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Abstract: Clusters have become a popular alternative for building high-performance parallel 
computing systems.  Today's high-performance system area network (SAN) protocols such as 
VIA and IBA significantly reduce user-to-user communication latency by implementing protocol 
stacks outside of operating system kernel.  However, emerging parallel applications require a 
significant improvement in communication latency.  Since the time required for transferring 
data between host memory and network interface (NI) make up a large portion of overall 
communication latency, the reduction of data transfer time is crucial for achieving low-latency 
communication.  In this paper, Eager Data Transfer (EDT) mechanism is proposed to reduce 
the time for data transfers between the host and network interface.  The EDT employs cache 
coherence interface hardware to directly transfer data between the host and NI.  An EDT-
based network interface was modeled and simulated on the Linux-based, complete system 
simulation environment, Linux/SimOS.  Our simulation results show that the EDT approach 
significantly reduces the data transfer time compared to DMA-based approaches. The EDT-
based NI attains 17% to 38% reduction in user-to-user message time compared to the cache-
coherent DMA-based NIs for a range of message sizes (64 bytes ~ 4 Kbytes) in a SAN envi-
ronment. 
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1. Introduction 
 
Due to the rapid improvements in network and processor 

performance, cluster computer systems have become the 
most cost-effective platform for parallel and distributed 
computing.  Advances in technology are closing the 
performance gap between dedicated parallel computers and 
cluster computers.  As the popularity of cluster computing 
grows, there is an increasing demand for low-latency 
network protocol and intelligent network interface 
hardware.  Since the performance of parallel and 
distributed applications is greatly dependent on message-
passing facility, low-latency message processing becomes 
a main design issue for cluster network protocols and 
network interface (NI). 

User-level network protocols such as Virtual Interface 
Architecture (VIA) [1] and InfiniBand Architecture (IBA) 
[4] significantly reduce user-to-user communication 
latency compared with traditional network protocols (e.g., 
TCP/UDP/IP).  User-level protocols execute time-critical 

operations, such as message send and receive, without the 
kernel involvement, and implement zero-copy data transfer 
to avoid data copy overhead.  Although the user-level 
protocols have been successful in lowering communication 
latency, the demand for even lower communication latency 
remains high.   

Our prior study on the communication performance of 
VIA showed that the data transfer time between the host 
and NI constitutes the largest portion of the overall 
communication latency [10].  Therefore, the reduction of 
user data transfer time significantly improves 
communication performance.  There are several 
alternatives for transferring data between the host and NI: 
Programmed IO (PIO), Direct Memory Access (DMA), 
Cache-coherent DMA (CC-DMA), and Coherent Network 
Interface (CNI).  PIO is a traditional method to access 
device registers on an NI residing on the I/O bus using 
uncached loads/stores.  Uncached accesses transfer one to 
eight bytes at a time, which typically results in more bus 
transactions than using DMA [7, 8].  DMA moves data 
over the memory bus in block transfer mode, which 
efficiently utilizes the memory bus bandwidth.  CC-DMA 
is an advanced form of DMA that does not require the 
cache to be explicitly flushed before a DMA operation.  
This is done by using a special logic to detect accesses to 
memory locations for which there are dirty cache blocks, 
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and either allowing data to be accessed directly from cache 
or implicitly flushing cache blocks before the data can be 
accessed from the main memory [8, 19].  CNI allows data 
transfer between NI devices registers and cache memory by 
relying on the underlying cache coherence protocol [5, 6].  
It effectively uses the bus bandwidth by transferring data in 
cache-block units and cache invalidations are used as an 
efficient event-notification mechanism. 

Despite these existing data transfer mechanisms, there is 
an opportunity to further reduce the data transfer time 
between the host and NI, especially in the context of low-
latency, user-level network protocols such as VIA and IBA.  
In order to understand the opportunity for improvement, 
consider a message send in VIA.  The user first prepares a 
message in the host memory and notifies the NI of a 
message send request.  The NI copies the user message 
from host memory to NI buffer and then starts the network 
transport protocol to inject the message into the network.  
As can be seen by these steps, a large time gap exists 
between when the user message is prepared and when it is 
copied into the NI buffer.  Therefore, overlapping the user 
message preparation and the copying of user message can 
significantly reduce the overall latency.   

This paper proposes a hardware-based speculative 
approach called Eager Data Transfer (EDT) to reduce the 
data transfer time.  EDT employs cache-coherence 
interface hardware to efficiently transfer data between the 
host and NI.  Since EDT relies on underlying cache-
coherence mechanism, it is assumed that the EDT-based NI 
is located on host memory bus to observe bus transactions 
(i.e., cache coherence-related bus transfers).  The two 
performance advantages of EDT are (1) efficient use of 
memory bus bandwidth since data transfers are done in 
cache block units, and (2) no software overhead since the 
data transfer process is completely controlled by hardware.  
In order to evaluate the effectiveness of EDT, an EDT-
based NI was modeled and simulated on Linux/SimOS 
[10], which is a Linux operating system port to a complete 
system simulator SimOS [14].    

The rest of the paper is organized as follows.  Section 2 
discusses the related work.  Section 3 overviews VIA and 
its basic data transfer mechanism.  Section 4 presents the 
proposed EDT mechanism.  A detailed comparison of 
EDT versus CNI is presented in Section 5.  Section 6 de-
scribes a VIA implementation for EDT-based NI.  Section 
7 presents the simulation results.  Finally, Section 8 con-
cludes the paper and discusses future work.  
 
 

2. Related Work 
 
Banikazemi et al. showed that PIO is faster than DMA 

for transferring small size data (16 bytes or less) [2].  
Bhoedjang et al. also presented a comparison of data 
transfer performance between DMA and PIO [8].  Their 
results shown that PIO using Pentium-Pro™ write 
combining buffers, which combines multiple write 
commands over the I/O bus into a single bus transaction, 

transfers data faster than DMA for data size up to 1,024 
bytes because of the DMA start-up cost.  However, DMA 
is more efficient than PIO for large data because data 
transfers can be performed in bursts and without disturbing 
the processor.   

Since DMA transfers data to and from host memory, 
both cache and memory must be coherent before a DMA 
transfer can start.  For systems that do not support cache 
coherent DMA, software is used to explicitly flush the 
dirty blocks from cache to memory using cache flush 
instructions, such as cache (MIPS) [16], dcbf (PowerPC) 
[17], and wbinvd (Intel) [18].  For systems that support 
cache coherent DMA, there are two methods for 
maintaining coherency between cache and memory using 
hardware.  The first option is to suspend the current DMA 
transaction until the cache sends the dirty cache block to 
the host memory [15].  This method, referred to as cache 
coherent DMA with retry, forces DMA bus request to be 
retried whenever the requested data is not in the host 
memory.  When the dirty cache block is written back to 
the host memory, the DMA request is tried again and the 
data is then read from the host memory.  The second 
option, called cache coherent DMA with intervention, is 
based on using a cache coherent bus [19].  The idea is to 
have the cache snoop the cache coherent bus and whenever 
there is a request for a dirty cache block, the cache supplies 
the requested data.  The main advantage of cache coherent 
DMA with intervention is that the DMA accesses the 
requested data without having to wait until the cache block 
is flushed to the host memory.    

The work closest to ours is Coherent Network Interface 
(CNI), which was proposed by Mukherjee et al. [5-7].  
CNI allows a coherent, cacheable memory block 
implemented as a Cacheable Device Register (CDR) to be 
shared between the host processor and NI.  CNI reduces 
unnecessary bus accesses by transparently transferring data 
between the host processor and NI in cache blocks rather 
than words.  Cacheable Queue is an extension of CDR to 
represent a contiguous region of memory blocks and is 
managed by a pair of head and tail pointers.  For example, 
the host processor sends a data by simply writing it to the 
next free queue entry and incrementing the tail pointer.  
Then, the cache coherence protocol invalidates the copy of 
the tail pointer in the NI, which causes the NI to initiate a 
read request for the block.  Mukherjee et al. [7] compared 
regular PIO (i.e., without write combining buffers) and 
CNI, and showed performance improvement over PIO by 
17~53%.   

The major advantage of EDT over CNI is the random 
access capability, which is in contrast to CNI’s cacheable 
queues that require the construction of arrays to be 
performed in strict sequential order thereby restricting the 
programming paradigm.  A more detailed comparison 
between CNI and the proposed EDT mechanism is 
presented in Section 5. 
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3. Overview of VI Architecture 
  
Virtual Interface Architecture (VIA) is an industry 

standard developed by Compaq, Intel, and Microsoft [1].  
VIA was designed to provide low-latency, user-level 
communication over a System Area Network (SAN). 
Unlike the legacy network protocols of TCP/IP and 
UDP/IP, which were developed to operate in Wide Area 
Network or the Internet, VIA is a light-weight protocol that 
avoids the kernel involvement for time-critical 
communication services, such as message send/receive, 
and thus allows user applications to directly access the 
network.  This section briefly describes an 
implementation of VIA and how data transfers are 
performed between the host and NI. 

Fig. 1 shows the basic components of VIA: Send Queues 
(SQ) and Receive Queues (RQ), Completion Queues (CQ), 
VI Network Interface (NI), VI Kernel Agent (VI-KA), VI 
Provider Library (VIPL), and VI Application [1].  A work 
queue pair SQ and RQ composes a Virtual Interface (VI), 
which is the communication end point that allows an 
application to submit message requests directly to the 
communication facility running on the NI hardware.  A 
user application posts requests on the queues in the form of 
descriptors.  A descriptor is a data structure that contains 
all the information needed to process the user request.  
Each descriptor contains one control segment followed by 
an optional address segment and zero or more data 
segments.  Each data segment contains the virtual address 
of the user buffer.  The address segment contains the 
virtual address of the user buffer at the destination node.   

Each VI is associated with send and receive doorbell 
registers.  A descriptor posting is followed by writing a 
token to the doorbell register, which notifies the NI to 
process the descriptor.  When a user request completes, 

the associated descriptor in the work queue is updated with 
a status value, and a notification is inserted into the CQ.  
Applications can check the completion status of their 
message request via either the descriptor or CQ.  Thus, 
CQ merges the completion status of multiple work queues.     

The VIA specification requires that a user application 
register the virtual memory regions that are used to hold VI 
descriptors, user communication buffers, and CQs.  The 
purpose of the memory registration is to have the VIPL pin 
down the user’s virtual memory in physical memory so that 
the NI can directly access the user buffers.  This 
eliminates the need to copy data between user buffers and 
intermediate kernel buffers typically required in traditional 
network protocols.  VIA specifies two types of data 
communications: the send/receive messaging model and 
remote direct memory access (RDMA) model.  This paper 
focuses only on the send/receive messaging of VIA.  

The detailed operations for VIA message send and re-
ceive are shown in Fig. 2, where it is assumed a DMA en-
gine is used to transfer user data between the host memory 
region and NI.  In order to perform a send operation, the 
sender builds a message (Send1) and a descriptor (Send2) 
in the registered memory regions.  The descriptor includes 
the address of the message buffer, message size, type of 
operation, and a status field.  Then, a token is written to 
the send doorbell register to notify the NI of a message 
send operation (Send3).  The doorbell token includes the 
address of the descriptor, which in turn holds the address of 
the user message.  Since the address of the user message 
is contained in the descriptor, the NI executes a DMA 
transfer for the descriptor (Send4), followed by another 
DMA transfer for the message (Send5).  After the mes-
sage is sent out to the network (Message Send), the com-
pletion status is set in the CQ (Send6).  Finally, user ap-
plication can check the completion status of the send op-
eration (Send7). 

According to the VIA specification, the receiver is re-
quired to post a descriptor before a message is sent.  Thus, 
message receive is performed in two separate sequences: 
Posting a descriptor and receiving a message.  A descrip-
tor posting for receive follows the same steps as in the send 
case.  The receiver builds a descriptor (Recv1) and writes 
a token (Recv2) to the receive doorbell register, which is 
followed by DMA transfer of the descriptor (Recv3).  The 
remaining steps are executed when a message arrives 
(Message Receive).  The NI moves the message into the 
registered memory region, which is pointed to by the ad-
dress held in the descriptor (Recv4), and sets the comple-
tion status in the CQ (Recv5).  The receiver polls the CQ 
to detect a new message arrival (Recv6) and reads the mes-
sage from the registered memory region (Recv7). 
 
 

 
Fig. 1. The VIA architecture. 
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4. Eager Data Transfer 
 
Fig. 3(a) shows the timing of the DMA-based approach 

for a message send operation.  As can be seen in the fig-
ure, there is a time interval between when the user process 
writes data to the message buffer (Send1) and when data is 
DMA-transferred from the message buffer to NI buffer 
(Send5).  Since this time accounts for a significant por-
tion of the overall latency, the primary motivation of EDT 
is to overlap the execution of the user data writes (Send1) 
and the DMA transfer of data to NI buffer (Send5) to re-
duce the overall latency for message send/receive.  Fig. 
3(b) illustrates the advantage of the EDT mechanism, 
where data transfers are performed in cache-block units as 
the user data is generated by the application.  Therefore, 
as the application builds the message in the user buffer, the 
entire message is copied into the NI buffer.  Thus, right 
after a token is written into the doorbell register (Send3), 
the NI can immediately proceed with sending of the mes-
sage. 

To support such an implementation, the EDT-based NI 
employs a simple cache coherence hardware, which in-
cludes a set of tags to hold memory addresses for regis-
tered memory regions.  The tags are used for monitoring 
the host memory bus to detect host processor’s memory 
accesses to the registered regions.  The bus traffic moni-
toring and the associated cache coherence control are im-

plemented by observing the subset of the underlying cache 
coherence protocol.  The tags are also used to associate a 
registered host memory region with a NI memory region.  
In addition, the NI buffer uses status bit per each cache 
block to indicate the modification of the data.  Memory 
updates on a host memory region are reflected on the asso-
ciated NI buffer using the memory association information.  
The proposed EDT mechanism does not depend on a spe-
cific cache coherence protocol.  However, the MESI 
(Modified, Exclusive, Shared, and Invalid) cache coherence 
protocol is assumed for the sake of discussion [13] 

Fig. 4 shows the hardware architecture of the EDT-based 
NI, which includes doorbell registers, tags, local memory, 
Packet-to-Address table, and cache controller.  During the 
registration of a host memory region (using VipRegister-
Mem), the corresponding NI buffer and tag entry are allo-
cated.  The allocated NI buffer is the same size as the 
message buffer in the host memory and is subdivided into 
memory blocks, where each block is equal to the cache 
block size.  Each memory block has a Status bit (ST) in-
dicating the state of each cache block in the local memory.  

 
 

Fig. 3. EDT vs. DMA-based data transfer. 

 
Fig. 2. Message send and receive. 

 
Fig. 4.  Hardware architecture of the EDT-based 

NI. 
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Each tag (TAG) entry consists of five fields: Start and End 
Host Addresses (SHA and EHA), Start and End NI Ad-
dresses (SNA and ENA), and Access bit (A).  The host 
address pair, SHA and EHA, points to a registered memory 
region in the host memory.  The NI address pair, SNA and 
ENA, points to the associated buffer in the NI local memory.  
A-bit is used to represent the validity of the tag.  The 
Packet-to-Address Table (Pkt-to-Addr Table) is used during 
message receive operations to map incoming packets to the 
local memory.  In addition, virtual-to-physical address 
translation table for the register memory region is gener-
ated and copied (DMA) to the NI local memory (see Sec-
tion 5).   

The cache coherence protocol for EDT consists of Modi-
fied (M), Shared (S) and Invalid (I) states and they share 
similar meaning with their MESI protocol counterparts.  
Once the Tag fields are properly set, the cache blocks for 
the registered memory regions need to be set to either the S 
or I state.  This step is necessary so that the EDT-based NI 
can monitor the host processor writes to the registered 
memory region.  There are two ways to accomplish this.  
First method is to invalidate the cache blocks by flushing 

the cache.  The second method is to have the EDT-based 
NI initiate read bus transactions for the registered memory 
region.  This is done by an initialization routine imple-
mented in VI-MSG (see Section 6).  The data is copied 
either from the host cache or from the host memory.  If 
data is copied from the host cache, both the NI buffer 
blocks and the host cache blocks transition to the S state.  
However, if the data is copied from the host memory, the 
data is held only in the NI buffer and the memory blocks 
transition to the S state (Note that unlike the MESI proto-
col, EDT does not need to differentiate between E and S 
states.  Thus, for simplicity S state is used instead of E 
state.).  In either case, the initialization overhead is a one-
time cost incurred during memory registration and does not 
affect the communication latency of send/receive opera-
tions. 

Fig. 5 shows the detailed operations for message send 
assuming both memory blocks of the NI buffer and the host 
cache blocks are in the S state (similar steps would be per-
formed if initialized to the I state).  When the host proces-
sor writes to the registered memory region (Send1 of Fig. 
2), there can be either a cache hit or a miss.  If a processor 

 
(a) Processor Writes 

 

 
(b) Data Transfer 

 
Fig. 5. EDT operations for message send. 

 
(a) Network message receive 

 

 
(b) Data transfer 

 
Fig. 6. EDT operations for message receive. 
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write hits on the cache, an invalidation bus transaction is 
generated to gain exclusive ownership of the cache block.  
On the other hand, if a processor write misses on the cache, 
the cache block is first loaded from the host memory and 
then an invalidation bus transaction is generated.  In ei-
ther case, the cache block and the memory block in the NI 
buffer transition to the M and I states, respectively.  Then, 
the EDT-based NI places a bus read request to read in the 
cache block modified by the host processor.  This causes 
the requested block to be transferred to the NI local mem-
ory, and both the cache blocks in the host processor and the 
local memory transition to the S state.  As the host proc-
essor continues to write to the registered memory region, 
memory blocks in the NI Local memory are invalidated 
and the updated cache blocks are read into the NI buffer. 

For the message receive case, it is important to note that 
the host processor read operations do not begin until the 
completion status is set in the CQ.  Therefore, unlike the 
message send case, the data transfer phase cannot be over-
lapped with the host processor reads.  However, the EDT 
mechanism can still avoid the use of DMA and thus elimi-
nate DMA startup and interrupt processing overhead result-
ing in small performance gain.  There are two possible 
EDT implementations for message receive.  The first op-
tion is to rely on the cache coherence mechanism of EDT, 
which results in symmetrical behavior for message send 
and receive.  The second method is to bypass the cache 
coherence and operate the EDT mechanism as a DMA en-
gine.  These two methods are described below.    

Fig. 6 shows the operations performed by EDT for a mes-
sage receive using cache coherence.  As soon as a mes-
sage is received, the network-side DMA (not shown in Fig. 
6) transfers it to the NI buffer.  The Pkt-to-Addr Table is 
searched to determine the NI buffer address for the mes-
sage.  As the message is moved to the NI buffer, invalida-
tion transactions are generated to invalidate the cache 
blocks in the host processor’s cache (Fig. 6(a)).  The 
completion of the invalidation transactions causes the NI 
buffer blocks to transition from the S state (initial state) to 
the M state.  Once the message is moved to the NI buffer, 
VI-MSG starts its processing and notifies the receiver proc-
ess that a new message has arrived.  After the notification, 
the user process attempts to read the message by placing 
read requests on the bus.  This cause the blocks to be cop-
ied to the host processor’s cache and both blocks in the 
host (I → S) and NI (M → S) transition to the S state. 

If EDT operates as a DMA engine during message re-
ceive, simple Valid(V)/Invalid(I) states are used to indicate 
the status of the memory blocks.  When a message is re-
ceived, it is moved to the NI buffer and the memory blocks 
are set to the V state indicating they contain a new mes-
sage.  For each memory block set to the V state, the NI 
cache controller issues a bus write-back request to flush the 
memory block to the host memory.  

The main difference between the two methods is that 
when the host processor is ready to read the message, the 
first method reads it from the NI buffer while the second 
method reads it from the host memory.  Therefore, both 

methods result in similar performance but the latter method 
is less complex since it does not rely on cache invalida-
tions. 

 
 

5. EDT vs. CNI Comparison 
 
Both EDT and CNI rely on the underlying cache coher-

ence mechanism to perform data transfers, but that is 
where the similarity ends.  Therefore, this section pro-
vides a more detailed comparison of the two methods and 
discusses what effect these differences have on their la-
tency and the software abstraction for communication. 

EDT implements message buffer as a randomly accessi-
ble memory space defined during memory registration.  
Therefore, data can be written to the message buffer in any 
order, but sent out to the network only after the doorbell is 
rung.  This is possible because invalidations from the host 
processor act as notifications to EDT-based NI to issue bus 
requests to read in the cache blocks.  Thus, cache blocks 
are transferred in the order they are written to.  In contrast, 
CNI implements the message buffer as a queue structure, 
which requires user message to be written in strict sequen-
tial order.  CNI polls the cache block at the head of the 
queue to transfer the blocks.  Since both head and tail 
pointers are needed to determine whether the queue is full 
or empty, updating of the tail pointer by the host processor 
and head pointer by the CNI causes invalidations to ping-
pong back and forth increasing the traffic on the bus. 

CNI employs three optimizations based on Lazy pointers, 
valid bits, and sense reverse to reduce the bus traffic [6].  
The idea behind lazy pointers is to remove the host proces-
sor’s dependency on the head pointer.  This is done by 
relying on a potentially stale head (called shadow) pointer 
rather than keeping an actual copy of the head pointer.  
Thus, the host processor can conservatively check whether 
the queue is full by comparing the tail and the shadow head 
pointers.  Only when the queue is full, the shadow head 
pointer is updated with the head pointer.  On the other 
hand, valid bits with sense reverse are used to eliminate the 
CNI’s dependency on the tail pointer.  Valid bits, which 
are set by the host processor during a message send, indi-
cate the message on the head of the queue is valid.  This 
eliminates the need for CNI to check the tail pointer to de-
termine if the queue is non-empty (i.e., a message exists).  
Sense reverse eliminates the need to clear valid bits, which 
causes invalidations, after a message is read from the head 
of the queue.  This is done by alternating the encoding of 
the valid bits on each pass through the queue.  This way 
both the host processor and CNI keep track of the sense of 
their current pass, and the message is valid only when the 
current sense matches with the valid bit in the message. 

In terms of the best-case latency, both CNI and EDT 
would exhibit similar performance.  By best case, we 
mean that data is written in-order and all the words in a 
cache block are written before it is transfer to NI.  Since 
the bus transaction latency is much longer than the time 
required to complete writes to the rest of the cache block 
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words, each cache block transfer would require two bus 
transactions: One invalidation from the host processor to 
gain exclusive ownership and one bus read request from NI 
to transfer the block.  For CNI with the three optimiza-
tions mentioned above, there is additional overhead of poll-
ing the head pointer to check whether the queue is empty 
or full.  This incurs only two additional invalidations for 
each pass through the queue assuming queues are no more 
than half full on average [6], and thus have minimal effect 
on performance. 

The worst-case latency occurs when non-sequential ac-
cess patterns cause cache blocks to be read into the NI 
buffer before the host processor completes all the writes.  
Note that CNI does not allow non-sequential accesses and 
therefore this situation does not apply.  In particular, con-
sider the case when consecutive writes are performed to fill 
the message buffer, but with a stride equal to the number of 
words in a cache block.  When the host processor writes 
to the first word of a cache block, invalidation bus transac-
tion is generated and the cache block transitions from the S 
or I state to the M state and the memory block of the NI 
buffer transitions from the S to I state.  Then, the EDT-
based NI issues bus read transaction to transfer the cache 
block.  If the host processor writes to the second word of 
the cache block after the bus read transaction, another set 
of invalidation and bus read request is generated.   This 
causes the cache block to trash back and forth while the 
host processor’s writes are being executed to the cache 
block.  Therefore, the worst-case latency is 2BW, where B 
is the number of blocks and W is the number of words in 
the cache block. 

The most important advantage of EDT over CNI is that 
random access capability of EDT allows for zero-copy 
communication.  In contrast, CNI was not designed with 
zero-copy in mind due to its FIFO nature.  For example, 
EDT and CNI would serve as a low-level communication 
facility for high-level message-passing facilities, such as 
MPI.  MPI is the de facto standard for user-level message-
passing [20], and there a number of implementations of 
MPI on VIA [21-24] and InfiniBand [26-27].  In order to 
facilitate communication, message buffers can be pre-
registered to avoid the cost of memory registrations and de-
registrations on the fly.  To perform a send, the user mes-
sage is first copied to the registered message buffer and 
then DMA-transferred to the network interface.  Both 
EDT and CNI would work in this case since user message 
can be generated non-sequentially but would be copied 
sequentially.  However, implementing zero-copy message 
transfer requires the user message area to be first registered 
before the user message is generated.  Therefore, unless 
the user message is generated sequentially, cacheable 
queue implementation of CNI would not suffice. 

There are a number of ways to implement zero-copy us-
ing the EDT mechanism.  One possible solution is to im-
plement pinned-down cache for the registered memory 
regions [28].  The idea behind pinned-down cache is to 
take advantage of the fact that often applications programs 
repeatedly transfer data from the same memory area.  

Therefore, rather than de-registering the memory region 
right after a send, the request to de-register is delayed so 
that the pinned-down area can be reused.  A registered 
memory region is released only when the total area of the 
registered memory regions exceeds the predetermined 
maximum size.  This way, the cost of a single memory 
registration can be amortized over multiple sends. 

For CNI, the size of Cacheable Queue can be different 
than the messages being sent.  Lazy pointers used to 
minimize the number of invalidations assume the queue is 
no more than half full on average, and thus checks the head 
pointer only twice for each pass around the queue.  This 
causes under utilization of the queue capacity and results in 
throttling of the message send operation.  In contrast, 
EDT requires a buffer to be allocated in NI’s local memory 
during memory registration that is the same size as the host 
memory region.  Therefore, the number of memory regis-
trations is bounded by the size of the NI memory.  How-
ever, EDT is proposed for applications requiring low-
latency communications, such as parallel applications, 
which use small message sizes that are typically much 
smaller than 4 Kbytes [6].  For example, 4 Mbytes of NI 
memory can accommodate a thousand of registrations with 
a 4-Kbyte buffer.  Considering today’s memory technol-
ogy, hundreds Mbytes of memory can be obtain at a small 
cost.  Therefore, providing a sufficient amount of NI 
memory for low-latency application programs is not a 
problem.  If memory registration cannot proceed because 
of lack of free space in the NI memory, it can be postponed 
until a free space is available or EDT-based NI can fall 
back to DMA-based transfer. 

 
6. A VIA Implementation for the EDT-based NI 
 
Fig. 7 shows our implementation of VIA for the EDT-

based NI, called SONIC-VIA, which is based on M-VIA [3]. 
SONIC-VIA consists of VI Message (VI-MSG) layer as 
well as VIPL and VI-KA layers discussed in Section 3.  The 
protocol layers are distributed over the host and EDT-based 
NI; i.e., VIPL is compiled into the application, VI-KA is 
executed as a kernel module, and VI-MSG is executed on 
the EDT-based NI. 

VIPL provides VI library functions for user applications 
and sends users requests to either VI-KA or VI-MSG.  
Since user requests are sent to two different layers, VIPL 
uses two different service callings; doorbell register and 
IOCTL system call.  Doorbell registers are used to notify 
message send (VipPostSend) and receive (VipPostRecv) 
requests to VI-MSG.  IOCTL system calls are handled by 
VI-KA, which services calls to VI primitives other than 
message send and receive, such as VipOpenNI, VipConnec-
tRequest, and VipRegisterMem. 

The VI-MSG layer includes routines for message send 
and receive.  When an application program writes a token 
to a doorbell register, VI-MSG reads the token to determine 
the user (virtual) address for the descriptor.  Then, the 
user address is mapped to an NI memory address through a 
two-level translation scheme: User (virtual) address to host 
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memory (physical) address and then the host memory ad-
dress to NI buffer address.  The second memory transla-
tion is performed by looking up the tag entries (see Fig. 4).  
The descriptor is then accessed from the NI buffer.  Since 
the descriptor holds the virtual address of the user data, VI-
MSG again goes through address translation and local 
memory access for user data.  Thus, VI-MSG is responsi-
ble for maintaining the address translation table, perform-
ing address translations, and accessing descriptors and data 
from the NI buffer.  The rest of the VI-MSG operations 
involve processing packet frames, performing fragmenta-
tion/de-fragmentation for user data whose size is over the 
MTU (Maximum Transfer Unit), and updating the status 
flag in the VI or CQ. 

 
 

7. Performance Evaluation 
 
7.1 Simulation Environment 
 

In order to evaluate the performance of the proposed 
EDT mechanism, SONIC-VIA was implemented and simu-
lated on Linux/SimOS [10].  Since Linux/SimOS pro-
vides a real program execution environment, SONIC-VIA 
and benchmark programs were executed on top of the 
Linux/SimOS to perform detailed system evaluation in a 
non-intrusive manner.  This allows us to capture all as-
pects communication performance that includes the effects 
of application, network protocol, and network interface.  
The system configuration and parameters used in the simu-
lation study are summarized in Table 1. 

The host processor model includes L1 and L2 caches 
and follows the MESI cache coherence protocol to main-
tain data consistency between cache and memory.  The NI 

processor does not include private caches.  This assump-
tion was made based on the fact that most commercial NI 
processors, such as the Myrinet LANai processor, do not 
have caches [31].  The EDT-based NI has a peak DMA 
rate comparable to the burst-mode memory bandwidth be-
cause it is connected to the host memory bus.  Since our 
simulation study focuses only on network protocol process-
ing within a node, our simulation results are based on a no-
delay network model. 

For performance evaluation, the EDT mechanism was 
compared against CC-DMA with retry (CC-DMAretry) and 
CC-DMA with intervention (CC-DMAintv).  As mentioned 
earlier, the difference between CC-DMAretry and CC-
DMAintv is that the latter scheme can read directly from the 
cache memory, and thus eliminates the additional bus traf-
fic required to flush the cache blocks to the host memory.  
A micro-benchmark was used to send and receive mes-
sages between two users on different hosts.  A sender 
sends a fixed-size message to the receiver and then waits 
for a message arrive from the receiver.  When the receiver 
receives a message, it sends a new message back to the 
original sender.  Messages are sent back and forth be-
tween the sender and receiver for a number of times.  To 
show the impact of data transfer mechanism, message 
send/receive time was measured as a function of message 
size. 

 
7.2 Simulation Results 

 
The total execution times for message communication 

between two user applications are presented in Fig. 8.  
For each message size, there are three bar graphs represent-
ing the latencies (in cycles) of EDT (left), CC-DMAintv 
(middle), and CC-DMAretry (right).  These simulations 
were run with a fixed MTU size of 1,500 bytes.  The 
communication latency represents the number of host 

Table 1. System Parameters. 
System Parameters 

Processor Speed 1 GHz  

L1 Cache Size/Line Size 
/Assoc./Latency: 

32KB/32B 
/2-way/1 cycle 

L2 Cache Size/Line Size 
/Assoc./Latency 

1M/128B 
/2-way/10 cycles 

Host  
Processor  
 

Cache Coherence MESI,  
write-invalidate 

Width 128 bits 

Speed 100 MHz 
System  
Bus 

Burst-mode BW (peak) 1,600 MB/sec 

NI Processor Speed 100 MHz 

Host-side DMA data  
transfer rate (peak) 1,600 MB/sec NI 

Local Memory Latency 10 ns 

 

 
Fig 7. SONIC VIA. 

!

VI Provider Library (VIPL)!

VI Application!

Descriptor!

CQ!

EDT-based NI!

SQ! RQ!

VI Kernel 
Agent 

(VI-KA)!
 
 
(VI-KA)!
!

Descriptor!

Descriptor!

Descriptor!

Kernel!

Send! Receive!
Open/Connect/ 
Register Memory!
!

Status!
Control &  
Interrupts!

Send  
Doorbell!

Receive 
Doorbell!

VI Message (VI-MSG)!



Chulho Won, Ben Lee, Kyoung Park, and Myung-Joon Kim                                      41 

processor cycles between the library call VipPostSend() 
from the sender and the return of the library call VipPos-
tRecv() by the receiver.  These results do not include the 
effects of MAC, physical layer operations, and network 
transfer time.  The message size was varied from 64 bytes 
to 4,096 bytes, which represent a typical range of message 
sizes for a SAN environment [6].  Fig. 8 shows that the 
proposed EDT mechanism results in much better perform-
ance compared to CC-DMAretry and CC-DMAintv.  The 
EDT-based NI attains 17% ~ 38% reduction in the user-to-
user messaging latency compared to CC-DMAintv.  More 
importantly, the performance improvement becomes more 
significant as message size increases.  It is important to 
notes that the performance results in Fig. 8 are based on the 
theoretical peak DMA rate of 1,600 MB/sec.  However, a 
typical DMA rate is much lower due to bus contention and 
memory architecture, e.g., RAS-to-CAS latency due to a 
page miss.  Our simulation study based on 75% (1,200 
MB/sec) and 50% (800 MB/sec) of the peak DMA rate 
showed improvements of 27% ~ 40% and 34% ~ 42%, 
respectively. 

In order to gain a better understanding of the perform-
ance improvement, Fig. 8 also shows the user-to-user 
communication latency subdivided into three most signifi-
cant operations: User Data, Data Transfer, and Transport.  
User Data is the time required for the user program to write 
a message to the user buffer (Send1 in Fig. 2).  Data 
Transfer includes the time to transfer data between host and 
NI.  For CC-DMAretry and CC-DMAintv, this includes the 
time for DMA setup, DMA operations, and handling inter-
rupts after DMA operations complete.  For EDT, this in-
cludes the time to perform bus write-back to flush the 
memory block to the host memory during message receive.  
Transport represents the time required to run the network 
protocol (VI-MSG) to service the user send/receive re-
quests.  

The breakdown view of Fig. 8 clearly shows how signifi-
cantly each portion affects the overall latency and increases 
as data size grows.  In particular, the amount of time spent 
on the Data Transfer portion depends on the underlying 

data transfer mechanism.  The Data Transfer portions for 
CC-DMAintv are smaller than the ones for CC-DMAretry.  
This is because the CC-DMAintv mechanism supports 
cache-to-cache transfer so that the user data and descriptor 
can be moved directly from the cache memory on the host 
processor.  In contrast, the CC-DMAretry mechanism re-
quires two steps to move the user data from the cache 
memory: The user data in the cache memory has to be first 
flushed to the host memory and then moved to the NI 
buffer.  The Data Transfer portion for EDT is the smallest 
because there are no DMA operations and the only cost is 
the bus write-back operation on the receiver side.  The 
User Data portion increases with the message size, but are 
the same for all the data transfer mechanisms.  Similarly, 
the Transport sections start to grow as the message size 
increases beyond the MTU size.  This is due to the fact 
that the network protocol performs fragmentation and de-
fragmentation.  Again, the Transport sections do not vary 
with the underlying data transfer mechanism because all 
three methods were implemented on a common platform, 
i.e., SONIC-VIA. 

The pie charts shown in Fig. 9 give a more detail break-
down of the communication latency for message size of 
256 bytes.  Transport is further subdivided into Send and 
Receive portions.  Data Transfer for CC-DMAretry and 
CC-DMAintv is subdivided into DMA initiation (DMA Init), 
execution (DMA Exec), and interrupt processing (DMA Intr).  
DMA Init is the time to set up the DMA engine with address 

 
(a) EDT 

 
(b) CC-DMAintv  

 
(c) CC-DMAretry 

 
Fig. 9. Breakdown of the communication latency. 
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and length.  DMA Exec is the time for the DMA engine to 
move user data and descriptor between the host and NI 
buffers.  DMA Intr is the time taken to process the interrupt 
signaling at the end of a DMA operation.  Among the 
various portions, only the DMA Exec portion increases with 
increased message size, and the rest of the portions remain 
constant.  As explained earlier, DMA Exec is larger for 
CC-DMAretry than CC-DMAintv because the user data is 
transferred directly through host cache memory for CC-
DMAintv.  These results clearly show that the EDT ap-
proach significantly reduce the communication latency 
virtually eliminating DMA operations. 

 
 

8. Conclusion 
 
This paper proposed the EDT mechanism to reduce 

communication latency for user-level network protocols. 
The EDT reduces the time to transfer data between host 
memory and NI by overlapping writes to the user buffer 
with the actual transfer of data from user to NI buffer.  
Our detailed simulation study using Linux/SimOS showed 
that the EDT reduces the message latency by 17% ~ 41% 
compared with the CC-DMA based schemes. 

There are a number of ways the EDT can be extended. 
First, more work is needed to measure performance with 
various parallel and distributed applications.  Another 
challenge is to apply the EDT mechanism to the legacy 
network protocols such as TCP/IP and UDP/IP.  Even 
though the user-level protocols have become imperative for 
SANs, reducing the latency of the legacy protocols will 
continue to be important.  Another interesting application 
of the EDT is on embedded NI for System-on-Chip system 
(SoC).  Because the EDT observes only a subset of cache 
coherence protocol, the design can be simplified for SOC 
applications.  This will allow EDT-based embedded NI to 
achieve low-latency communication with less complexity 
and simpler design. 
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