
Performance Evaluation of Dynamic
Speculative Multithreading with

the Cascadia Architecture
David A. Zier, Member, IEEE, and Ben Lee, Member, IEEE Computer Society

Abstract—Thread-level parallelism (TLP) has been extensively studied in order to overcome the limitations of exploiting instruction-level
parallelism (ILP) on high-performance superscalar processors. One promising method of exploiting TLP is Dynamic Speculative

Multithreading (D-SpMT), which extracts multiple threads from a sequential program without compiler support or instruction set
extensions. This paper introduces Cascadia, a D-SpMT multicore architecture that provides multigrain thread-level support and is used

to evaluate the performance of several benchmarks. Cascadia applies a unique sustainable IPC (sIPC) metric on a comprehensive loop
tree to select the best performing nested loop level to multithread. This paper also discusses the relationships that loops have on one

another, in particular, how loop nesting levels can be extended through procedures. In addition, a detailed study is provided on the effects
that thread granularity and interthread dependencies have on the entire system.

Index Terms—Multithreading processors, multicore processors, simulation, speculative multithreading.

Ç

1 INTRODUCTION

SUPERSCALAR techniques that exploit instruction-level paral-
lelism (ILP) have been proven to be a cornerstone in

advancing the state of the art in high-performance
processors. However, the performance of monolithic pro-
cessors has been limited by true and control flow
dependencies inherent in single-threaded execution, along
with the complexities of supporting large instruction
windows and many in-flight instructions. In order to
overcome these limitations and effectively utilize the
increasing transistor count and die space, chip makers have
focused on Multicores or Chip Multiprocessors (CMPs) that
combine several processor cores on a single die to exploit
Thread-Level Parallelism (TLP). However, properly utilizing
the increasing processing power has been a major challenge
since programmers have to reason about parallelism and
deal with communication and synchronization issues.

Thread-Level Speculation or Speculative Multithreading
(SpMT) is a promising technique for speeding up single-
threaded applications without the need for a programmer to
explicitly define TLP. SpMT achieves this using software
and/or hardware methods to exploit TLP that exists in
single-threaded programs. TLP can be extracted by creating
threads from loop boundaries [1], [2], [3], function continua-
tions [4], code reconvergence [5], and/or acyclic software
pipelining [6], [7]. SpMT can be done either statically or

dynamically. In static SpMT, programs are processed by
either a parallelizing compiler or a binary annotator to find
optimal code segments for threads [4], [8], [9]. Then, new
instructions are inserted into the code that spawn/join
threads and handle interthread data dependencies using
hardware support. Unfortunately, static methods have
difficulty taking advantage of the dynamic aspects of
programs. As such, they may disregard large segments of a
program, where dependencies cannot be resolved statically.
In contrast, dynamic SpMT (D-SpMT) relies only on hardware
mechanisms to handle the thread management and data
dependencies at runtime [1], [2], [3], [10], [11], [12]. Because
D-SpMT relies only on hardware to detect, spawn, and
manage threads, it does not require any special instruction
set extensions or intervention from the Operating System.

There have been several D-SpMT architectures proposed
in the literature, but the rationale for their performance
requires a more detailed study. For example, what is the
proportion of time a program spends speculatively multi-
threading? What typical thread characteristics provide the
best performance gains? What are the effects of interthread
dependencymisspeculation? Therefore, this paper presents a
detailed analysis to answer these questions. The main
contributions of the paper are as follows:

. First, this paper introduces a multigranular D-SpMT
architecture calledCascadia. Cascadia exploits threads
from loop segments. Loop selection is performed
with a unique loop tree structure that not only reflects
the relationship among loops, but also the relation-
ship between procedure calls and loops, and uses a
heuristic based on past performance indicators. This
allows Cascadia’s multigrain approach to provide a
more accurate loop-level selection of multinested
loops and achieve greater performance than either
fine-grain or coarse-grain approaches.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 1, JANUARY 2010 47

. D.A. Zier is with the NVIDIA Corporation, 20400 NW Amberwood Dr.
#100, Beaverton, OR 97006. E-mail: dzier@nvidia.com.

. B. Lee is with the School of Electrical Engineering and Computer
Science, Oregon State University, 3117 Kelley Engineering Center,
Corvallis, OR 97331. E-mail: benl@eecs.oregonstate.edu.

Manuscript received 15 Sept. 2008; revised 7 Jan. 2009; accepted 2 Mar. 2009;
published online 12 Mar 2009.
Recommended for acceptance by R. Bianchini.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2008-09-0353.
Digital Object Identifier no. 10.1109/TPDS.2009.47.

1045-9219/10/$26.00 ! 2010 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 7, 2009 at 19:55 from IEEE Xplore. Restrictions apply.

. Second, a comprehensive analysis is performed to
better understand the dynamic relationships of
loops. There already have been several studies on
loop behavior and characteristics for the purpose of
extracting TLP [13], [14], [15], [16], [17]. However,
these studies only consider control flow through a
single loop in order to develop heuristics that
determine the best spawning point. To the best of
our knowledge, this paper is the first to examine
the relationships that loops have on each other in
order to dynamically select the most appropriate
nesting level.

. Third, the effect that interthread dependency mis-
speculations have on performance is presented. This
study also shows the potential performance gains by
ideally predicting interthread dependencies. The
purpose is to show the effects of specific dependen-
cies on the entire system and how relationships
between loops change under ideal conditions.

Our simulation studies of Cascadia show significant
performance improvement on multimedia applications
with an average speedup of 1.5 with one benchmark
achieving a speedup of over 5 with 16 cores. Programs
with large, well-structured loops will obviously perform
well, but the results show that Cascadia can also handle
very dynamic loops for positive gains. The results also show
that some integer and floating-point benchmarks contain an
insufficient number of loops necessary to achieve the same
type of gains from multimedia benchmarks.

The remainder of this paper is organized as follows:
Section 2 discusses how loops are multithreaded and
includes a discussion on loop structure and the multi-
grained loop selection heuristic. A brief discussion on the
implementation of the Cascadia architecture is provided in
Section 3. This is followed by a comprehensive analysis of
the simulation results in Section 4. Related work is
discussed in Section 5 and future work in Section 6. Finally,
Section 7 concludes the paper.

2 MULTITHREADING LOOPS

Unlike static SpMT techniques, D-SpMT must determine
loops and their dependencies during the execution of a
single instruction stream or program flow. In addition, a
multigrain D-SpMT system must dynamically determine
the nested relationships of those loops in order to select an
appropriate nested loop level.

2.1 Loop Structure

Within an instruction stream, a loop is defined as the
instructions contained within a backward-branch instruc-
tion, BPC, and the target PC of the branch, TPC. This
definition of a loop is sufficiently general for D-SpMT to
detect all the executed loops within an application. In
addition, loop A is an inner loop of loop B iff TPCB !
BPCA < BPCB. This definition covers all nested loops,
including the case of multiple backward edges for a single
loop. Moreover, a function is defined by the TPC of the
function call and the return PC, RPC. Nested loops through
function calls are also recognized in order to create an
accurate representation of the loop structure.

The structure of loops and functions are inherently
hierarchical in nature and they are often intertwined.
Therefore, the Loop Tree is used to represent the relationship
among multiple nested loops and function calls, and the
TPC:RPC pair is pushed onto the Function Stack to indicate
the current instance of a function call within the Loop Tree.

Fig. 1 demonstrates how the Loop Tree can dynamically
be created from an instruction stream. Fig. 1a shows a fairly
complex instruction stream with multiple nested loops and
function calls that may exist in many integer and scientific
programs. The instruction stream consists of four nested
function calls F1-F4 and seven unique loops L1-L7.

L6 is the first encountered loop as the instruction stream
propagates down to function F4. After L6, L7 is discovered
as a sibling to L6 since neither loop is within the loop
boundaries of one another. Eventually, L5 is found to
encompass both L6 and L7. The state of the Loop Tree after
F4 completes is illustrated in Fig. 1b. Upon the return of F4
to the RPC R4, the instruction stream encounters loop L3.
Since the TPC of L3 is greater than R4, L3 becomes a sibling
to the L5 Loop Tree. Afterward, another function call is
made to F4, and again, the same Loop Tree in Fig. 1b is
found. It is essential to note that this is a new instance of the
L5 Loop Tree sinceR5 is different from R4 and is a sibling to
the prior L5 Loop Tree and L3 loop. By the time the BPC of
loop L2 is discovered, the Loop Tree contains the three
instances of the L5 Loop Tree, the L3 loop, and the L4 loop as
equal siblings. L2 will then encompass all the siblings, since
every BPC and RPC for each of the siblings are within the
loop boundaries of L2. The state of the Loop Tree at the end
of function F3 is shown in Fig. 1c. After the instruction
stream returns to function F2 at R2, another call to F3 is
encountered, and consequently, a new instance of the L2
Loop Tree will be found. Finally, the loop L1 is found to
encompass the RPC values of both L2 sibling Loop Trees and
ultimately becomes the outermost loop within the whole
tree structure. Fig. 1d illustrates the entire, static view of the
loop hierarchy upon the completion of the function F2.

The above example shows the importance of considering
both loops and function calls for detecting threads. If
function calls were not considered, the system would see
three separate Loop Trees that have no correlation with
each other and the loop selection mechanism would fail to
find the best nested level, and ultimately, the best
performance gain. The final tree structure of the above
example consists of 7 unique loops with 25 loop nodes and
a maximum depth of 4 levels.

2.2 Loop-Level Selection

A loop must meet the following two requirements to
maximize TLP performance: 1) a loop’s multithreaded
performance must be greater than or equal to its single-
thread performance and 2) a loop’s multithreaded perfor-
mance must be greater than or equal to the performance of
any of its nested inner loops. In order to determine if these
two requirements are met, the selection heuristic uses three
IPC performance indicators: 1) a Pre-Multithreading IPC
(pIPC) derived from the sequential run of an iteration as a
single thread, 2) a Multithreaded IPC (mIPC) derived from a
loop while it is being multithreaded, and 3) a Sustainabe IPC
(sIPC), which is an approximated IPC for the current loop if

48 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 1, JANUARY 2010

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 7, 2009 at 19:55 from IEEE Xplore. Restrictions apply.

its inner loops were multithreaded. Ultimately, mIPC of a
loop must be better than sIPC, i.e.,mIPC " sIPC, in order
to sustain a beneficial gain in performance.

In order to estimate sIPC for the current loop, pIPC and
mIPC values from all the inner loops are weighted relative
to the amount of time spent in a single iteration of the
current loop. The sIPC metric has the general form

sIPC ¼
X

i

!i $mIPCi þ
!
1&

X

i

!i

"
$ pIPCo; ð1Þ

where !i represents the fraction of a single iteration of the
current loop code segment that is covered by the ith nested
inner loop,mIPCi is themIPC value of the ith nested inner
loop, and pIPCo is the pIPC value of the current loop.

Equation (1) holds true if all nested inner loops
performed well while multithreading. However, this equa-
tion does not account for the situation, where a nested inner
loop fails the mIPC " sIPC requirement. In this case, the
sIPC value of the inner loop will be used instead of the
mIPC value. Therefore, a more advanced form of the sIPC
metric is shown below:

sIPC ¼
X

i

!i $!i þ
!
1&

X

i

!i

"
$ pIPCo; ð2Þ

where

!i ¼
mIPCi; for mIPCi " pIPC;
sIPCi; for mIPCi < pIPC:

#

As can be seen, (2) exhibits a recursive pattern when an
inner loop needs its own sIPC value. Fortunately, based

on the definition of a loop presented in Section 2.1, inner
loops are always found and processed before any outer
loops, which means that the sIPCi value has already
been calculated before being needed in the outer loop’s
sIPC evaluation.

3 THE CASCADIA ARCHITECTURE

This section presents Cascadia, a multicore processor
capable of multigranular D-SpMT. Fig. 2a shows the
architectural diagram of Cascadia, which consists of a
Central Processing Element (CPE) and multiple Processing
Elements (PEs). Cascadia utilizes four major communication
buses as follows:

1. Control Bus,
2. Interthread data bus (ITBus),
3. Program Memory bus, and
4. Data Memory bus.

The bidirectional Control Bus facilitates communication
between the CPE and the individual PEs. Its main role is to
transmit commands and interthread register dependency
information (see Section 3.3.2).

The IT Bus facilitates communication between neighbor-
ing PEs in a ring network. The bulk of all register data is
transferred through this bus, one register element at a time,
and requires a 32-bit unidirectional data bus. In addition,
the IT Bus consists of a small bidirectional bus used to
transmit the requests and commands from neighboring PEs
along with the register address.

ZIER AND LEE: PERFORMANCE EVALUATION OF DYNAMIC SPECULATIVE MULTITHREADING WITH THE CASCADIA ARCHITECTURE 49

Fig. 1. (a) Example of a program flow with multiple nested loops embedded within functions, (b) the loop tree after function F4 completes, (c) the loop

tree after function F3 completes, and (d) the loop tree after function F2 completes.

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 7, 2009 at 19:55 from IEEE Xplore. Restrictions apply.

The Program Memory and Data Memory buses connect
each PE to the instruction and data cache, respectively. Each
cache is multiported and every PE has a direct connection to
a single port on the instruction and data caches. This shared
L1 cache scheme has been used on the SPARC Processor
[18] and allows each PE to have equal access to the caches
without conflict or complex cache prioritization mechan-
isms. The data cache contains a cache coherency module
that keeps track of speculative loads and alerts the PEs to
any interthread memory dependency violations. Cascadia
does not employ a mechanism to directly transfer memory
data from one PE to another, nor does Cascadia allow stores
from speculative threads to be written to memory.

3.1 Operating Modes

Cascadia has three modes of operation: 1) Normal, 2) Pre-
SpMT, and 3) SpMT. In the Normal mode, the program runs
sequentially on a single PE while the CPE monitors all
branch instructions to identify loop candidates for D-SpMT.

Once a loop is found and selected as a candidate,
Cascadia transitions to the Pre-SpMT mode. In this mode,
the program continues to execute on a single PE, but now
the TCIU and CPE gather information necessary for
SpMT, including interthread register dependency specula-
tion values, pIPC values, and initial calculations for the
sIPC value. The system stays in the Pre-SpMT mode for
the first three iterations of a loop so that loop strides can
be observed and confirmed, as well as gathers a more
accurate pIPC value for the loop. Our research shows that
three iterations are sufficient to gather the loop stride
information. Fewer iterations result in less accurate
register stride and pIPC values. Additional iterations
provide better pIPC values, but also increase the delay
from the time a loop is found to when it is multithreaded,
which reduces the amount of improvement from SpMT.

After Cascadia completes the prerequisite number of
iterations, it transitions to the SpMT mode where

subsequent iterations of the loop are spawned and
executed across all the PEs. While in the SpMT mode,
only the first, head PE is nonspeculative and holds the true
state of the system, while all other PEs are speculative and
will be squashed on a register value misprediction or an
interthread dependency violation. When this occurs, the
PE that caused the violation and all of its successor PEs
are squashed and respawned.

3.2 Processing Elements

An overview of a single PE is shown in Fig. 2b. A PE
consists of a single-issue processor, a pair of register files,
and various communication bus handlers. Register data are
transferred from one PE to another over the ITBus network.
The Outgoing ITBus Handler and Incoming ITBus Handler
handle all register data traffic to and from the PE as
illustrated in Figs. 2c and 2d, respectively. The role of the
ITBus is twofold. First, during all modes of operation, all
register writes within the nonspeculative head thread
propagate through the ITBus and are written to the shadow
register file on each PE. Also, during Normal mode, branch
data are propagated through the ITBus so that each PE
starts with the correct branch table history. Second, a request
command can be sent on the ITBus to read a register value
form a predecessor PE.

The CommandBus Handler (CBH) provides the necessary
routing logic and queues to communicate with the CPE. The
CBH handles squash and spawn requests, transmits and
receives register file utility bit information, and sends
branch information to the CPE.

Each PE has a pair of register files, one to maintain the
current state of the PE and another shadow register file that
maintains the current nonspeculative state. This pair of
register files is connected in a three-dimensional fashion
[19] so that when a thread is spawned on the PE, the register
data in the shadow register file can be copied to the register

50 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 1, JANUARY 2010

Fig. 2. Block diagram of the Cascadia architecture: (a) 4-PE system overview, (b) datapath for a single PE, (c) details of the outgoing ITBus handler,

and (d) details of the incoming ITBus handler.

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 7, 2009 at 19:55 from IEEE Xplore. Restrictions apply.

file in a single cycle. This allows each speculative PE to start
with the most up-to-date, nonspeculative state.

A Loop Stride Speculation Table (LSST) is connected to both
register files and calculates the strides for all integer
registers. A stride is calculated by finding the difference
from the current and previous register data. A stride is
considered good if two calculations of a stride match and
any future references to that register will have the stride
value added to the current register value. During the SpMT
mode, the strides are calculated from the register file as the
PE executes its thread, while during the Pre-SpMT mode,
the strides are calculated from the shadow register file. This
allows the LSST to match the nonspeculative state of the
head PE prior to the spawning of a thread.

Interthread register prediction occurs at two levels. In the
first level, a PE will request a register data through the
ITBus by sending a request to the Incoming ITBus Handler.
The predecessor PE will then receive the request in the
Outgoing ITBus and return the register data to the successor
PE. This register transfer requires a minimum of two cycles
to send the request and receive the data, but could take up
to 10 cycles or more depending on how full the respective
request queues are. In addition, the predecessor PE will
wait up to 30 cycles for the data to be written. If the data
have not been written within this time period, it will send
an invalid command back to the successor PE. At this point,
the PE will perform the second level interthread register
prediction by getting the immediate register data of the
nonspeculative head PE. Since the shadow register file
always has the current state of the nonspeculative head PE,
the register data are simply obtained from the shadow
register file.

3.3 Central Processing Element

The CPE consists of a multiple-issue, superscalar processor
core, the Thread Control and Initialization Unit (TCIU), and
the Central Control Bus Handler (CCBH). The processor core
runs a helper thread to manage the Loop Tree and contains
its own on-chip cache to store this information. The TCIU is
responsible for managing threads and handling interthread
register dependencies. Furthermore, the CCBH facilitates all
communication between the CPE and the PEs over the
Control Bus.

3.3.1 Helper Thread

The CPE executes a helper thread [20] that creates and
maintains the Loop Tree, stores loop performance indicators,
calculates the sIPC value, and ultimately decideswhether or
not a loop will be multithreaded. When Cascadia is in the
Normal mode, the CPE passively listens for a TPC:BPC pair
from a recently executed backward branching instruction or
a TPC:RPC pair from a function call. When a TPC:RPC pair is
detected, it is pushed onto to the Function Stack and used to
index into a particular node within the Loop Tree. When a
TPC:BPC pair is detected, one of the two following events
occurs: 1) if the pair is from a newly discovered loop, a new
entry is created and inserted in the Loop Tree or 2) if an entry
already exists for the loop, then the performance indicators
for the loop are retrieved and used to determine whether it
should be multithreaded again. In either case, the CPE alerts
the TCIU to begin themultithreading process and the system

transitions to the Pre-SpMT mode, where the CPE monitors
the number of instructions and cycles on the Head PE in
order to calculate the pIPC and sIPC for the loop.

Once Cascadia enters the SpMT mode, the CPE gathers
all committed instructions from both the nonspeculative
and speculative PEs to calculate the mIPC for the loop.
After a thread completes, the final sIPC value is calculated
using the heuristic discussed in Section 2.2 and compared
against the current mIPC value. If mIPC falls below sIPC,
then the CPE stops multithreading the loop and Cascadia
transitions back to the Normal mode.

3.3.2 Thread Control and Initialization Unit

The TCIU is responsible for squashing and spawning
threads, managing the modes of operation, and handling
interthread register dependencies. In order to start a thread,
a PE needs the following:

1. nonspeculative register data,
2. branch history data,
3. TPC:BPC pair, and
4. interthread register dependency information.

The register and branch history data are propagated to the
PEs from the nonspeculative head PE along the ITBus (see
Section 3.2). On the other hand, the TCIU sends both the
loop boundaries and dependency information to each PE
through the Control Bus. The interthread register depen-
dency information is represented as utility bits within the
TCIU and PE register files [2].

The TCIU will simultaneously send the TPC:BPC loop
data to all PEs when entering the Pre-SpMT mode. When
spawning a thread in the SpMT mode, the TCIU sends
dependency utility bits as a single vector to a PE requiring a
1-cycle delay. Threads are spawned in consecutive cycles to
allow for the nonspeculative register data to propagate
through the ITBus. When a thread completes, the PE will
send a retire signal to the TCIU along with the current
instruction and cycle counts. When the PE becomes the
nonspeculative head, the thread is retired and these counts
are sent to the CPE to calculate the sIPC value. Squashing a
thread requires the TCIU to send a squash command to the
appropriate threads.

4 PERFORMANCE EVALUATION

The performance evaluation of D-SpMT was done on a
cycle-accurate, execution-based simulator built on the
NetSim Architectural Simulator Suite [21]. The simulator
replicates the behavior of Cascadia as described in Section 3
using SimpleScalar’s PISA instruction set [22]. The config-
uration parameters used in the simulation study are listed
in Table 1. The parameters associated with the PEs and
cache structure were chosen to provide a comparative
analysis with closely related works [2], [9], [12], [15], [23].

A selection of benchmarks from SPEC CPU 2000 [24] and
MediaBench [25] were used in this evaluation. In order to
reduce the simulation time, the SPEC benchmark results
were based on the reduced data sets from MinneSPEC [26].
All benchmarks were compiled with SimpleScalar’s [22]
GCC PISA cross-compiler with -O2 optimizations and run
in their entirety to properly reflect their performance.

ZIER AND LEE: PERFORMANCE EVALUATION OF DYNAMIC SPECULATIVE MULTITHREADING WITH THE CASCADIA ARCHITECTURE 51

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 7, 2009 at 19:55 from IEEE Xplore. Restrictions apply.

Benchmarks from SPEC CPU 2000 (SPEC2000) and Media-
Bench that have a variety of parallelism and dynamic
behaviors and that could be compiled with the GCC PISA
cross-compiler were selected. Out of the SPEC2000 integer
benchmarks, 176.gcc was chosen because it exhibited
very dynamic behavior with little inherent parallelism.
181.mcf and 164.vpr are integer benchmarks with more
predictable parallelism, while 183.equake and 188.ammp

were selected as representatives of the two extremes in TLP
(parallel and dynamic, respectively) for the SPEC2000
floating-point benchmarks. Out of the MediaBench bench-
marks, MPEG2, DJPEG, and UNEPIC were used since they
represent the most popular types of multimedia programs.
EPIC exhibited a lot of TLP while both MESA and Pegwit

are two multimedia benchmarks that had little TLP.
Fig. 3 illustrates the overall performance for 2, 4, 8, and

16 PEs. The SPEC2000 results were rather mixed with an
average speedup of 1.01 with 2 PEs to 1.04 with 16 PEs. On
the other hand, the MediaBench benchmarks performed

well with an average speedup of 1.2 with 2 PEs to 1.75 with
16 PEs, with EPIC providing a speedup of more than 5 with
16 PEs. Removing the bias from EPIC, the MediaBench
benchmarks still fared well with an average speedup of 1.09
with 2 PEs to 1.2 with 16 PEs.

In general, Fig. 3 shows that there is a linear increase in
performance as the number of PEs increases. Yet these
trends have diminishing returns since the efficiency of each
PE decreases as the number of PEs increases. This is due to
the limited parallelism within the loops caused by inter-
thread register and memory dependencies rather than
Cascadia’s ability to perform multithreading. This is
illustrated by 181.mcf and EPIC, whose performance
scales well with the number of PEs.

4.1 Thread Characteristics

Fig. 4 shows a breakdown of all the unique loops and their
characteristics. A Good loop indicates a loop that was
speculatively multithreaded and resulted in a performance
gain. The remaining loops failed to provide performance
benefit for one of the following reasons: 1) an inner loop
showed to have better performance, Bad Nested, 2) the loop
failed to have a performance gain, Bad sIPC, or 3) the
loop lacked sufficient iterations to complete the Pre-SpMT
phase of Cascadia, Pre-SpMT. On average, about 25-
30 percent of loops from SPEC2000 and 35-42 percent of
loops fromMediaBench proved to be beneficial for D-SpMT.
The percentage of Pre-SpMT loops remains the same for all
configurations, since this depends only on the compiled code
and data set. The overall performance is ultimately limited
by the percentage of Bad Nested and Bad sIPC. On average,
5 percent of all loops was marked as being Bad Nested. The
average percentage of loops with Bad IPC starts around
28 percent for SPEC2000 and 32 percent for MediaBench and
decreases as the number of PEs increases.

Fig. 4 shows that the MediaBench benchmarks have a
higher percentage of Good loops. However, the high
percentage of good loops does not necessarily guarantee
an overall performance gain. For example, approximately
30 percent of all loops within 188.ammp were good, yet the
overall performance was negligible. This was also the case
for MESA, even though more than half of its loops were
considered favorable.

52 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 1, JANUARY 2010

TABLE 1
Cascadia Simulation Parameters

Fig. 3. Overall performance gains as function of number of PEs.

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 7, 2009 at 19:55 from IEEE Xplore. Restrictions apply.

The low performance exhibited by many of the bench-
marks in Fig. 3 is due to the fact that they have far too many
code segments that cannot be multithreaded by D-SpMT.
This subsequently increases the sequential portion of a
benchmark and does not properly illustrate Cascadia’s
ability to perform D-SpMT. Therefore, Fig. 5 shows the
speedup achieved only in the SpMT mode. These values
were obtained by weighing the pIPC and mIPC values for
each loop against the total number of instructions executed
for that loop while in the SpMT mode. This resulted in an
average speedup of 1.25 with 2 PEs to 2.0 with 16 PEs for
the SPEC2000 benchmarks, while MediaBench had speedup
of 1.5 with 2 PEs to 3.9 with 16 PEs. Even very hard to
multithread programs such as 176.gcc achieved a good
performance with an average speedup of 1.1 with 2 PEs and
1.6 with 16 PEs.

Fig. 5 shows that Cascadia does a good job performing
D-SpMT and it is the sequential portions of the bench-
marks that limit the overall performance gains. Therefore,
given more parallel applications and larger data sets, the
overall performance of Cascadia would reflect the poten-
tial gains shown in Fig. 5. EPIC is an excellent example
that shows the performance potential of Cascadia from
large parallel programs.

Table 2 shows the number of unique loops found (#Lps),
the average thread size (Thread Size), and the average
number of threads per loop execution (#Threads/Loop). The
average thread size corresponds to the average number of

instructions per iteration, whereas the average number of
threads per loop corresponds to the number of threads
spawned from each instance of a loop. Programs such as
EPIC and UNEPIC have both large thread sizes and a large
number of threads per loop. Some benchmarks, such as
MESA, contain loops with many iterations, but have small
thread sizes. In contrast, 176.gcc has large sized threads,
but simply not enough threads per loop.

Table 2 also includes the number of nodes in the
dynamically generated Loop Tree (#Nds), the average

ZIER AND LEE: PERFORMANCE EVALUATION OF DYNAMIC SPECULATIVE MULTITHREADING WITH THE CASCADIA ARCHITECTURE 53

Fig. 4. A breakdown of unique loops.

Fig. 5. Performance of Cascadia only in SpMT mode.

TABLE 2
Loop Statistics

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 7, 2009 at 19:55 from IEEE Xplore. Restrictions apply.

nested level (Ave. NL), and the maximum nested level (Max.
NL). These loop trees are larger compared to loop trees
presented in [3] and [27], which were constructed statically
from the source codes. Several reasons can be attributed to a
larger loop tree including compiling to a different ISA or
using different data sets, but the main reason has to do with
the way Cascadia dynamically detects loops. Cascadia
propagates nested loop status through function calls, which
leads to a loop tree containing more loop nodes and deeper
nested levels. This allows Cascadia to more accurately
predict the correct loop level to multithread resulting in an
optimal performance.

4.2 Thread-Level Granularity Comparison

Choosing the proper granularity of threads is crucial for
maintaining an optimal performance, not only in D-SpMT
but also parallel processing in general. As such, both coarse-
grain threads extracted from outermost loops and fine-grain
threads extracted from inner loops have advantages and
disadvantages. Many SpMT methods either exploit only
coarse-grain [1], [4], [10], [11] or fine-grain threads [3], [8],
[12] and ignore the performance potential of the other. The
main advantage of Cascadia over other SpMT architectures
is the ability to exploit multigrain threads. Thus, this section
compares the multigrained performance against both
coarse- and fine-grain methods. Fig. 6 shows the relative
performance of the multigrain approach versus fine-grain
and coarse-grain methods on a 4-PE Cascadia system.

In general, coarse-grain threads result in better perfor-
mance compared to fine-grain threads. Disregarding
181.mcf, the multigrain method improves performance
of SPEC2000 by only an average of 0.2 percent over both
coarse-grain and fine-grain. In fact, the difference in all
three methods varies by no more than 1.5 percent, meaning
that all three methods are comparable when multithreading
benchmarks from SPEC2000. 181.mcf performs better with
both fine- and coarse-grain methods as it contains several
doubly nested loops, where both inner- and outer loops
perform well. In contrast, Cascadia went from an inner loop
back to an outer loop and lost performance from reentering
the Pre-SpMT phase on the outer loop.

On the other hand, the multigrained method is clearly
superior when benchmarks are well structured with lots of
good loops. On average, the multigrained method increases

performance of MediaBench by 4.2 percent over coarse-
grain and 14.3 percent over fine-grain. MPEG2, EPIC, and
Pegwit all have loop structures with multiple levels of
good performing loops, resulting in a combined average
performance increase of 8 percent over coarse-grain and
26.6 percent over fine-grain. These results clearly demon-
strate that different loop levels, at different times, perform
well, thus, illustrating the importance of choosing the
correct nested loop level.

4.3 Thread Performance

Fig. 7 illustrates the percentage of cycles spent in each of the
three multithreading modes. No increase in performance is
possible when the system is in the Normal mode. The time
spent in the Pre-SpMT mode also does not provide any
performance increase since the system is gathering the
necessary information to perform multithreading. SpMT is
the only mode that provides performance improvement. On
average, the SPEC2000 benchmarks spend approximately
10 percent of the time in the SpMT mode, while the
MediaBench benchmarks fared much better at approxi-
mately 35 percent.

Fig. 8 illustrates the quality of the loops being multi-
threaded by showing a breakdown of all spawned threads
while in the SpMT mode. Fig. 8 labels all successfully
completed threads as Good and categorizes the remainder of
the threads into the reasons why they were misspeculated.
The first group of misspeculations is due to interthread
register dependency violations, which have been further
separated into three categories: 1) first-level dependency
misspeculation (ITDep1L), 2) second-level dependency mis-
speculation (ITDep2L), and 3) failing to initially detect a
dependency at all (ITDep). Other squashes are caused by
threads that either fail the sIPC test (sIPC), which forces the
system to spawn an inner loop, violate a memory depen-
dency (Load), or misspeculate a register stride value (Stride).

Fig. 8 shows that misspeculations from both Stride and
sIPC account for only 0.7 and 0.2 percent of the threads
within SPEC2000 and MediaBench, respectively, which
means that Cascadia properly predicts interthread register
strides and nested loop levels. The majority of squashed
threads are attributed to misspeculated interthread register
and memory dependencies with an average squash rate of
48.8 and 26.4 percent for SPEC2000 and MediaBench,

54 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 1, JANUARY 2010

Fig. 6. Granularity performance relative to the multigrain speedup on a 4-PE Cascadia system.

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 7, 2009 at 19:55 from IEEE Xplore. Restrictions apply.

respectively. First-level interthread register dependency
misspeculations represent the largest share with an average
miss rate of 38.7 and 9.2 percent for SPEC2000 and
MediaBench, respectively. The higher rate of misspecula-
tion for SPEC2000 is expected since the majority of their
loops are very dynamic and hard to predict.

MediaBench benchmarks suffered more from interthread
memory dependency violations with 19.9 percent of threads
squashed from misspeculated loads, while SPEC2000 only
had an average rate of 12.9 percent. Currently, Cascadia
does not forward or predict memory loads between threads
and relies on the Coherency Module to detect interthread
memory dependency violations. As such, programs that are

memory intensive, including 183.equake, 176.gcc,
EPIC, MESA, and Pegwit, account for over 20 percent of
misspeculations, with Pegwit having the highest average
rate of 56.7 percent.

Figs. 9 and 10 further examine the accuracy of first- and
second-level interthread register dependency predictions,
respectively. First-level predictions provide an average
accuracy of 72 percent with 2 PEs to 83 percent with 16 PEs
for SPEC2000 and 92.4 percent with 2 PEs to 94.2 percent
with 16 PEs for MediaBench. The SPEC2000 benchmarks are
less accurate since most of the loops contain very hard to
predict data dependencies. In contrast, second-level predic-
tions are highly accurate with an average rate of 99.5 percent

ZIER AND LEE: PERFORMANCE EVALUATION OF DYNAMIC SPECULATIVE MULTITHREADING WITH THE CASCADIA ARCHITECTURE 55

Fig. 8. A breakdown of all spawned threads, including whether the thread completed or squashed.

Fig. 7. A breakdown of the amount of cycles spent in each of the Cascadia modes.

Fig. 9. First-level interthread register prediction accuracy.

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 7, 2009 at 19:55 from IEEE Xplore. Restrictions apply.

with 2 PEs to 99.9 percent with 16 PEs. The reason that
second-level prediction accuracy is so high is because the
data are read from the nonspeculative head PE. In general,
this PE is much farther along in the iteration than any
successor PE, so the register data are more likely to be
available and accurate.

4.4 Ideal Interthread Dependency Predictions

This section explores the performance potential of Cascadia
through various idealized implementations that eliminate
interthread dependency misspeculations. Fig. 11 shows the
performance gains on a 4-PE system based on the following
ideal prediction mechanisms: 1) Ideally predict all inter-
thread register dependencies, Register, 2) ideally predict all
interthread memory load dependencies while allowing
stores to write to memory from speculative PEs, Memory,
and 3) ideally predict both register and memory depen-
dencies, Ideal. The gains in Fig. 11 are normalized to a
nonideal, 4-PE configuration.

The ideal interthread register dependency prediction
(Register) had the least impact with an average performance
improvement of only 1.5 percent for MediaBench, while
SPEC2000 lost about 0.2 percent performance. This shows
that Cascadia’s two-level interthread register dependency
prediction scheme (see Section 3.2) is quite effective. The
loss in performance from the ideal Register case in 181.mcf

and EPIC due to the overhead in the loop selection
algorithm and the way the sIPC metric is calculated. This

is because when the ideal interthread register dependency
prediction is applied, a speculative thread knows exactly
when to read interthread dependent register data and will
stall until the dependency is met. This, in turn, reduces the
total number of speculatively committed instructions,
decreasing the mIPC value for that loop, ultimately
marking the loop as Bad sIPC. If the loop is an inner loop,
for example, the CPE will select the outer loop for
multithreading on the next iteration of the outer loop. This
sudden shift back to an outer loop forces Cascadia back into
the Pre-SpMT mode for three iterations of the outer loop
during which there is no performance gain.

In contrast, correctly handling interthread memory
dependencies (Memory) has a greater potential to increase
performance with an average improvement of 4.3 percent
for SPEC2000 and 6 percent for MediaBench. The greatest
potential performance gain occurs when threads no longer
have to stall from speculative store instructions coupled
with the ability to predict interthread memory loads. In this
manner, memory operations for each PE can occur fairly
independently from each other, regardless of whether the
PE is speculative or not.

The combined set of ideal predictions (Ideal) increases the
performance by an average of 9 percent for SPEC2000 and
8.8 percent for MediaBench. It is interesting to note that the
overall Ideal performance for SPEC2000 and MediaBench is
actually greater than the sums of the Register and Memory.
The reason for this is that although the interthread

56 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 1, JANUARY 2010

Fig. 10. Second-level interthread register prediction accuracy.

Fig. 11. Performance gains with ideal interthread dependencies on a 4-PE system.

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 7, 2009 at 19:55 from IEEE Xplore. Restrictions apply.

dependency prediction is ideal, the loop selection mechan-
ism is not. Cascadia still relies on the sIPC metric to
determine the correct loop to multithread, and by combin-
ing both Register and Memory conditions, Cascadia finds
loops that would otherwise have been ignored. These new
loops achieve a much greater performance with Ideal than
with just Register or Memory alone.

5 RELATED WORK

The earliest study on the characteristics of dynamic loops
was presented in [14]. Since then, there have been a number
of studies that specifically exploit TLP through loops [3],
[27], [28], [29], [30]. There also have been studies that build
control flow graphs (CFG) or similar data structures to
organize unpredictable loops into simple code segments [4],
[5], [10], [16]. Other studies have looked into TLS-driven,
parallelizing compilers that define several novel ways to
statically select loops [31], [32], [33]. In contrast to CFG,
which can only be created and analyzed statically, Cascadia
constructs a loop tree dynamically with regards to function
calls and uses an sIPC metric to determine thread
spawning points at runtime.

The majority of multithreaded architectures are static in
nature and require ISA extensions and/or compiler support,
including Multiscalar [10], Inthreads [8], and Implicitly Multi-
threaded Processors [23]. Recent contributions includeMultiple
Instruction Stream Processor [34], which uses a combination of
OS and user-level sequencers to maximize multithreaded
performance on an asymmetric multicore, and Global Multi-
threaded Scheduling [16], which simultaneously schedules
different code blocks instead of the traditional linear multi-
threaded scheduling scheme. Other works extract TLP using
an acyclic software pipeliningmethod and includeDecoupled
Software Pipelining [35], Source Code Annotations [6], and CorD
[7]. Although each of these methods demonstrates improve-
ments through exploiting TLP, only the code segments
chosen prior to running the program can be multithreaded.
This eliminates the possibility of extracting TLP from other
code segments thatmay produce good performance gains for
certain data sets. In contrast, Cascadia adapts to a programby
dynamically speculating threads in order to maximize the
TLPperformance for anygivendata set. In addition,Cascadia
is completely backward compatible since it does not require
any changes to the existing ISA or help from the OS.

The two earliest representative D-SpMT architectures are
Dynamic Multithreading (DMT) [11] and Speculative Multi-
threaded Processors (SMPs) [36]. DMT used several innovative
techniques to exploit TLP from loop continuations and
procedures including the use of dataflow and data value
predictions to ease the limitations of register and memory
dependencies. DMT used a modified SMT architecture and
was an early foundation for our work. Unfortunately, the
methodology used to exploit threads limited multithreading
to large, coarse-grain threads,which excluded exploitation of
a potentially high degree of parallelism that exists across
inner loop iterations. In contrast, SMP used a chip multi-
processor and relied on smaller threads tominimize the effect
of interthread register dependencies. SMP introduced novel
methods to detect loops and dependencies through special
caches and lookup tables. Dynamic Simultaneous Multithread-
ing (DSMT) [2] provided the capability to spawn threads at

multiple levels of granularity by expanding on DMT and
SMP. DSMT used an architecture similar to DMT and further
refined SMP loop detection and dependency resolution to
simpler tables and utility bits. In addition, DSMT introduced
the concept of using IPC values to select nested loop values.
Cascadia further extends the work of DMT, SMP, and DSMT
by incorporating a more thorough loop structure for a wider
rangeof comparisonandansIPCmetric thathandlesmultiple
multinested loops based on loop sizes, IPC, and prior loop
status. Cascadia also moves beyond a simple SMT architec-
ture by modeling a multicore design. Although a direct
comparisonofCascadia to theprevious threeworkswouldbe
interesting, the differences are sufficient enough that making
a direct comparison is impractical.

Other D-SpMT techniques include Clustered Speculative
Multithreaded Processor (CSMP) [12], [15] and the Polyflow
Processor [37]. CSMP divided the multithreading workload
over multiple, self-contained threading units and extracted
fine-grain threads from small, inner loop iterations. This
requires very little hardware to handle interthread register
dependencies, but also limits the amount of TLP since small
fine-grain threads seldom contain enough speculative
instructions for a large performance gain. In addition, the
simulation study of CSMP was performed using truncated
benchmarks and ignored large code segments that are
difficult to multithread, which lead to idealized perfor-
mance results. In contrast, Cascadia ran every benchmark,
from start to finish, in order to demonstrate its performance
over the whole program space.

The work that is closest to Cascadia, in the sense that it
has the ability to perform multigranular threading on a
multicore architecture, is Pinot [9]. Threads are generated
from loop boundaries, function returns, and code segments
and require only a minimal amount of additional hardware.
Interthread register data are transferred through a unidirec-
tional ring network and are similar to our proposed ITBus.
Although Pinot has shown to improve the overall perfor-
mance of many benchmarks, it does so at the cost of
extending the ISA and requiring several modifications to
the Operating System in order to support Versioning Cache
[38]. In addition, Pinot does not exploit the dynamic
characteristics of loops. Cascadia substitutes ISA extensions
and compiler support with additional hardware support to
dynamically speculate loop iterations for multithreading.

6 FUTURE WORK

Although results for Cascadia show a lot of promise, there
are still some areas that can be improved upon. The two-
level interthread register dependency predictors have
shown to be fairly accurate, but mispredictions account
for as much as 7.5 percent loss in performance for some
benchmarks. New techniques for predicting interthread
register dependencies, such as critical path detection or a
branch prediction table, can reduce this loss.

Currently, Cascadia does not exploit any Memory Level
Parallelism (MLP). Section 4.4 showed that performance can
be improved by predicting interthread memory dependen-
cies and speculatively writing to memory. Therefore, a
technique needs to be developed that supports MLP similar
to Versioning Cache [38], Transactional Memory [39], and/or

ZIER AND LEE: PERFORMANCE EVALUATION OF DYNAMIC SPECULATIVE MULTITHREADING WITH THE CASCADIA ARCHITECTURE 57

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 7, 2009 at 19:55 from IEEE Xplore. Restrictions apply.

ARB [40]. It may also be possible to use a two-level prediction
mechanism similar to the interthread register dependency
predictors to predict interthread memory dependencies.

Another area that would increase the practicality of
Cascadia is to eliminate altogether the need for the CPE and
TCIU. The idea would be to attach helper threads [20] to a
program to facilitate the thread creation and management.
This would reduce the amount of additional hardware
required, but will increase the thread spawning overhead.

7 CONCLUSION

This paper introduced Cascadia, a multicore architecture
capable of multigranular D-SpMT. Cascadia has the unique
ability to dynamically exploit multigrain threads by utiliz-
ing a loop tree that properly reflects the relationships
among nested loops through procedure calls. This allows
the most beneficial loops within the loop tree to be selected
for multithreading based on a sustainable IPC (sIPC) metric.
Our studies show that Cascadia improves the performance
with average speedups of 1.02 with 2 PEs to 1.03 with
16 PEs on selected benchmarks from SPEC CPU 2000, while
selected benchmarks from MediaBench show average
speedups of 1.2 with 2 PEs to 2.5 with 16 PEs. The
MediaBench benchmark, EPIC, demonstrated the best
performance with a speedup of over 5 on 16 PEs. Our
study also shows that the performance of multigrained
multithreading is comparable to both coarse- and fine-grain
multithreading for programs in SPEC CPU 2000, but for the
large, well-structured programs in MediaBench, multigrain
out-performed coarse-grain methods by 8 percent and over
14 percent for fine-grain methods. Finally, Cascadia’s
performance can be increased by as much 9 percent on a
4-PE system by improving both interthread register and
memory dependency speculations.

REFERENCES

[1] J.T. Oplinger, D.L. Heine, and M.S. Lam, “In Search of Speculative
Thread-Level Parallelism,” Proc. Int’l Conf. Parallel Architectures
and Compilation Techniques, pp. 303-313, Oct. 1999.

[2] D. Ortiz-Arroyo and B. Lee, “Dynamic Simultaneous Multi-
threaded Architecture,” Proc. 16th Int’l Conf. Parallel and Dis-
tributed Computing Systems, Aug. 2003.

[3] J. Tubella and A. González, “Control Speculation in Multithreaded
Processors through Dynamic Loop Detection,” Proc. Fourth Int’l
Symp. High-Performance Computer Architecture, Feb. 1998.

[4] S. Balakrishnan and G.S. Sohi, “Program Demultiplexing: Data-
Flow Based Speculative Parallelization of Methods in Sequential
Programs,” Proc. 33rd Ann. Int’l Symp. Computer Architecture,
pp. 302-313, June 2006.

[5] J.D. Collins, D.M. Tullsen, and H. Wang, “Control Flow
Optimization via Dynamic Reconvergence Prediction,” Proc. 37th
Ann. IEEE/ACM Int’l Symp. Microarchitecture, pp. 129-140, Dec.
2004.

[6] M.J. Bridges, N. Vachharajani, Y. Zhang, T. Jablin, and D.I.
August, “Revisiting the Sequential Programming Model for Multi-
Core,” Proc. 40th IEEE/ACM Int’l Symp. Microarchitecture (MICRO),
pp. 69-84, Dec. 2007.

[7] C. Tian, M. Feng, V. Nagarajan, and R. Gupta, “Copy or Discard
Execution Model for Speculative Parallelization on Multicores,”
Proc. 41st Int’l IEEE/ACM Symp. Microarchitecture, pp. 300-341,
Nov. 2008.

[8] A. Gontmakher, A. Mendelson, A. Schuster, and G. Shklover,
“Speculative Synchronization and Thread Management for Fine
Granularity Threads,” Proc. 12th Int’l Symp. High-Performance
Computer Architecture, pp. 278-287, Feb. 2006.

[9] T. Ohsawa et al. “Pinot: Speculative Multi-Threading Processor
Architecture Exploiting Parallelism over a Wide Range of
Granularities,” Proc. 38th Ann. IEEE/ACM Int’l Symp. Microarch-
itecture, pp. 81-92, Nov. 2005.

[10] G.S. Sohi, S.E. Breach, and T.N. Vijaykumar, “Multiscalar
Processors,” Proc. 22nd Ann. Int’l Symp. Computer Architecture,
pp. 414-425, June 1995.

[11] H. Akkary and M.A. Driscoll, “A Dynamic Multithreading
Processor,” Proc. 31st Ann. Int’l Symp. Microarchitecture, pp. 226-
236, Dec. 1998.

[12] P. Marcuello and A. González, “Clustered Speculative Multi-
threaded Processors,” Proc. 13th Int’l Conf. Supercomputing,
pp. 365-372, 1999.

[13] A. Kejariwal et al. “On the Performance Potential of Different
Types of Speculative Thread-Level Parallelism,” Proc. 20th Ann.
Int’l Conf. Supercomputing, 2006.

[14] M. Kobayashi, “Dynamic Characteristics of Loops,” IEEE Trans.
Computers, vol. 33, no. 2, pp. 125-132, Feb. 1984.

[15] P. Marcuello and A. González, “Thread-Spawning Schemes for
Speculative Multithreading,” Proc. Eighth Int’l Symp. High-Perfor-
mance Computer Architecture, Feb. 2002.

[16] G. Ottoni and D.I. August, “Global Multi-Threaded Instructions
Scheduling,” Proc. 40th IEEE/ACM Int’l Symp. Microarchitecture,
Dec. 2007.

[17] C.G. Quiñones et al. “Mitosis Compiler: An Infrastructure for
Speculative Threading Based on Pre-Computation Slices,” Proc.
2005 ACM SIGPLAN Conf. Programming Language Design and
Implementation, pp. 269-279, 2005.

[18] M. Tremblay and S. Chaudhry, “A Third-Generation 65 nm 16-
Core 32-Thread Plus 32-Scout-Thread CMT SPARC Processor,”
Proc. IEEE Int’l Solid-State Circuits Conf., vol. 51, pp. 82-83, Feb.
2008.

[19] M. Tremblay, B. Joy, and K. Shin, “A Three Dimensional Register
File for Superscalar Processors,” Proc. 28th Hawaii Int’l Conf.
System Sciences, 1995.

[20] J. Lu et al. “Dynamic Helper Threaded Prefetching on the Sun
UltraSPARC CMP Processor,” Proc. 38th Ann. IEEE/ACM Int’l
Symp. Microarchitecture, pp. 93-104, Nov. 2005.

[21] D.A. Zier, J.A. Nelson, and B. Lee, “NetSim: An Object-Oriented
Architectural Simulator Suite,” Proc. Int’l Conf. Computer Design,
June 2005.

[22] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An Infra-
structure for Computer System Modeling,” Computer, vol. 35,
no. 2, pp. 59-67, Feb. 2002.

[23] I. Park, B. Falsafi, and T.N. Vijaykumar, “Implicitly-Multithreaded
Processors,” Proc. 30th Ann. Int’l Symp. Computer Architecture,
pp. 39-51, June 2003.

[24] J.L. Henning, “SPEC CPU2000: Measuring CPU Performance in
the New Millinnium,” Computer, vol. 33, no. 7, pp. 28-35, July
2000.

[25] C. Lee, M. Potkonjak, andW.H. Mangione-Smith, “MediaBench: A
Tool for Evaluating and Synthesizing Multimedia and Commu-
nication Systems,” Proc. IEEE Int’l Symp. Microarchitecture, pp. 330-
335, 1997.

[26] A. KleinOsowski and D.J. Lilja, “MinneSPEC: A New SPEC
Benchmark Workload for Simulation-Based Computer Architec-
ture Research,” IEEE Computer Architecture Letters, vol. 1, p. 7,
June 2002.

[27] M.R. de Alba and D.R. Kaeli, “Characterization and Evaluation of
Hardware Loop Unrolling,” Proc. First Boston Area Architecture
Conf., Jan. 2003.

[28] L. Hammond, M. Willey, and K. Olukotun, “Data Speculation
Support for a Chip Multiprocessor,” Proc. Eighth Int’l Conf.
Architectural Support for Programming Languages and Operating
Systems, pp. 58-69, Oct. 1998.

[29] D. Puppin and D. Tullsen, “Maximizing TLP with Loop-
Parallelization on SMT,” Proc. Workshop Multithreaded Execution,
Architecture, and Compilation, 2001.

[30] J.-Y. Tsai and P.-C. Yew, “The Superthreaded Architecture:
Thread Pipelining with Run-Time Data Dependence Checking
and Control Speculation,” Proc. 1996 Conf. Parallel Architectures and
Compilation Techniques, Oct. 1996.

[31] Z.-H. Du, C.-C. Lim, X.-F. Li, C. Yang, Q. Zhao, and T.-F. Ngai, “A
Cost-Driven Compilation Framework for Speculative Paralleliza-
tion of Sequential Programs,” Proc. ACM SIGPLAN 2004 Conf.
Programming Language Design and Implementation, pp. 71-81, 2004.

58 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 1, JANUARY 2010

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 7, 2009 at 19:55 from IEEE Xplore. Restrictions apply.

[32] W. Liu, J. Tuck, L. Ceze, W. Ahn, K. Strauss, J. Renau, and J.
Torrellas, “Posh: A TLS Compiler That Exploits Program
Structure,” Proc. 11th ACM SIGPLAN Symp. Principles and Practice
of Parallel Programming, pp. 158-167, 2006.

[33] S. Wang, X. Dai, K.S. Yellajyosula, A. Zhai, and P.-C. Yew, “Loop
Selection for Thread Level Speculation,” Proc. 18th Ann. Workshop
Languages and Compilers for Parallel Computing, pp. 289-303, 2005.

[34] R.A. Hankins, G.N. Chinya, J.D. Collins, P.H. Wang, R. Rakvic, H.
Wang, and J.P. Shen, “Multiple Instruction Stream Processor,”
Proc. 33rd Ann. Int’l Symp. Computer Architecture, pp. 114-127, June
2006.

[35] G. Ottoni et al. “From Sequential Programs to Concurrent
Threads,” IEEE Computer Architecture Letters, vol. 5, no. 1, Jan.
2006.

[36] P. Marcuello, A. González, and J. Tubella, “Speculative Multi-
threaded Processors,” Proc. 12th Int’l Conf. Supercomputing, pp. 77-
84, 1998.

[37] T.M. Rafacz, “Spawn Point Prediction for a Polyflow Processor,”
master’s thesis, Univ. of Illinois at Urbana Champaign, 2005.

[38] T.N. Vijaykumar, S. Gopal, J.E. Smith, and G. Sohi, “Speculative
Versioning Cache,” IEEE Trans. Parallel Distributive Systems,
vol. 12, no. 12, pp. 1305-1317, Dec. 2001.

[39] J. Chung et al. “The Common Case Transactional Behavior of
Multithreaded Programs,” Proc. 12th Ann. Int’l Symp. High-
Performance Computer Architecture, pp. 266-277, 2006.

[40] M. Franklin and G.S. Sohi, “ARB: A Hardware Mechanism for
Dynamic Reordering of Memory References,” IEEE Trans.
Computers, vol. 45, no. 5, pp. 552-571, May 1996.

David A. Zier received the BS, MS, and PhD
degrees in electrical and computer engineering
from the School of Electrical Engineering and
Computer Science at Oregon State University,
Corvallis, in 2002, 2004, and 2009, respec-
tively. He is currently a hardware architect for
the NVIDIA Corporation. His research interests
include multithreading and thread-level spec-
ulation, computer architecture, embedded sys-
tems, computer graphics, and cryptography. He

is a member of the IEEE and the IEEE Computer Society.

Ben Lee received the BE degree in electrical
engineering in 1984 from the Department of
Electrical Engineering at the State University of
New York (SUNY) at Stony Brook and the PhD
degree in computer engineering in 1991 from the
Department of Electrical and Computer Engi-
neering at the Pennsylvania State University. He
is currently a faculty member in the School of
Electrical Engineering and Computer Science at
Oregon State University. He has published more

than 80 conference proceedings, book chapters, and journal articles in
the areas of embedded systems, computer architecture, multithreading
and thread-level speculation, parallel and distributed systems, and
wireless networks. He received the Loyd Carter Award for Outstanding
and Inspirational Teaching and the Alumni Professor Award for
Outstanding Contribution to the College and the University from the
OSU College of Engineering in 1994 and 2005, respectively. He also
received the HKN Innovative Teaching Award from Eta Kappa Nu,
School of Electrical Engineering and Computer Science in 2008. He has
been on the program and organizing committees for numerous
international conferences, including the 2000 International Conference
on Parallel Architecture and Compilation Technique (PACT), the 2001
and the 2004 IEEE Pacific Rim Dependable Computing Conference
(PRDC), the 2003 International Conference on Parallel and Distributed
Computing Systems (PDCS), the 2005-2008 IEEE Workshop on
Pervasive Wireless Networking (PWN), and the 2009 IEEE International
Conference on Pervasive Computing and Communications. He is
currently the workshop chair for PerCom 2009. He was also an invited
speaker at the 2007 International Conference on Embedded Software
and System. His research interests include multithreading and thread-
level speculation, computer architecture, embedded systems, and
wireless networks. He is a member of the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ZIER AND LEE: PERFORMANCE EVALUATION OF DYNAMIC SPECULATIVE MULTITHREADING WITH THE CASCADIA ARCHITECTURE 59

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on December 7, 2009 at 19:55 from IEEE Xplore. Restrictions apply.

