Oregon [5]. The APs in KEC are connected by Ethernet
switches, while APs in the MetroFi network are interconnected
by a wireless mesh network [14]. Besides the obvious difference
in the sizes of the coverage areas, these two networks share many
similarities and challenges based on the following observations.
First, APs are installed in relative close proximity to users,
e.g., offices and classrooms in KEC and residential and business
districts in Portland. Thus, the topological placement of APs does
not follow an ideal hexagonal cell layout. Second, some cells
are highly overlapped to provide high bandwidth for MSs in
high traffic areas, e.g., classrooms in KEC and to overcome RF
signal fading due to “urban canyons” (especially in downtown
Portland west of the river). Third, adjacent cells use only non-
overlapped channels to reduce the electromagnetic interference
among cells. Fourth, the signals transmitted from APs are not
limited to just a single floor but extends omni-directionally beyond
the ceilings, floors and walls. Therefore, an MS on the 1st

floor can detect signals from APs on the 2nd, 3rd, and 4th

floors. Finally, the operating environment of WLANs changes
frequently and drastically due to multipath effects, user mobility,
and electromagnetic interference. Therefore, the quality of signals
from APs cannot be guaranteed over time. All these factors
contribute to more frequent handoffs as well as higher handoff
latency.

In [1], we presented a solution, called the Global Path-Cache
(GPC) technique, which eliminates the need to perform scanning
for available APs and thus results in faster handoffs. The key
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(a) Kelley Engineering Center building.

(b) Public WLAN in Portland, Oregon (MetroFi R©).

Fig. 1. Example WLAN coverage areas.

idea of GPC is to predict the next point-of-attachments based
on the history of mobility patterns of MSs. This is achieved by
maintaining the handoff history of all the MSs in the network,
and then monitoring a MS’s direction of movement relative to
the topological placement of APs to predict its next point-of-
attachment. In addition, next AP predictions are based on the
frequencies of occurrences rather than signal strength. Therefore,
it takes into consideration that mobility patterns are dictated by
the structure of a building or a city block and the past behaviors
of MSs. The GPC technique is an adaptive algorithm, which is
independent of the topological placement of APs and the number
of channel frequencies used.

This paper extends our earlier work on GPC by also consider-
ing short-term handoff behaviors and significantly expanding its
evaluation. Therefore, in addition to providing a discussion of the
basic GPC scheme, the specific contributions of this paper are as
follows:

• First, the basic GPC scheme presented in [1] provides next
AP predictions based on long-term frequency of handoffs
and is unable to capture short-term and periodic handoff be-
haviors that are crucial for improving the prediction accuracy
for all scenarios. This paper enhances the basic GPC scheme
by treating the handoff frequencies as time-series data, thus
GPC calibrates the prediction models based on specific char-

acteristics of WLAN by applying AutoRegressive Integrated
Moving Average (ARIMA) and Exponential Weight Moving
Average (EWMA).

• Second, performance evaluation is significantly expanded
to include a much larger network (i.e., MetroFi Portland),
and specifically analyze the performance effects of different
types of users and the improvements provided by the time
series-analysis.

Our simulation study shows that GPC results in superior
handoff delay compared to Selective Scan with Caching (SSwC)
[11] and Neighbor Graph (NG) [10]. The average handoff latency
in GPC is 27∼28 ms and 37∼39 ms for KEC and Portland,
respectively, based on the current off-the-shelf NIC delay param-
eters. In contrast, SSwC requires 149 and 297 ms for KEC and
Portland, respectively. This is due to the fact that GPC provides
a much higher Next-AP prediction accuracy, especially the 1st

Next-AP prediction, than SSwC. GPC achieves 100% accuracy
and thus requires no probing while SSwC achieves prediction
accuracy of only 31%∼54%. Note that NG does not provide any
Next-AP predictions, and thus incurs latency of 328 and 422 ms
for KEC and Portland, respectively. The time-series-based GPC
scheme further improves the 1st Next-AP prediction accuracy by
as much as 17.1% and reduces the handoff latency as much as
8.5% compared to the basic GPC scheme.

The paper is organized as follows. Section 2 presents the
background of the IEEE 802.11 handoff procedure. Section 3
discussed the related work. Section 4 discusses the proposed GPC
technique. Section 5 evaluates the performance of the proposed
method and compares it with the existing solutions. Finally,
Section 6 concludes the paper and discusses future work.

II. BACKGROUND - SCANNING PROCESS IN IEEE 802.11

In the IEEE 802.11 standard, when a MS moves from one cell
to another, the network interface senses the degradation of signal
quality in the current channel. The signal quality continues to
degrade as the MS moves further away from the current AP, and
the MS initiates a handoff to a new cell when the signal quality
reaches a preset threshold [10]. This process starts with probing
for a new cell using either passive or active scanning. In passive
scanning, MS switches its transceiver to a new channel and waits
for a beacon to be sent by the new AP, typically every 100 ms,
or until the waiting time reaches a predefined maximum duration,
which is longer than the beacon interval. Moreover, the time MS
has to wait varies since beacons sent by APs are not synchronized.
For these reasons, a recent study has shown that MSs can spend
up to 1 second to search all possible channels [7], which results
in unacceptable handoff delay.

In active scanning shown in Figure 2, a MS broadcasts a
probe request and waits for a response. If the MS receives a
response from an AP, it assumes there may be other APs in
the channel and waits for MaxChannelTime. Otherwise, the MS
only waits for MinChannelTime. MinChannelTime is shorter than
MaxChannelTime to keep the overall handoff delay low, but it
should be long enough for MS to receive a possible response. A
typical duration for scanning each channel is around 25 ms and
350∼500 ms for all 11 channels [7].

After scanning, MS typically joins the network with the
strongest signal strength, which is done by performing authenti-
cation and association/reassociation. Authentication is the process
that a MS uses to announce its identity to the new AP. In the IEEE
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Fig. 2. Active Scanning in IEEE 802.11.

802.11 standard, authentication is performed using open system
or shared key. Open system authentication is the default method
for IEEE 802.11, and involves the MS sending authentication
request frame, which contains source address in the frame header
and information in the frame body to indicate the type of
authentication, to AP. Then, the AP sends the authentication
response frame back to MS. This frame has the authentication
result and the information to indicate the type of authentication.

The next step is association/reassociation, which allows the
distribution system to keep track of the location of each MS,
so frames destined for the MS can be forwarded to the correct
AP. How association/reassociation requests are processed is im-
plementation specific, but typically involves allocation of frame
buffers and, in the case of reassociation, communicating with the
old AP so that any frames buffered at the old AP are transferred to
the new AP and the old AP terminates its assocation with the MS.
Finally, the last step involves the new AP resetting the Ethernet
Address Table in the switch that connects both the old and the
new APs so that the network traffic can be rerouted.

III. RELATED WORK

A. Mobility Prediction

Mobility prediction is crucial for mitigating the effects of
handoffs and therefore improving QoS. There has been a plethora
of work on mobility prediction for variety of wireless networks,
such as cellular [11], [12], [15], WLANs [9]–[11], [13], [16], ad
hoc networks [17], and mesh networks [14], and applied to reduce
handoff latency [7], [10], [11], [18], provide efficient resource
reservation [13], [15], [19]–[23], improve routing protocols [17],
and conserve power [24].

Although many different mobility prediction techniques have
been proposed, these techniques can be broadly classified into
the following three categories. First, data-mining techniques use a
database to track and characterize the long-term mobility patterns
of MSs, which are then used to predict locations of MSs. These
techniques reduce the signaling overhead during handoff and
provide resource reservation to MSs in cellular networks [15],
[22], [23]. Second, topology-based techniques use the knowledge
of geographical locations of APs and directional movement of
MSs to provide resource reservation in cellular networks [21].
Third, stochastic techniques provide mobility predictions using

probabilistic model. These techniques apply the knowledge of
geographic coordinates of MSs from either GPS or triangulation
of signal strengths to predicted future locations [19], [20].

Although all these techniques provide mobility prediction in
cellular networks, they are not efficient solutions for WLANs. For
example, data-mining techniques require large storage and fast
processors to analyze long-term mobility behavior. In addition,
the latter two techniques typically require a GPS device to obtain
information about locations and directions of MSs. For systems
that rely on signal triangulation, their effectiveness may be limited
due to the fact that WLANs are mainly used for indoors and
crowded outdoor areas where the signal strength is highly affected
by noise rather than distance [25].

The technique closest to ours is Markov-based mobility predic-
tions, which rely on the fact that the probability of the future out-
come is based on the current and past outcomes [16]. Typically, a
Markov mobility predictor performs the following two operations:
The first operation is to maintain a collection of past locations of
MSs. The second operation is to predict future locations of MSs
based on the value of conditional probability that matches with
the past locations of MSs. Since the mobility patterns in WLANs
tend to be non-random and periodic, the Markov-based technique
can be found in many mobility prediction algorithms, including
ours, which aim to minimize the scanning process to provide fast
handoffs in WLANs.

B. Handoff Delay

There has been a lot of work done to reduce the handoff
delay in WLANs. The related work discussed here focuses on
optimizing the probing or scanning process, which is the most
time consuming part of a handoff [26], [27]. MultiScan uses
multiple WLAN network interfaces to opportunistically scan and
pre-associate with alternative APs to avoid disconnections [9].
The basic idea is to have the first WLAN interface communicate
with the current AP while the second WLAN interface scans
for new APs. This scan information is then used to connect
to the new AP before the connection is lost from the current
AP. Selective Active Scanning uses an overlay sensor network to
obtain information on the presence of APs and the quality of
their transmission channels [12]. This way, a MS broadcasts an
AP-list request to surrounding sensor nodes to obtain a precise
information about neighboring APs, and initiates a scanning
process solely based on this list. Although both techniques can
provide fast handoffs, they require extra hardware, implemented
either on the client side or as a separate control plane, which may
be impractical and/or power inefficient.

Another technique to reduce the handoff delay is to either
passively or actively scan for available APs in the background
[7], [28]. SyncSacn is a passive method that requires APs to send
staggered periodic beacons to allow a MS to scan for additional
APs while it is still connected to the current AP. In contrast, a
MS actively probes for APs in [28]. Both methods rely on the
power saving mode to buffer packets at the AP during background
probing. Although the handoff delay can be reduced by both
methods, there is a hidden cost since a MS has to occasionally
suspend its communication to either listen or probe for other
APs. Nonetheless, the GPC method proposed in this paper is an
orthogonal approach to the background scanning and thus they
can be deployed together to reduce the cost of performing a full
scan.
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Other methods that are closest to ours in terms of reducing the
scanning process are Neighbor Graph [10], Pre-Authentication
path [18], and Selective Scan with Caching [11]. The Neighbor
Graph and Pre-Authentication path techniques reduce the number
of channels to scan by defining a directed graph that represents
the topological placement of APs and the mobility patterns of
MSs. Moreover, edges between APs that represent handoffs are
added or deleted to reflect the changing conditions. In addition,
the Pre-Authentication path technique reduces the signaling over-
head between MS and AP by allowing MSs to pre-authenticate
and pre-reassociate to APs within a directed graph before the
actual handoff occurs. Although both Neighbor Graph and Pre-
Authentication path techniques significantly reduce the average
number of channels probed, they do not provide next point-of-
attachment predictions and thus all edges (i.e., adjacent channels)
emanating from a node needs to be scanned.

Selective Scan with Caching minimizes the need to probe
during a handoff by predicting next point-of-attachment based
on signal strength. A MS joining the network for the first time
performs a full scan. Then, the corresponding bits in the channel
mask are set for all the probe responses received from APs,
as well as bits for channels 1, 6, and 11 with the premise
that these channels are more likely be used by APs. As MS
connects to the AP with the strongest signal, the corresponding
bit in the channel mask is reset based on the assumption that the
likelihood of adjacent APs having the same channel is very small.
In addition, two other APs’ addresses representing the second
and third strongest signals are stored in the AP-cache using the
current AP’s address as the key. These two APs represent the
best and second best candidates for subsequent handoffs. During
the next handoff, the MS will attempt to reassociate with these
two APs in order. If it fails to reassociate with both APs or an
entry is not found in the AP-cache, a selective scan is performed
based on the channel mask to choose two additional APs with
the strongest signals and stores them in the AP-cache. If no APs
are discovered with the current channel mask, bits in the channel
mask are inverted and another scan is performed. If the partial
scan fails to discover APs, a full scan is performed. However,
in order to use the information from the last scanning period for
the current handoff, the direction of MS movement relative to the
cell layout must be identical to the one in the last handoff. This
is often not the case and thus the AP-cache will frequently fail
to provide correct Next-AP predictions.

Recently, there has been a growing interest in expanding the
coverage area of WLANs using wireless mesh networking. In
SMesh [29], multiple APs are used to monitor the connectivity
quality of MSs in their vicinity to coordinate which of them
should serve the client. This is achieved by having each MS
associate with a unique multicast group of mesh nodes that are
in the vicinity of the MS and the mesh node with the best
connectivity to the MS sends a gratuitous ARP message to force
a handoff. In contrast, the proposed GPC technique is a MS-
initiated handoff method, which does not require the overhead of
maintaining multicast groups. Moreover, monitoring the signal
quality of MSs requires all APs to be operating in the same
channel and thus limiting the range of coverage area.

IV. THE PROPOSED GPC TECHNIQUE

In order to reduce the handoff delay, GPC tracks past associated
APs and then use this information to perform mobility predictions

Fig. 3. Local history using HSW for k=3.

TABLE I
GLOBAL HISTORY IN THE PATH-CACHE FOR FIGURE 3.

Cache-Key Next-AP Counter
Past-AP Current-AP
APx APy APx 6
APx APy APw 2
APx APy APz 10
· · · · · · · · · · · ·
APy APx APy 6

for future handoffs. This virtually eliminates the need to scan
channels when MSs move through the coverage area of the same
set of APs. Section IV.A starts off with the discussion of the basic
GPC method that prioritizes multiple Next-AP predictions based
simply on frequency of handoff sequence occurrences. Then,
Section IV.B discusses the application of time-series analysis on
handoff occurrences to formulate a better model based on user
behavior to improve the Next-AP prediction accuracy.

A. The Basic GPC Scheme

The basic idea behind GPC is to track past mobility patterns
and then use this information to predict future handoffs. In order
to illustrate the motivation behind GPC, Figure 3 shows an
example of a coverage area that contains four APs. As the MS
moves away from APw, it is unclear which AP it will attach to
next since there are three possible candidates (i.e., APx, APy or
APz). Therefore, the history of handoff sequences is maintained
and used to predict behavior of future handoffs.

In order to keep track of a MS’s handoff sequence, a local
history is maintained using a k-entry Handoff-Sequence Window
(HSW) containing information of the current AP as well as k−1

past APs (i.e., the MAC address and the channel number). Figure
3 illustrates HSW for k=3. A MS joining the network for the first
time has no local history and thus its HSW contains null entries.
When the MS associates with a cell, the information of the current
AP is queued in HSW. During each subsequent handoff, the MS
sends to the server a Path-Cache request containing HSW as part
of an authentication request.

When the server receives path-cache requests from MSs, a
global history of all the MSs in the network is maintained in the
Path-Cache, where each entry contains a Cache Key represented
by Current-AP and k − 2 Past-APs, Next-AP, and a Counter
indicating the number of hits on this entry. Table I shows the
partial content of the Path-Cache for Figure 3.

The following operations are performed when a MS sends a
Path-Cache request to the server. Note that this process is initiated
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when the MS senses the signal strength of the current AP to be
weaker than a certain threshold.
• Path-Cache update - The server uses the past cache-key

represented by the handoff sequence AP0, AP1, · · · , APk−2

in HSW to search in the Path-Cache for a matching Cache-
Key. If a match is found, a check is made to see if APk−1

also matches the Next-AP entry. If it matches, the server
increments the counter for that entry by one. If the server
does not find a match, it means the HSW is new. Therefore,
the server stores the new handoff sequence in the Path-Cache
and initializes its counter to one.

• Next-AP prediction - The server uses the current cache-key
represented by the handoff sequence AP1, AP2, · · · , APk−1

in HSW to search in the Path-Cache for a matching Cache-
Key. If a match or multiple matches are found, the server
sends to MS a Path-Cache response with a list of Next-AP
predictions sorted in descending order of their counter values
as part of an authentication response. Otherwise, a null Next-
AP prediction is sent back to notify of Path-Cache miss. If
the HSW in the Path-Cache request is null, it indicates the
MS is joining the network for the first time. Therefore, the
servers uses a special handoff sequence null1, null2, · · · ,
APtuned−in, where APtuned−in represents the current AP
the MS is tuned into, to search in the Path-Cache.

Note that the size of k depends on the complexity of the
network topology and the building structure. If the coverage area
is small and yet there are many APs, a longer handoff history
will be preferred. However, our study shows that in general k=3
is sufficient to provide a good next-AP prediction. In addition,
all the Path-Cache entry counters are periodically decremented to
prevent saturation.

The algorithm for the GPC technique is illustrated in Figure
4 based on the assumption that the next-AP prediction has been
determined from the previous handoff and both the Path-Cache
and Authentication servers are collocated:
Step 1: MS directly tunes into the AP provided by the Next-AP

prediction. If Next-AP prediction is null, MS performs a
full-scan and tunes into the AP with the strongest signal.

Step 2: MS sends authentication request, Auth Req, containing
Path-Cache request, PC Req(HSW), to the server to
obtain Next-AP predictions for the next handoff (1).

Step 3: If authentication is successful, the server performs
Path-Cache Update (2) and Next-AP Prediction (3)
based on the received HSW, and sends authentication
response, Auth Resp, containing Path-Cache response,
PC Resp(Predicted Next-AP) (4). Otherwise, choose the
next element in the Next-AP prediction list and go to
Step 1.

Step 4: MS sends reassociation request (5) to the AP and
receives reassociation response (Step 6). If no reasso-
ciation response is received, move to the next element
in the Next-AP prediction list and go to Step 1.

Step 5: Information of the new AP is queued in HSW (7).
If a Path-Cache request hits on the Path-Cache and its 1st

Next-AP prediction is successful, GPC will reduce overall handoff
delay down to only the time required for MS to perform a channel
switch plus authentication and reassociation. With each additional
Next-AP misprediction, the overall handoff delay increases in-
crementally by the channel switching time plus authentication
timeout period. For example, if the 1st Next-AP prediction fails

Fig. 4. The steps in the GPC Technique.

but the 2nd Next-AP prediction is successful, MS first tunes into
the first predicted Next-AP and waits until the authentication
times out, then tunes into the second predicted Next-AP.

In case of a Next-AP misprediction, or authentication failure,
MS will revert back to the conventional handoff, which requires
a full scan. A Path-Cache miss will occur if a handoff sequence
is encountered for the first time. Afterwards, the new sequence
will be recorded in the Path-Cache and used to predict future
handoffs. Therefore, as long as the Path-Cache is current, all MSs
can benefit from this information to provide fast handoffs. Finally,
note that Path-Cache requests/responses are piggy-backed on
authentication requests/responses. Therefore, no extra messages
are needed. Also note that the discussion of GPC thus far has
been based on a centralized scheme. However, GPC can also be
implemented using a distributed scheme where each AP maintains
its own portion of the global Path-Cache.

B. Time-Series Based Prediction Model for GPC

The previous subsection discussed how the basic GPC scheme
uses the handoff history to effectively predict Next-APs. However,
the returned Next-AP predictions are prioritized based on long-
term frequency of handoff sequences using counters. However,
these counters are unable to capture short-term and periodic hand-
off behaviors that are crucial for improving Next-AP predictions
for all scenarios. This is addressed by treating the frequency of
handoff sequences as a time-series data using AutoRegressive
Integrated Moving Average (ARIMA) and Exponential Weight
Moving Average (EWMA).

Our analysis of the time-series data shows that the predicted
frequency of handoff sequence zt+1 for AP4 → AP5 → AP6

can be represented by ARIMA(0, 2, 2) as shown below (see
Appendix)

1) ARIMA Based Prediction Model for GPC: ARIMA is
known to work well for non-stationary processes [30], [31],
and has been used to model automotive traffic flow [32], [33]
and mobility prediction [19], [20]. The frequency of handoff
sequence is treated as a time-series data where the basic discrete
time interval t is one minute. This archival data series can be
aggregated to generate longer time intervals as needed. The period
of the handoff data series T depends on the system under study.
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Fig. 5. Frequency of handoff sequence AP4 → AP5 → AP6 for KEC.

For a typical WLAN environment, such as ours, the recommended
period will be at least one day to capture all possible trends within
a day. Figure 5 shows an example time-series data representing
a simulated user mobility for the handoff sequence AP4 →
AP5 → AP6 in the KEC building (see Section V.A), which
shows that there are more handoff activities between 11 AM to 9
PM than 10 PM to 10 AM. Our analysis of the time-series data
shows that the predicted frequency of handoff sequence zt+1 for
AP4 → AP5 → AP6 can be represented by ARIMA(0, 2, 2) as
shown below (see Appendix)

zt+1 = 0.0217zt − 0.0216zt−1 + 1.9783zt − 0.9784zt−1

where zt and zt−1 are the sampled time-series data, zt and zt−1

are the predicted time-series data.
Figure 6 shows the plot of predicted frequency of handoff

sequences AP4 → AP5 → AP3, AP4 → AP5 → AP4, and
AP4 → AP5 → AP6 using the ARIMA model, which represent
the three possible paths through AP4 → AP5. This figure shows
that in general the handoff sequence AP4 → AP5 → AP6 occurs
the most often. One of the advantages of GPC based on ARIMA
is that it can better track of short-term changes in the mobility
pattern. They occur when the frequencies of handoff sequences
are relatively close together as in Figure 6(a) between 12 AM
to 11 AM. For example, Figure 6(b) shows a magnified view of
the frequency of handoff sequences between 7 to 9 AM of Figure
6(a). The ARIMA model is able to determine that the frequency of
handoff sequence AP4 → AP5 → AP3 overtakes the frequency of
handoff sequence AP4 → AP5 → AP6 and becomes the highest
around 7:40 AM. Even a small increase in handoff activities can
cause the mobility prediction to change. Therefore, GPC based
on ARIMA correctly provide AP3 as the 1st Next-AP prediction.
However, the basic GPC scheme based only on long-term history
cannot capture this short term variations causing mispredictions.

2) EWMA Based Prediction Model for GPC: EWMA is equiv-
alent to ARIMA(0, 1, 1) [29, 30] and is much simpler to formulate
than the general ARIMA model. EWMA can be defined as

zt+1 = (1− λ)zt + λzt

where zt is the sampled time-series data, zt is the predicted time-
series data, and λ is the smoothing factor 0 < λ < 1. The

(a) 24 Hours.

(b) 7 AM to 9 AM.

Fig. 6. Predicted Frequency of Handoff Sequences based on ARIMA(0, 2,
2) for KEC.

parameter λ determines characteristic of the EWMA model and is
typically chosen experimentally. Based on our analysis, λ for the
time-series data representing frequency of handoff sequences in
KEC is chosen to be 0.1. Figure 7(a) shows the plot of predicted
frequency of handoff sequences for AP4 → AP5 → AP3,
AP4 → AP5 → AP4, and AP4 → AP5 → AP6 using the
EWMA model. Figure 7(b) shows that EWMA, despite some
noise, is also able to capture the fact that frequency of handoff
sequence AP4 → AP5 → AP3 becomes the highest around 7:40
AM. Although EWMA does not rely on the full statistical analysis
to estimate the order and the coefficients, our simulation result
show that this simple model gives results that are relatively close
to ones from ARIMA.

V. PERFORMANCE EVALUATION

This section presents the performance evaluation of the pro-
posed GPC technique. Section V.A describes the simulation
environment as well as the two key components of the simulator
- path generator and handoff detector. Section V.B discusses
the delay parameters used in the study. Section V.C compares
the results of the basic GPC scheme against the Selective Scan
with Caching (SSwC) [11] and Neighbor Graph (NG) [10], [34]
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(a) 24 Hours.

(b) 7 AM to 9 AM.

Fig. 7. Predicted Frequency of Handoff Sequences based on EWMA for
KEC.

techniques, as well as presents the performance improvement
using the ARIMA and EWMA models.

A. Simulation Environment

The two network topologies used in the simulation study are
the coverage areas for the KEC building and part of Portland
(indicated by a dotted line) as shown in Figures 1(a) and (b),
respectively. The simulated coverage area for KEC contains 6
APs and 450 MSs, while the coverage area for Portland contains
40 APs and 4,500 MSs. The paths taken by MSs are limited
to hallways and the atrium in KEC and sidewalks in Portland.
There are three groups of users for KEC, i.e., 200 students,
200 graduate students, and 50 staff members, with each having
different types of mobility behaviors. For example, students
mostly move between the atrium, the cafe, and the computer lab.
In addition, students move in and out of the classrooms during the
last ten minutes of each class hour between 8 AM and 6 PM. In
contrast, graduate students mainly move between their offices, the
atrium and the computer lab. Finally, staff moves mainly between
their offices and the atrium.

The results for Portland were generated based on nine differ-
ent groups with each group consisting of 500 users. Nomadic

represents a group of MSs that can move anywhere within the
simulated area. The next four groups represent commuters (C)
who work in each of the four quadrants or regions, i.e., C-I C-II,
C-III, and C-IV in Figure 1(b), which are likely to travel long
distances (i.e., 15-20 blocks) to work. Moreover, these groups of
MSs only move between 6 AM to 10 AM and 6 PM to 10 PM.
The last four groups represent residents (R) who live in each of
the four regions, i.e., R-I, R-II, R-III, and R-IV in Figure 1(b).
These groups of MSs can move anytime but are likely to only
move within few blocks (5-10 blocks) from their homes.

In order to accurately simulate mobility patterns and handoffs,
we developed our own simulator that implements a WLAN radio
model, generates mobility patterns based on building and city
layouts, and supports management frames (which is currently not
supported in exiting network simulators, such as ns-2) needed
to implement scanning, authentication, and reassociation. The
two main modules of the simulator are the path generator and
the handoff detector. For each MS, the path generator randomly
selects a location within the preassigned region on the network
topology at a predefined time, then uses the path-finder algorithm
[35] to generate a path for MS. The handoff detector monitors
a MS’s movement and performs a handoff when the distance
between the MS and the associated AP reaches the maximum
radius of the coverage area , which is based on log-distance path
loss model [25]. This process is performed at a resolution of
one meter. The handoff detector records the number of channel
switches, the number of times MS has to wait for tmax, tmin,
tauth, and tassoc (see Section V.B). The simulation steps are
described below:
Step 0: Initially, each MS is assigned to a random location

within a predefined region. Then, a full scan is per-
formed to choose an AP to associate with.

Step 1: For each MS, a destination location is randomly selected
within a predefined region at a predefine time.

Step 2: For each MS, a moving path is generated between
its current location and the next location in one-meter
increments.

Step 3: For each one-meter step of a MS’s movement, the
distance is determined between the MS and the current
AP. If the distance reaches the maximum radius of the
coverage cell, handoff is performed. If the number of
handoffs is equal to the maximum number of handoffs,
stop simulation. Otherwise, go to Step 1.

B. Simulation Delay Parameters

The delay parameters used in the simulation are shown in
Table II: Channel Switching Time (tswitch) is the time required
to switch from one channel to another; MinChannelTime (tmin)
is the minimum amount of time a MS has to wait on an empty
channel; MaxChannelTime (tmax) is the maximum amount of
time a MS has to wait to collect all the probe responses, which is
used when a response is received within MinChannelTime; Au-
thentication delay/timeout (tauth) is the time required to perform
authentication based on MAC addresses; and Reassociation delay
(tassoc) is the time requires to perform reassocation.

The Parameter Set 1 represents the current off-the-shelf NICs,
and was obtained using an experimental setup that consisted of
two laptops with PCMCIA 802.11a/b/g NICs based on Atheros
AR 5002X chipsets [36] (running Linux 2.6 on Laptop #1 as
a traffic generator and FreeBSD 6.1 on Laptop #2 as a traffic



8

TABLE II
DELAY PARAMETERS USED IN THE SIMULATION.

Parameters Set 1 Set 2
(Measured) (Optimized)

Channel Switching Time (tswitch) 11.4 ms 11.4 ms
MinChannelTime (tmin) 20 ms 1 ms
MaxChannelTime (tmax) 200 ms 10 ms

Authentication delay (tauth) 6 ms 6 ms
Reassociation delay (treassoc) 4 ms 4 ms

observer), a Sun SPARC Server with Ethernet LAN NIC (running
SunOS 5.1), and an HP ProCurve Wireless Access Point 420.
The NICs on the AP and on both laptops are operating on
Ch. 1. Measurements were obtained by having the first laptop
transmit a stream of 16-byte UDP packets to the server, while
tcpdump running on the second laptop sniffs the traffic. tswitch

was determined by forcing the NIC on the first laptop to switch
to Ch. 2, which has no APs, and then immediately switch back
to Ch. 1. The observed time between the last UDP packet and
the probe request from the first laptop was 22.8 ms, which
represents 2 · tswitch, and thus tswitch is assumed to be 11.4
ms. tauth was determined by measuring the longest possible time
between an authentication request and response. Our experiment
shows that the MS receives an authentication response within
approximately 1∼5 ms. Therefore, tauth=6 ms ensures that it
is longer than the time between the authentication request and
response. Similarly, tassoc is estimated from the average round-
trip time of reassociation request and response, which is tassoc=4
ms. tmax was estimated by observing the time between a probe
request and an authentication request, which is 199.4 ms. This is
consistent with the tmax value provided in the source code of the
open source wireless network device driver [35]; therefore, tmax

is assumed to be 200 ms. On the other hand, there is no direct
method to measure tmin. Thus, the reference value of tmin = 20
ms is assumed as in [37]. The delay values were obtained from
average of 2400 measurements over a period of a day to reduce
variations due to network traffic.

The Parameter Set 2 represents possible future NICs with
reduced handoff delays based on optimized tmin and tmax values
from [27]. This study determined that the value of tmin that
leads to minimized handoff delay are given by tmin ≥ DIFS +

(aCWmin×aSlotT ime) [27], where DIFS is Distributed Inter-
Frame Space, aCWmin is the number of slots in the minimum
contention window, and aSlotT ime is the length of a slot. In
the IEEE 802.11g standard [2], the values for DIFS, aCWmin,
and aSlotT ime are 28 µs, 15 µs, and 9 µs, respectively, which
results in tmin ≥ 163 µs. However, tmin is defined in terms of
Time Units (TU), where 1 TU = 1024 µs. Therefore, the smallest
possible value of tmin is 1024 µs. Moreover, tmax is estimated
as the transmission delay required when 10 MSs try to access the
same AP. In their simulation [27], the bit rate of the channel is set
to 2 Mbps, which is the maximum possible rate for management
frames. The same bit rate for control frame also applies to IEEE
802.11g [2], [37]. Therefore, the estimated tmax is 10 ms.

C. Simulation Results

This subsection compares the performance of GPC against
Selective Scan with Caching (SSwC) [11] and Neighbor Graphs
(NG) [10] described in Section III.B. We first investigates the

(a) KEC

(b) Portland

Fig. 8. Overall Next-AP accuracy as function of history or number of
handoffs. (NG is not included because it does not provide Next-AP predictons.
At least 104 and 106 handoffs are needed in KEC and Portland, respectively,
for system initialization.)

amount of handoff history needed to provide accurate Next-AP
predictions. Then, the basic GPC scheme is compared against
SSwC and NG in terms of Next-AP accuracy and handoff delay.
Finally, we show the performance gains by adopting time-series
based prediction models for GPC.

In order to provide a fair comparison, SSwC was extended
to have an unlimited number of AP-Cache entries and Next-
AP predictions per entry. Note that the original SSwC algorithm
assumes only 10 AP-Cache entries and two Next-AP predictions
per entry (i.e., Best AP and 2nd Best AP) [11].

1) Number of handoffs for system initialization: Figure 8
compares the overall accuracy of GPC and SSwC as function
of history, which is represented as the number of handoffs. The
overall accuracy is defined as the number of correct predictions
divided by the total number of handoffs. The NG technique is
not included in this comparison since it does not provide a Next-
AP prediction mechanism. As can be seen, when the number of
handoffs is low (below 104 in KEC and 106 in Portland), GPC
lacks sufficient history and thus, the overall accuracy is below
100% and decreases as k increases. This is because a larger k
leads to a larger number of possible handoff sequences, and thus a
longer history is required to record all possible handoff sequences.

For the KEC building, the overall accuracy for GPC becomes
100% beyond 104 handoffs because all the possible handoff
sequences have been recorded in the Path-Cache. Thus, all path-
cache requests will be provided with correct Next-AP predictions.
In contrast, the larger Portland area requires at least 106 handoffs
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(a) KEC

(b) Portland

Fig. 9. Accuracy of Next-AP Predictions. (GPC reaches a total of 100%
prediction hits while SSwC reaches 52% and 30% in KEC and Portland,
respectively.)

before the overall accuracy becomes 100%. Although the number
of handoffs required is much greater than KEC, Portland has many
more MSs. Therefore, 45,000 users in Portland for example can
produce 106 handoffs within only ∼3.5 hours.

The overall accuracy of SSwC also increases as function of
number of handoffs, but saturates at ∼54% and 31% for KEC
and Portland, respectively, as shown in Figures 8(a) and 8(b).

Based on the aforementioned discussion, all the subsequent
results in this section were obtained based on the assumption that
(1) GPC maintains a complete history of handoff patterns, (2) AP-
cache of SSwC contains entries for all the APs in the network,
and (3) NG was preconfigured. This is done by first running
the simulations for 104 handoffs for KEC and 106 handoffs
for Portland to fill up the respective caches and performing NG
construction, and then gathering statistics for up to 107 handoffs.

2) Basic GPC versus SSwC and NG - Prediction accuracy:
Figure 9 compares the accuracies of Next-AP predictions. Again,
NG is not included in this discussion. The set of returned
predictions is prioritized based on their hit counter values for
GPC and signal strengths for SSwC. The significance of these
priorities is that each misprediction adds to the overall handoff
delay. For GPC, the accuracy for the 1st Next-AP prediction for
KEC is 68% and increases slightly as function of k as shown in
Figure 9(a). The 1st Next-AP predictions that fail are satisfied
by the 2nd Next-AP predictions with accuracy of 89%, which
make up 28.5% of all predictions. Similarly, the 3rd Next-AP
predictions that succeed make up 3.5% of all predictions as in
Figure 9(a).

Fig. 10. Average Number of Next-AP Predictions. (Represents the average
number adjacent cells in GPC and overlapped cells in SSwC.)

In contrast, SSwC provides significantly lower 1st and 2nd

prediction accuracies of 51% and 2.6%, respectively. For Portland,
the 1st Next-AP prediction accuracy starts at 43% with GPC and
increases slightly as function of k as shown in Figure 9(b), which
is similar to the case for the KEC building. In comparison, SSwC
provides lower 1st, 2nd, and 3rd prediction accuracies of 25%,
6% and 0.02%, respectively.

The GPC’s superior prediction accuracy is attributed to a larger
Next-AP prediction pool (a larger number of cache entries) and its
counter-based prediction prioritization. First, the average number
of Next-AP predictions returned per handoff is shown in Figure
10. As can be seen, GPC provides a higher average number of
Next-AP predictions per handoff than SSwC. In short, SSwC
provides at most only two predictions while GPC offers up
to four predictions for the KEC building and six predictions
for Portland. The reason for this can be explained from the
characteristic of overlapped cells. Our simulations show that 40%
of the overlapped regions in the KEC building are covered by two
cells, and only 5% have three cells. Thus, SSwC will have at most
two Next-AP predictions because a MS can connect at most two
other APs (besides the current one). In contrast, the maximum
number of Next-AP predictions with GPC is four because it
depends on the number of adjacent cells. Similarly, 36.1% of the
overlapped regions in Portland are covered by two cells, 24.9%,
3.34%, and 0.04% have three, four, and five cells, respectively.
Since the area covered by five cells is relatively small, SSwC will
have at most three Next-AP predictions (excluding the current
AP). In contrast, the maximum number of Next-AP predictions
with GPC is six.

This can also be explained by the maximum number cache
entries needed, which is shown in Figure 11. The AP-cache used
in SSwC requires only 6 and 40 entries, which are the number
available APs in the 1st floor of the KEC building and Portland,
respectively. In contrast, GPC keeps track of MSs’ more complex
moving paths as k increases and thus requires more entries. Note
that the number of entries cannot be compared directly because
each entry in the Path-Cache for GPC provides one Next-AP
prediction where as each entry in AP-cache for SSwC provides
multiple Next-AP predictions.

In addition, the set of returned predictions in GPC is prioritized
based on how often these paths are encountered. In contrast,
SSwC relies only on signal strength, which is often different from
actual paths taken by MSs. Moreover, the AP-cache used in SSwC
only caches all the unique APs in the network. Therefore, when
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Fig. 11. Number of cache entries. (AP-cache in SSwC and Path-Cache in
GPC)

an AP with different set of Next-AP predictions is discovered, it
overwrites the existing entry, which leads to higher mispredictions
as well as larger overall handoff delay.

3) Basic GPC versus SSwC and NG - Handoff delay: The mis-
pedictions mentioned above are reflected in the average number
of channels probed per handoff. The SSwC scheme probes on
average 1.6 and 2.1 channels for KEC and Portland, respectively.
This is because Next-AP prediction provided by SSwC has very
low accuracy (see Figure 9) that cause 47.7% and 70% of the
handoffs in KEC and Portland, respectively, to mispredict and
have to rely on selective scanning, which involves selecting the
best AP from channels 1, 6, 11, and channels heard from either
a previous full scan or selective scan. The average number of
channels probed for NG is higher at 2.9 for both topologies, and
depends on the number of neighbor nodes encountered at each
point-of-attachment. For GPC, the number channels probed per
handoff is zero because once the GPC has a complete history it
is guaranteed to provide accurate Next-AP predictions.

Figure 12 shows the average handoff delays for all three
techniques based on the two parameter sets defined in Table II,
and includes the result for full scan as a reference. These results
show that GPC results in the lowest average handoff delay due to
better Next-AP prediction accuracy. Overall, GPC incurs average
handoff delay of 27∼28 ms for both parameters sets and is
significantly lower than SSwC and NG. Finally, the suggested size
for k is 3 because the average handoff delay is relatively constant
as k increases beyond 3 and yet it requires only a minimal number
of entries in GPC.

4) Time-Series Based GPC versus SSwC and NG: Although
the basic GPC scheme based on long-term history can signifi-
cantly reduce the handoff delay, Figure 9 shows that ∼30% and
∼40% of handoffs in KEC and Portland, respectively, require
more than one Next-AP prediction. This adds to the handoff delay
and illustrates the importance of having highly accurate 1st Next-
AP prediction. Therefore, Figure 13 compares the 1st Next-AP
prediction accuracy with k=3 using ARIMA(0, 2, 2) and EWMA
against the basic GPC scheme. The average improvements using
ARIMA for KEC and Portland are 9.6% and 17.1%, respectively.
This is because the time-series based GPC properly captures the
handoffs caused by short term and periodic behaviors of mobile
users. The improvements vary for different users groups. For
example, ARIMA improves the 1st Next-AP prediction for all
three groups in KEC. However, the largest improvement of 42%
comes from students because their behaviors are dictated by the

(a) KEC

(b) Portland

Fig. 12. Average Handoff Delay.

class schedules, which causes their handoffs to be periodic and
their predictions to become more accurate during those periods.
Similarly, all of the user groups in Portland resulted in ∼10%
improvement. However, Nomadic and commuter groups (C-I, C-
II, C-III, and C-IV) exhibit larger improvements due to short-term
surges in handoffs caused by groups of users commuting during
rush hour. Next, EWMA resulted in average improvements of 6%
and 15.8% for KEC and Portland, respectively, but provided less
improvements than the more complex ARIMA since EWMA does
not rely on the full statistical analysis to generate the time-series
model.

Finally, Figure 14 compares the handoff delays based on the
parameter set defined in Table II. Note that both sets of delay
parameters yield the same delay results since GPC does not
require channel probing after a sufficient amount of history. These
results show that GPC with ARIMA provides 4.4% and 8.5% im-
provement, while EWMA provides 5.6% and 8.5% improvement
for KEC and Portland, respectively. This may appear to be only
a small improvement compared to the basic GPC scheme, but
when individual handoff delays are considered, they resulted in
significant improvements for some user groups. For example, the
Student group in KEC resulted in 15.2% for ARIMA and 9.1%
for EWMA. This was also the case for Portland, where group
C-IV, which refers to commuters who work in region IV, resulted
in 27% improvement over the basic GPC scheme.

VI. CONCLUSION AND FUTURE WORK

This paper described the GPC technique to minimize the time
required to scan for APs in WLANs. GPC is different from the
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(a) KEC

(b) Portland

Fig. 13. 1st Next-AP prediction Accuracy based on Time-Series Analysis.

other existing methods because it uses global history of handoffs
to determine directions of moving MSs. Therefore, it captures
the mobility patterns of MSs much like NG and at the same
time provides a much more accurate Next-AP predictions than
SSwC. Our simulation study shows that the basic GPC scheme
eliminates the need to perform scanning and thus results in much
lower overall handoff delay compared to the existing techniques.
In addition, the time-series based models further reduce the
overall handoff delay by increasing the accuracy of 1st Next-AP
predictions.

For future work, we plan to investigate couple of issues.
First, we plan to investigate the effectiveness of GPC in high
traffic areas where a large number of packets are lost due to
MAC contention. This can cause MSs to be disconnected and
require scanning for an alternative AP, which makes it difficult
to predict the next-point-of-attachment. Moreover, authentica-
tion/reassociation requests may be lost during contention causing
multiple requests to be sent and further aggravating the contention
problem [37]. Therefore, understanding how GPC will perform
under this type of network condition is crucial for properly
adjusting some of the parameters, e.g., the timeout period for
authentication and reassociation, to reduce the effects of MAC
layer contention. Second, we would like to investigate how GPC
can be utilized to speed up vertical handoffs.

APPENDIX

A. Derivation of the ARIMA Based Prediction Model for GPC

The order of an ARIMA model is typically denoted by the
notation ARIMA(p, d, q), where p, d, and q refer to the order

(a) KEC

(b) Portland

Fig. 14. Handoff Delay based on Time-Series Analysis. (The results are the
same for the two parameter sets because GPC does not probe channels and
thus tmin and tmax are not used.)

of the autoregressive, the differencing, and the moving average
parts of the model, respectively. ARIMA(p, d, q) in general can
be defined as

(1−φ1B−φ2B
2−· · ·−φpB

p)∇dzt=(1−θ1B−θ2B2−· · ·−θqBq)εt,

where zt is the time-series data, φ is the autoregressive parameter,
θ is the moving average parameter, B is the backshift operator
defined by Bzt = zt−1 or Bmzt = zt−m, ∇ is the backward
difference operator of the form of ∇d = (1 − B)d, and εt is
white noise. There are two steps involved in formulating the
ARIMA model. The first step is the model identification based
on autocorrelation function (ACF) and partial autocorrelation
function (PACF). The second step is the model estimation that
determines the parameters φ and θ using an estimator algorithm.

The model identification determines the parameters p, d, and
q for the ARIMA model. This process begins with determining
whether the time-series data is non-stationary. If so, the differenc-
ing transforms the time-series data to become stationary. Some
time-series data may require additional differencing, but a typical
value for d ranges from 0 to 2. Once d is set, ∇dzt is replaced
by a stationary time-series data xt, and ARIMA(p, d, q) can be
rewritten as

(1−φ1B−φ2B
2−· · ·−φpB

p)xt = (1−θ1B−θ2B2−· · ·−θqBq)εt.

The above equation represents a general AutoRegressive Moving
Average (ARMA) model.
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TABLE III
BEHAVIOR OF ACF AND PACF FOR THE ARIMA MODEL.

ARIMA ARIMA ARIMA
(p, d, 0) (0, d, q) (p, d, q)

ACF Tail off Cut off after lag q Tail off
PACF Cutoff after lag p Tail off Tail off

The next step in the model identification is to calculate ACF
and PACF of xt. In general, ACF and PACF at lag h are defined
as:

ACF (h) = corr(xt, xt+h)

PACF (h) =


corr(x1, x0), h = 1

corr(xh − xh−1
h , x0 − xh−1

0 ), h ≥ 2

where corr(), is the correlation function given by

corr(xt, xt+h) =
cov(xt, xt+h)

σ2
x

=
E[(xt − µ)(xt+h − µ)]p
E[(xt − µ)2(xt+h − µ)2]

and xh−1
h and xh−1

0 are a h − 1-term linear regression model
defined by xh−1

h = β1xh−1+β2xh−2+· · ·+βh−1x1 and xh−1
0 =

β1x1+β2x2+· · ·+βh−1xh−1, where β1, · · · , βh−1 are regression
coefficients.

The parameters p and q of ARIMA(p, d, q) can be determined
by examining the plots for ACF and PACF and applying the
criteria defined in Table III. For example, ARIMA(0, d, q) is
chosen when the ACF values are non-zero up to lag q and the
PACF values decay exponentially after the first lag. On the other
hand, ARIMA(p, d, 0) is chosen when the ACF values decay
exponentially after the first lag and the PACF values are non-zero
up to lag p. Finally, ARIMA(p, d, q) is chosen when both ACF
and PACF values decay exponentially after the first lag.

After the order of ARIMA is defined, the model estimation
determines the parameters φ and θ. This step typically involves
curve fitting, which can be done in many different ways. The
method used in our simulation is Maximum Likelihood Estimator
(MLE). In general, MLE is given by

L(β) =

nY
t=2

f(xt|xt−1 · · ·x1)

where x is Gaussian, β is a vector of parameters φ and θ, and
f(xt|xt−1 · · ·x1) is a conditional density function. The MLE
method estimates β by finding the value of β that maximizes
L(β).

The following steps show how the time-series data that rep-
resents the frequency of handoff sequence AP4 → AP5 →
AP6 in Figure 5 can be represented by ARIMA(0, 2, 2). The
model identification starts by transforming the time-series data to
become stationary. Since the time-series data becomes stationary
after the second differencing, parameter d is defined as 2. Then,
the transformed time-series data xt is analyzed using ACF and
PACF as shown in Figure 15. Based on the criteria given in Table
III, the parameters p and q are defined as 0 and 2, respectively.
Therefore, ARIMA(0, 2 ,2) can be rewritten as

∇2zt = (1− θ1B − θ2B2)εt. (1)

Fig. 15. ACF and PACF from the transformed time-series data in Figure 5.

Finally, the parameters θ1 and θ2 are estimated as 1.9783 and
-0.9784, respectively, using a graphical method that searches for
the maximum L(β). Since our goal is to provide a prediction
based on past information, the model can be represented as

zt =

∞X
j=1

πjzt−j + εt, (2)

where πj is a weighted average coefficient and
P∞

j=1 πj = 1

Based on (2), the prediction model zt+1 can be written as

zt+1 =

∞X
j=1

πjzt+1−j . (3)

Next, (2) can be rewritten as

εt = (1− π1B − π2B
2 − ...)zt (4)

Using εt from (4), (1) can be rewritten as

(1−2B+B2)zt = (1−θ1B−θ2B2)(1−π1B−π2B
2−...)zt (5)

From (5), the weighted average coefficients can be defined as
π1 = 2−θ1, π2 = θ1π1−(1+θ2) and πj = θ1πj−1+θ2πj−2, j ≥
3. Substituting the coefficient πj into (3) gives

zt+1 = π1zt + π2zt−1 +

∞X
j=3

(θ1πj−1 + θ2πj−2)zt+1−j

= π1zt + π2zt−1 + [θ1

∞X
j=1

πjzt−j − θ1π1zt−1)]

+ θ2

∞X
j=1

πjzt−1−j (6)

Finally, substituting
P∞

j=1 πjzt−j and
P∞

j=1 πjzt−1−j with zt

and zt−1, respectively, (6) can be rewritten as

zt+1 = π1zt + (π2 − θ1π1)zt−1 + θ1zt + θ2zt−1

= (2− θ1)zt − (1 + θ2)zt−1 + θ1zt + θ2zt−1 (7)
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