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Abstract. This paper presents a performance study of UDP/IP, TCP/IP, and M-VIA using Linux/SimOS. Linux/SimOS is a Linux operating
system port to a complete machine simulator SimOS. A complete machine simulator includes all the system components, such as CPU, memory,
I/O devices, etc., and models them in sufficient detail to run an operating system. Therefore, a real program execution environment can be set up
on the simulator to perform detailed system evaluation in a non-intrusive manner. The motivation for Linux/SimOS is to alleviate the limitations
of SimOS (and its variants), which only support proprietary operating systems. Therefore, the availability of the popular Linux operating system
for a complete machine simulator will make it an extremely effective and flexible simulation environment for studying all aspects of computer
system performance, especially evaluating communication protocols and network interfaces. The contributions made in this paper are two-fold:
First, the major modifications that were necessary to run Linux on SimOS are described. These modifications are specific to SimOS I/O device
models and thus any future operating system porting efforts to SimOS will experience similar challenges. Second, a detailed analysis of UDP/IP,
TCP/IP, and M-VIA is performed to demonstrate the capabilities of Linux/SimOS. The simulation study shows that Linux/SimOS is capable
of capturing all aspects communication performance, including the effects of the kernel, device driver, and network interface.

Keywords: SimOS, complete system simulation, Linux, instruction set simulators, UDP/IP, TCP/IP, M-VIA

1. Introduction

The growing demand for high-performance communication on System Area Networks (SANs) has led to signif-
icant research efforts towards low-latency communication protocols, such as Virtual Interface Architecture (VIA)
[10] and InfiniBand Architecture (IBA) [11]. Before these protocols can become established, they need to be ac-
curately evaluated to understand how they perform and identify key bottlenecks. However, detailed performance
analysis of network protocols is often difficult due to their complexity. This is because communication perfor-
mance is dependent not only on the processor speed but also on the communication protocols and their interaction
with the kernel, device driver, and network interface. Therefore, these interactions must be properly captured to
evaluate the protocols and to improve on them.

1A shorter version of this paper appears in The 2002 International Conference on Parallel Processing (ICPP-02), August 18–21, Vancouver,
BC, 2002.
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The evaluation of communication performance has traditionally been done using instrumentation [3], where data
collection codes are inserted to a target program to measure the execution time. However, instrumentation has three
major disadvantages. First, data collection is limited to the hardware and software components that are visible to the
instrumentation code, potentially excluding detailed hardware information or operating system behavior. Second,
instrumentation codes interfere with the dynamic system behavior. That is, event occurrences in a communication
system are often time-dependent, and the intrusive nature of instrumentation can perturb the system being studied.
Third, instrumentation cannot be used to evaluate new features or a system component that does not yet exist.

The alternative to instrumentation is to perform simulations [1,4,6,13,14]. At the core of these simulation tools
is an instruction set simulator capable of tracing the cycle-level interactions between hardware and software. How-
ever, they are suitable for evaluating general application programs whose performance depends only on processor
speed, not communication speed. That is, these simulators only simulate portions of the system hardware and thus
are unable to capture the complete behavior of a communication system.

On the other hand, a complete machine simulation environment [2,3] removes these deficiencies. A complete
machine simulator includes all the system components, such as CPU, memory, I/O devices, etc., and models them
in sufficient detail to run an operating system. Therefore, a real program execution environment can be set up on
the simulator to perform system evaluation in a non-intrusive manner. Another advantage of a complete system
simulation is that system evaluations do not depend on the availability of the actual hardware. For example, a new
network interface can be prototyped by replacing the existing model with the new model.

Based on the aforementioned discussion, this paper presents a performance analysis of network protocols
UDP/IP, TCP/IP, and M-VIA using Linux/SimOS. Linux/SimOS is a Linux operating system port to a complete
machine simulator SimOS [3]. The development of Linux/SimOS was motivated by the fact that the current ver-
sion of SimOS only supports the proprietary SGI IRIX operating system. Therefore, the availability of popular
Linux operating system for a complete machine simulator will make it an extremely effective and flexible simula-
tion environment for studying all aspects of computer system performance, especially evaluating communication
protocols and network interfaces. The contributions made in this paper are two-fold: First, the major modifications
that were necessary to run Linux on SimOS are described. These modifications are specific to SimOS I/O device
models and thus any future operating system porting efforts to SimOS will experience similar challenges. Second,
a detailed analysis of UDP/IP, TCP/IP, and M-VIA protocols is performed, which clearly show the advantage of
using Linux/SimOS. Linux/SimOS is capable of capturing all aspects communication performance that includes
the effects of the kernel, device driver, and network interface. These results help understand how the protocols
work, identify key areas of interests, and suggest possible opportunities for improvement not only in the protocol
stack but also in terms of hardware support.

The rest of the paper is organized as follows. Section 2 presents the related work. Section 3 discusses the
Linux/SimOS environment and the major modifications that were necessary to port Linux to SimOS. The dis-
cussion also includes the changes required to run M-VIA, which is an implementation of the Virtual Interface
Architecture for Linux, on Linux/SimOS. Section 4 presents the simulation study of UDP/IP, TCP/IP, and M-VIA.
Section 5 concludes the paper and discusses some future work.

2. Related work

There exist a number of simulation tools that contain detailed models of today’s high-performance microproces-
sors [1–4,6,13,14]. The SimpleScalar tool set includes a number of instruction-set simulators of varying accu-
racy/speed to allow the exploration of microarchitecture design space [6]. It was developed to evaluate the perfor-
mance of general-purpose application programs that depend on the processor speed. RSIM is an execution-driven
simulator developed for studying shared-memory multiprocessors (SMPs) and non-uniform memory architectures
(NUMAs) [1]. RSIM was developed to evaluate parallel application programs whose performance depends on the
processor speed as well as the interconnection network. However, neither simulators support system-level sim-
ulation because their focus is on the microarchitecture and/or interconnection network. Instead, system calls are
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supported through a proxy mechanism. Moreover, they do not model system components, such as I/O devices and
interrupt mechanism that are needed to run the system software, such as the operating system kernel and hardware
drivers. Therefore, these simulators are not appropriate for studying communication performance.

SimOS was developed to facilitate computer architecture research and experimental operating system develop-
ment [3]. It is the most complete simulator for studying computer system performance. There are several mod-
ifications being made to SimOS. SimOS-PPC is being developed at IBM Austin Research Laboratory, which
models a variety of PowerPC-based systems and microarchitectures [16]. There is also a SimOS interface to Sim-
pleScalar/PowerPC being developed at UT Austin [17]. However, these systems only support AIX as the target
operating system. Therefore, it is difficult to perform detailed evaluations without knowing the internals of the
kernel. Virtutech’s SimICS [2] was developed with the same purpose in mind as SimOS and supports a number
of commercial as well as Linux operating systems. The major advantage of SimICS over SimOS is improved
simulation speed using highly optimized codes for fast event handling and a simple processor pipeline. However,
SimICS is proprietary and thus the internal details of the simulator are not available to the public. This makes it
difficult to add or modify new hardware features. The motivation for Linux/SimOS is to alleviate these restrictions
by developing an effective simulation environment for studying all aspects of computer system performance using
SimOS with the flexibility and availability of the Linux operating system.

3. Overview of Linux/SimOS

Figure 1 shows the structure of Linux/SimOS. An x86-based Linux machine serves as the host for running the
simulation environment. SimOS runs as a target machine on the host, which consists of simulated models of CPU,
memory, timer, and various I/O devices (such as Disk, Console, and Ethernet NIC). On top of the target machine,
Linux kernel version 2.3 for MIPS runs as the target operating system.

3.1. SimOS machine simulator

This subsection briefly describes the functionality of SimOS, and the memory and I/O device address mapping.
For a detail description of SimOS, please refer to [3].

SimOS supports two execution-driven, cycle-accurate CPU models: Mipsy and MSX. Mipsy models a simple
pipeline similar to MIPS R4000, while MSX models a superscalar, dynamically scheduled pipeline similar to MIPS

Fig. 1. The structure of Linux/SimOS.
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R10000. The CPU models support the execution of the MIPS instruction set [12]. SimOS also models a memory
management unit (MMU), including the related exceptions. Therefore, the virtual memory translations occur as in a
real machine. SimOS also models the behavior of I/O devices by performing DMA operations to/from the memory
and interrupting the CPU when I/O requests complete. It also supports the simulation of a multiprocessor system
with a bused-based cache-coherent memory system or a Cache-Coherent Non-uniform Memory Architecture (CC-
NUMA) system.

Figure 2 represents the SimOS memory and I/O device address mapping. The virtual address space is subdivided
into four segments. Segments kseg0 through kseg2 can only be accessed in the kernel mode, while segment kuseg
can be accessed either in user or kernel mode. The kernel executable code is contained in kseg0 and mapped
directly to the lower 512 Mbytes of the physical memory. The segments kuseg and kseg2, which contain user
process and per process kernel data structures, respectively, are mapped to the remaining address space in the
physical memory. Therefore, communication between CPU and main memory involves simply reading and writing
to the allocated memory. On the other hand, I/O device addresses are mapped to the uncached kseg1 segment, and
a hash table called the device registry controls its access. The function of the device registry is to translate an
I/O device register access to the appropriate I/O device simulation routine. Therefore, each I/O device has to
first register its device registers with the device registry, which maps an appropriate device simulator routine at a
location in the I/O address space. This is shown in Table 1. In response to device driver requests, I/O device models
provide I/O services and interrupt the CPU as appropriate.

SimOS provides several I/O device models, which includes console, SCSI disk, Ethernet NIC, and timer. These
devices provide the interface between the simulator and the real world. The console model allows a user to read

Fig. 2. Address mapping mechanism in SimOS.

Table 1

I/O device address mapping

Device Start address Size in bytes

Timer 0xA0E00000 4

Console 0xA0E01000 8

Ethernet NIC 0xA0E02000 2852

Disk 0xA0E10000 542208
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messages from and type in commands to the simulated machine. The SimOS NIC model enables a simulated
machine to communicate with other simulated machines or real machines through the Ethernet. By allocating an
IP address for the simulated machine, it can act as an Internet node, such as a Web browser or a Web server. SimOS
uses the host machine’s file system to provide the functionality of a hard disk, maintaining the disk’s contents in
a file on the host machine. Reads and writes to the simulated disk become reads and writes to this file, and DMA
transfers require simply copying data from the file into the portion of the simulator’s address space representing
the target machine’s main memory.

3.2. Linux/SimOS interface

In this subsection, the major modifications that were necessary to port Linux to SimOS are discussed, i.e.,
Linux/SimOS interface. Most of the major modifications were done on the I/O device drivers for Linux. Therefore,
the description will focus on the interfacing requirements between Linux hardware drivers and SimOS I/O device
modules.

3.2.1. Timer and console
SimOS implements a simple real-time clock that indicates the current time as the number of seconds that have

elapsed since January 1, 1970. The real-time clock keeps the time value in a 32-bit register located at address
0xA0E00000 (see Table 1). A user program reads the current time using the gettimeofday() system call. The Linux
timer driver was modified to reflect the simplicity of the SimOS timer model. The SimOS real-time clock has a
single register, while a timer chip in a real system has tens of registers that are accessed by the driver. Also, the
Linux timer driver periodically adjusts the real-time clock to prevent it from drifting due to temperature or system
power fluctuation. Since these problems are not present in a simulation environment, these features were removed
to simplify debugging.

Console is used as a primary interface between the simulated machine and the external world. Linux commands
are entered through the console, and the command execution results are printed on the console. A sample console
output with Linux boot message is shown in Fig. 3.

Fig. 3. Linux/SimOS console output with Linux boot message.
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3.2.2. SCSI disk
The SimOS disk model simulates a SCSI disk, which has the combined functionality of a SCSI adapter, a DMA,

a disk controller, and a disk unit. Therefore, the registers in the SimOS disk model represent a combination of SCSI
adapter registers, DMA descriptors, and disk status and control registers. This is different from a real SCSI disk,
which implements them separately, and thus how the Linux disk driver views the disk. In particular, the problem
arises when application programs make disk requests. These requests are made to the SCSI adapter with disk
unit numbers, which are then translated by the disk driver to appropriate disk register addresses. But, the SimOS
disk model performs the translation internally and thus the Linux disk driver is incompatible with the SimOS
disk model. Therefore, the SimOS disk model had to be completely rewritten to reflect how the Linux disk driver
communicates with the SCSI adapter and the disk unit.

3.2.3. Kernel bootloader
When the kernel and the device drivers are prepared and compiled, a kernel executable is generated in ELF

binary format [15]. It is then the responsibility of the SimOS bootloader to load the kernel executable into the
main memory of the simulated machine.

When the bootloader starts, it reads and looks for headers in the executable file. An ELF executable contains
three different type headers: a file name header, program headers, and section headers. Each program header is
associated with a program segment, which holds a portion of the kernel code. Each program segment has a number
of sections, and a section header defines how these sections are loaded into memory. Therefore, the bootloader has
to use both program and section headers to properly load the program segment. Unfortunately, the bootloader that
came with the SimOS distribution was incomplete and thus did not properly handle the ELF format. That is, it did
not use both program and section headers to load the program. Therefore, the bootloader was modified to correct
this problem.

3.2.4. Ethernet NIC
The SimOS Ethernet NIC model supports connectivity to simulated hosts as well as to real hosts. The Ethernet

NIC model is controlled by a set of registers mapped into the memory region starting at 0xA0E02000 (see Table 1).
The data transfer between the simulated main memory and NIC occurs via DMA operations using descriptors
pointing to DMA buffers. Typically, the Linux NIC driver allocates DMA buffers in the uncached kseg1 segment.
Since the device registry controls this memory region in SimOS, two modifications were necessary to differentiate
between I/O device accesses and uncached memory accesses. First, the Linux Ethernet driver was changed to
allocate DMA buffers using the device registry. Second, the device registry was modified to handle the allocated
DMA buffer space as an uncached memory space.

Network simulation in SimOS can be performed using a separate simulator called EtherSim [3]. The main
function of EtherSim is to forward the received packets to the destination host. Although EtherSim is not directly
related to the Linux/SimOS interface, its functionality and the modifications that were made to facilitate network
simulation with Linux/SimOS are briefly discussed.

EtherSim basically takes care of the activities of sending simulated Ethernet frames and receiving IP packets on
behalf of SimOS (i.e., a simulated host). EtherSim can be configured to have any number of real and simulated
hosts. A simulated host communicating with another host via EtherSim is shown in Fig. 4. EtherSim maintains
the address information of the simulated host(s), which includes the IP and Ethernet addresses as well the socket
address of the simulated NIC. A simulated host sends a simulated Ethernet frame to EtherSim using UDP. EtherSim
then extracts the IP packet from the simulated Ethernet frame and forwards it to the destination host. In the case
of a receive, EtherSim captures IP packets destined for one of the simulated hosts by running its host’s Ethernet
interface in promiscuous mode. It then forms a UDP packet from the captured packet and forwards it to the simulate
host.

Some modifications were necessary to run EtherSim on a host running Linux operating system. The modifica-
tions made were mainly to improve portability. The original EtherSim that comes with the SimOS source distrib-
ution was written for Sun Solaris operating system, and could not be ported directly to Linux. Therefore, several
of the Solaris operating system specific network library calls were replaced with libpcap [9] and libnet [8], which
are standard libraries related to network packet capturing. As a result, the modified version of EtherSim can run on
any Linux host, even on the same host running Linux/SimOS.
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Fig. 4. Communication between a simulated host and a real host using EtherSim.

4. Simulation study of UDP/IP, TCP/IP, and M-VIA

This section presents the performance measurements of UDP/IP, TCP/IP, and M-VIA [12] to demonstrate the ca-
pabilities of Linux/SimOS. The measurements were performed in a simulation set-up where Linux/SimOS is used
to model two host machines connected through a network. To evaluate the performance of these three protocols,
test programs were run on Linux/SimOS that accepts command-line options specifying send/receive, a message
size, and address. UDP and TCP/IP performance was measured by having a client program send/receive a mes-
sage to/from a server program. On the other hand, vpingpong was used to evaluate the performance of M-VIA.
vpingpong employs a number of library functions provided by VIP Provider Library to initiate message transfers
on M-VIA. The program has two modes of operation, send and receive, which are selectable with a command-line
option. When vpingpong starts, a given number of messages are exchanged between a sender and a receiver. The
vpingpong program is one of the test programs included in the M-VIA 1.2b2 source code distribution [12].

4.1. Simulation environment

The CPU model employed was Mipsy with 32 Kbyte L1 instruction and data caches with 1-cycle hit latency, and
1 Mbyte L2 cache with 10-cycle hit latency. The main memory was configured to have 32 Mbyte with hit latency
of 100 cycles, and DMA on the Ethernet NIC model was set to have a transfer rate of 1200 Mbytes/sec. The
results were obtained using SimOS’s data collection mechanism, which uses a set of annotation routines written in
Tcl [18]. These annotations are attached to specific events of interest, and when an event occurs the associated Tcl
code is executed. Annotation codes have access to the entire state of the simulated system, and more importantly,
data collection is performed in a non-intrusive manner.

The performance of UDP and TCP/IP was evaluated by directly sending messages through the legacy protocol
stack in Linux/SimOS. On the other hand, M-VIA consists of three components: VI provider library (vipl) is a
collection of library calls to obtain VI services; M-VIA kernel module (vipk_core) contains a set of modularized
kernel functions implemented in user-level; and M-VIA device drivers (vipk_dev) provide an interface to NIC.
Some modifications were necessary to run M-VIA on Linux/SimOS. First, because M-VIA was released only for
x86-based Linux hosts, some of the source codes had to be modified to run them on Linux/SimOS. In particular,
the code for fast traps (vipk_core/vipk_ftrap.S) had to be rewritten because the MIPS system supports a different
system call convention than x86-based systems. Second, the driver for M-VIA had to be modified (similar to the
discussion in Subsection 3.2) to work with SimOS Ethernet NIC.
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Fig. 5. Message send/receive latencies.

4.2. Overall performance

The performance study focused on the latency (in cycles) to perform send/receive. These simulations were run
with a fixed MTU (Maximum Transmission Unit) size of 1,500 bytes with varying message sizes. The total cycle
times required to perform send/receive as a function of message size are shown in Fig. 5. The send results are
based on the number of clock cycles required to perform sendto() for UDP, send() for TCP, or VipPostSend()
for M-VIA. The receive results are based on the time between the arrival of a message and when recvfrom() for
UDP, recv() for TCP, or VipPostRecv() for M-VIA returns. These results represent only the latency measurement
of major operations directly related to sending and receiving messages and do not include the time needed to set up
socket communication for UDP and TCP, and memory registration for M-VIA. These results also do not include
the effects of MAC and physical layer operations.

The results in Fig. 5 clearly show the advantage of using low-latency, user-level messaging, especially for small
messages. For message sizes less than MTU, the improvement factors for M-VIA send/receive latencies over UDP
and TCP/IP are 2.2∼2.6/1.6∼3.1 and 3.1∼3.3/2.3∼4.9, respectively. For message sizes greater than MTU, the
improvement factors for M-VIA send/receive latencies over UDP and TCP/IP are 2.8/1.4∼2 and 3.1∼3.3/1.4∼2,
respectively.

4.3. Layer-level performance

The latencies for UDP/IP, TCP/IP, and M-VIA send/receive were then divided based on the various layers avail-
able for each protocol. This allows us to observe how much time is spent on each layer and how each layer
contributes to the final result. The latencies for UDP and TCP/IP were broken into layers associated with APPL,
UDP/TCP, IP, DEV, and DMA. APPL includes the time required to perform socket operations sendto()/recvfrom()
and send()/recv() for UDP and TCP, respectively. UDP/TCP and IP are the times for executing UDP/TCP and IP
protocols, respectively. DEV represents the device driver and includes all the operations between IP and host-side
DMA, including DMA interrupt handling. Finally, DMA represents the time to DMA data between host memory
and NIC buffers.

Similarly, the latencies for M-VIA were broken into layers associated with APPL, TRANS, DEV, and DMA.
APPL represents the time required to initiate VI provider library functions VipPostSend() and VipPostRecv() (and
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Fig. 6. Send latency.

VipRecvWait()). This involves creating a descriptor in the registered memory and then adding the descriptor to the
send/receive queue. The transport layer then performs virtual-to-physical/physical-to-virtual address translation
and fragmentation/de-fragmentation. Therefore, TRANS represents the time spent on the transport layer, but also
includes part of the device driver, mainly DMA setup. This is because the M-VIA implementation does not separate
the two layers for optimization purposes. Thus, DEV includes only the DMA interrupt handling time. Again, DMA
represents the time to DMA data between host memory and NIC buffers.

The results of send and receive latencies are summarized in Figs 6 and 7, respectively, where each message size
has three bar graphs for M-VIA (left), UDP/IP (middle), and TCP/IP (right). The results are also presented in a
tabular form in Table 2. The maximum message size in Table 2 is 32 Kbytes due to the fact that M-VIA’s data
buffer size was limited to 32 Kbytes. Also, 32-Kbyte results were not included in Figs 6 and 7 since they would
overshadow the other results.

Figure 6 shows the send latencies. For UDP/IP, APPL and UDP are small and remain relatively constant. How-
ever, IP and DEV dominate as the message size grows. In particular, for message size greater than MTU, IP increases
significantly as a function of messages size. This is because IP handles packet fragmentation, data copying from
user space to socket buffer, and checksumming. In addition, DMA also takes a significant portion of the latency
for message sizes over 4 Kbytes. For TCP/IP send, TCP constitutes the largest portion of the overall execution
time. This is because the TCP layer performs the most of time-consuming operations, which include packet de-
fragmentation, data copying from socket to user buffers, checksumming, ACK reception, and flow control. Note
that there is no congestion control since packet losses were not simulated. Moreover, TCP dominates while IP
represents only a small portion of the overall execution time. This is because, unlike UDP, packet fragmentation
and data copying from user space are performed at the TCP layer. Thus, IP has minimal effect on the overall per-
formance of TCP/IP, while it is the direct opposite for UDP/IP. For M-VIA send, latencies are relatively evenly
spread among APPL, TRANS, and DEV for message size up to 1 Kbyte. However, as message size increases beyond
1 Kbytes, DMA takes up most of the latency and increases rapidly. TRANS and DEV also increase significantly for
message sizes larger than 1 Kbytes due to fragmentation and interrupt handling, respectively.

Figure 7 shows the receive latencies. When messages are larger than MTU, all the UDP/IP layers, except APPL,
increase rapidly. Among them, UDP and IP increases are most noticeable. The increase in IP is caused by de-
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Fig. 7. Receive latency.

fragmentation, while the increase in UDP is due to copying data from socket buffer to user space and checksum-
ming. This is because in Linux, user data copying in UPD/IP occurs in two different layers for send and receive.
In the case of a send, the IP layer handles both packet fragmentation and data copying from user space to socket
buffer. On the other hand, for receive, packet de-fragmentation occurs at the IP layer while data copying from
socket buffer to user space occurs at the UDP layer [26]. For TCP/IP, TCP also represents the largest portion of the
overall execution time. For M-VIA, TRANS has the most noticeable increase due to extra data copying required
from DMA buffer to user space. In addition, de-fragmentation contributes significantly to TRANS for messages
larger than MTU.

The latencies for DEV are similar for UDP and TCP/IP, but are larger than M-VIA. There are several reasons for
this. First, TCP and UDP/IP have a device queue that acts as an interface between IP and DEV layers for packet
send and receive. In contrast, M-VIA does not have an equivalent interface for performance reasons. Second, the
legacy protocols have a layered structure, and thus UDP and TCP/IP include the device driver operations in DEV.
Since M-VIA integrates the device driver in its transport layer, the resulting latency is included in TRANS, rather
than DEV. Third, UDP and TCP/IP have a much larger protocol stack, which increases the likelihood of cache
conflicts. For DMA, the latencies increase linearly with the message size. This is consistent since DMA initiation
and interrupt handling are already reflected in DEV; therefore, DMA transfer time is dependent only on the message
size.

4.4. Function-level performance

The pie charts shown in Figs 8 and 9 give a more detailed picture about what contributes to the amount of time
spent on each layer for UDP/IP and M-VIA for message sizes 256 bytes and 4 Kbytes, respectively. For UDP/IP,
APPL was further subdivided into APPL_LIB and APPL_SOCK. APPL_LIB represents the latency between a sys-
tem call (i.e., sendto() or recvfrom()) and the start of socket operation (i.e., sock_sendmsg() or sock_recvmsg()),
while APPL_SOCK includes the time for socket layer operations. For UDP/IP send, IP was subdivided into IP_CPY
and IP_ETC. IP_CPY represents the latency related to copying user data into socket buffer and checksum opera-
tions, while IP_ETC represents the rest of IP overhead. For UDP/IP receive, UDP was subdivided into UDP_CPY
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Table 2

Message send/receive latency vs. message size

Protocol Layers Message size (bytes)

4 256 1k 4k 8k 12k 16k 32k

M-VIA APPL 357 357 357 382 385 377 387 394

send TRANS 610 612 722 1512 2762 3850 4956 8290

DEV 455 455 468 1197 2370 3415 4573 6678

DMA 3 3 853 3413 6826 10240 13653 27306

Total 1425 1427 2395 6504 12343 17882 19469 42668

M-VIA APPL 439 439 439 473 475 453 459 470

receive TRANS 666 1153 2622 9706 17473 23791 30023 59569

DEV 294 296 291 860 1680 2536 3320 8050

DMA 3 49 853 3413 6826 10240 13653 27306

Total 1402 1937 4205 14452 26454 37020 47455 95395

UDP/IP APPL 525 525 527 527 543 533 549 600

send UDP 415 419 417 441 443 485 475 500

IP 992 1336 3199 10218 19636 29090 38854 79180

DEV 1221 1340 1360 3537 6843 10150 13305 26690

DMA 3 49 853 3413 6826 10240 13653 27306

Total 3166 3669 6356 18136 34291 50498 66836 134276

UPD/IP APPL 608 608 608 720 732 830 830 880

receive UDP 1678 1896 3937 9051 15693 25069 36065 73040

IP 395 399 397 6954 12311 18146 24551 50188

DEV 1594 1286 1304 5495 10350 15423 20405 40805

DMA 3 49 853 3413 6826 10240 13653 27306

Total 4278 4238 7099 25633 45912 69708 95504 192219

TCP/IP APPL 450 448 450 470 502 500 514 680

send TCP 2604 2585 4499 12265 23469 35247 48393 336555

IP 374 372 370 840 1650 2564 3596 6632

DEV 1284 1258 1264 3116 5900 8875 12234 23518

DMA 3 49 853 3413 6826 10240 13653 27306

Total 4715 4712 7436 20104 38347 57426 78390 394691

TCD/IP APPL 518 520 520 522 520 540 536 630

receive TCP 4266 4347 4293 16490 31395 47115 62362 123956

IP 399 395 399 981 1890 2773 3682 7169

DEV 1650 1388 1430 3972 7888 11736 15396 29985

DMA 3 49 853 3413 6826 10240 13653 27306

Total 6836 6699 7495 25378 48521 72404 95629 189046

and UDP_ETC. UDP_CPY represents the portion of the UDP overhead related to copying packet payloads and
checksumming, while UDP_ETC represents the rest of the UDP latency. DEV was also subdivided into DEV_LINK,
DEV_INTR, and DEV_DRV. DEV_LINK is for a device-independent interface between IP and network devices,
which forwards packets to a specific device depending on the packet type. DEV_DRV includes the time for initial-
izing the host-side DMA. DEV_INTR represents the time for interrupt handling when DMA transfers complete. For
UDP/IP receive, DEV_DRV is always zero because DMA is initiated by NIC when packets arrive.

The M-VIA layers were also subdivided to focus on the effects of doorbell mechanism, interrupt handling, and
memory translation table lookup operations, while APPL was further subdivided into APPL_LIB and APPL_DBELL.
APPL_LIB represents the latency between a VIA library call (i.e., VipPostSend() or VipPosrRecv()) and start of
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Fig. 8. Latency breakdown for 256-byte message size.

Fig. 9. Latency breakdown for 4-Kbyte message size.

the doorbell operation. APPL_DBELL is the time to execute a doorbell operation. A doorbell is a mechanism to
initiate the NIC to service VIA library calls. These library calls eventually lead to the execution of the device
driver. However, the library calls cannot directly call the device driver. Instead, system call ioctl() is used to start
the device driver. The indirect invocation of the device driver is needed because the NIC is assumed to be a
traditional NIC, rather than a VIA-aware NIC. Therefore, the latency for indirect invocation of the device driver
is included in APPL_DBELL. TRANS was also subdivided into TRANS_MTX and TRANS_ETC. TRANS_MTX is
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the overhead for memory translation table lookups, and TRANS_ETC represents the rest of the transport layer
operations.

As can be seen from the figures, APPL_DBELL for M-VIA represents a significant portion of the overall send
and receive latencies. For example, an ioctl() system call for a 256-byte message send requires around 300 cycles
and represents 84% of the APPL layer. This suggests that a hardware doorbell mechanism will be very effective
for small messages. Using VIA-aware NIC that uses a control register for doorbell support would virtually elimi-
nate the APPL_DBELL overhead. For 256-byte message, DEV_INTR constitutes 22% and 12% of send and receive
latencies, respectively. As message size increases to 4 Kbytes, DEV_INTR still represents 17% and 6% of send
and receive latencies, respectively. DEV_INTR increases slightly as message size increases because every frag-
mented packet generates an interrupt for both send and receive. One solution for reducing DEV_INTR is to provide
interrupt coalescing feature on the NIC. Using this solution, DEV_INTR can be kept constant regardless of the
message size. Finally, TRANS_MTX represents only a small portion of the transport layer for both 256 bytes and
4 Kbytes messages, thus memory translation table lookup has minimal effect on latency. However, TRANS_ETC for
M-VIA receive dominates for 4 Kbyte message size, indicating VIA-ware NIC capable of performing DMA trans-
fer directly from NIC buffer to user space would significantly reduce receive latencies.

5. Conclusion and future work

This paper presented a detailed performance analysis of UDP/IP, TCP/IP, and M-VIA using Linux/SimOS. Our
study confirms that Linux/SimOS is an excellent tool for studying communication performance, and is able to
provide details of the various layers of the communication protocols, in particular the effects of the kernel, device
driver, and NIC. Moreover, since Linux/SimOS is based on an open-source environment, it is a powerful and
flexible simulation platform for studying all aspects of computer system performance.

There are numerous possible uses for Linux/SimOS. For example, one can study the performance of
Linux/SimOS acting as a server. This can be done by running server applications (e.g., web server) on
Linux/SimOS connected to the rest of the network via EtherSim. Another possibility is to prototype a new net-
work interface. One such example is the Host Channel Adapter (HCA) for InfiniBand [11], which is in part based
on Virtual Interface Architecture. Since the primary motivation for InfiniBand technology is to remove I/O process-
ing from the host CPU, a considerable amount of the processing requirement must be supported by the HCA. These
include support for message queuing, memory translation and protection, remote DMA (RDMA), and switch fabric
protocol processing. The major advantage of Linux/SimOS over hardware/emulation-based methods used in [19,
24] is that both hardware and software optimization can be performed. This type of prototyping can provide some
insight on how the next generation HCA should be designed for InfiniBand Architecture.
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