
Chulho Won, Ben Lee, Kyoung Park, and Myung-Joon Kim 33

Eager Data Transfer Mechanism for Reducing Communication La-
tency in User-Level Network Protocols

Chulho Won†, Ben Lee‡, Kyoung Park*, and Myung-Joon Kim*

Abstract: Clusters have become a popular alternative for building high-performance parallel
computing systems. Today's high-performance system area network (SAN) protocols such as
VIA and IBA significantly reduce user-to-user communication latency by implementing protocol
stacks outside of operating system kernel. However, emerging parallel applications require a
significant improvement in communication latency. Since the time required for transferring
data between host memory and network interface (NI) make up a large portion of overall
communication latency, the reduction of data transfer time is crucial for achieving low-latency
communication. In this paper, Eager Data Transfer (EDT) mechanism is proposed to reduce
the time for data transfers between the host and network interface. The EDT employs cache
coherence interface hardware to directly transfer data between the host and NI. An EDT-
based network interface was modeled and simulated on the Linux-based, complete system
simulation environment, Linux/SimOS. Our simulation results show that the EDT approach
significantly reduces the data transfer time compared to DMA-based approaches. The EDT-
based NI attains 17% to 38% reduction in user-to-user message time compared to the cache-
coherent DMA-based NIs for a range of message sizes (64 bytes ~ 4 Kbytes) in a SAN envi-
ronment.

Keywords: Data transfer, cache coherence, user-level, low-latency, network protocols, message,
VIA

1. Introduction

Due to the rapid improvements in network and processor

performance, cluster computer systems have become the
most cost-effective platform for parallel and distributed
computing. Advances in technology are closing the
performance gap between dedicated parallel computers and
cluster computers. As the popularity of cluster computing
grows, there is an increasing demand for low-latency
network protocol and intelligent network interface
hardware. Since the performance of parallel and
distributed applications is greatly dependent on message-
passing facility, low-latency message processing becomes
a main design issue for cluster network protocols and
network interface (NI).

User-level network protocols such as Virtual Interface
Architecture (VIA) [1] and InfiniBand Architecture (IBA)
[4] significantly reduce user-to-user communication
latency compared with traditional network protocols (e.g.,
TCP/UDP/IP). User-level protocols execute time-critical

operations, such as message send and receive, without the
kernel involvement, and implement zero-copy data transfer
to avoid data copy overhead. Although the user-level
protocols have been successful in lowering communication
latency, the demand for even lower communication latency
remains high.

Our prior study on the communication performance of
VIA showed that the data transfer time between the host
and NI constitutes the largest portion of the overall
communication latency [10]. Therefore, the reduction of
user data transfer time significantly improves
communication performance. There are several
alternatives for transferring data between the host and NI:
Programmed IO (PIO), Direct Memory Access (DMA),
Cache-coherent DMA (CC-DMA), and Coherent Network
Interface (CNI). PIO is a traditional method to access
device registers on an NI residing on the I/O bus using
uncached loads/stores. Uncached accesses transfer one to
eight bytes at a time, which typically results in more bus
transactions than using DMA [7, 8]. DMA moves data
over the memory bus in block transfer mode, which
efficiently utilizes the memory bus bandwidth. CC-DMA
is an advanced form of DMA that does not require the
cache to be explicitly flushed before a DMA operation.
This is done by using a special logic to detect accesses to
memory locations for which there are dirty cache blocks,

Manuscript received September 15, 2008; accepted October ?, 2008.
† Electrical and Computer Engineering Dept., California State Uni-

versity-Fresno, CA, USA (chwon@csufresno.edu)
‡ School of Electrical Engineering and Computer Science, Oregon

State University, OR, USA (benl@eecs.oregonstate.edu)
* Electronics and Telecommunications Research Institute, Daejeon,

Korea ({kyoung, joonkim}@etri.re.kr)

34 Eager Data Transfer Mechanism

and either allowing data to be accessed directly from cache
or implicitly flushing cache blocks before the data can be
accessed from the main memory [8, 19]. CNI allows data
transfer between NI devices registers and cache memory by
relying on the underlying cache coherence protocol [5, 6].
It effectively uses the bus bandwidth by transferring data in
cache-block units and cache invalidations are used as an
efficient event-notification mechanism.

Despite these existing data transfer mechanisms, there is
an opportunity to further reduce the data transfer time
between the host and NI, especially in the context of low-
latency, user-level network protocols such as VIA and IBA.
In order to understand the opportunity for improvement,
consider a message send in VIA. The user first prepares a
message in the host memory and notifies the NI of a
message send request. The NI copies the user message
from host memory to NI buffer and then starts the network
transport protocol to inject the message into the network.
As can be seen by these steps, a large time gap exists
between when the user message is prepared and when it is
copied into the NI buffer. Therefore, overlapping the user
message preparation and the copying of user message can
significantly reduce the overall latency.

This paper proposes a hardware-based speculative
approach called Eager Data Transfer (EDT) to reduce the
data transfer time. EDT employs cache-coherence
interface hardware to efficiently transfer data between the
host and NI. Since EDT relies on underlying cache-
coherence mechanism, it is assumed that the EDT-based NI
is located on host memory bus to observe bus transactions
(i.e., cache coherence-related bus transfers). The two
performance advantages of EDT are (1) efficient use of
memory bus bandwidth since data transfers are done in
cache block units, and (2) no software overhead since the
data transfer process is completely controlled by hardware.
In order to evaluate the effectiveness of EDT, an EDT-
based NI was modeled and simulated on Linux/SimOS
[10], which is a Linux operating system port to a complete
system simulator SimOS [14].

The rest of the paper is organized as follows. Section 2
discusses the related work. Section 3 overviews VIA and
its basic data transfer mechanism. Section 4 presents the
proposed EDT mechanism. A detailed comparison of
EDT versus CNI is presented in Section 5. Section 6 de-
scribes a VIA implementation for EDT-based NI. Section
7 presents the simulation results. Finally, Section 8 con-
cludes the paper and discusses future work.

2. Related Work

Banikazemi et al. showed that PIO is faster than DMA

for transferring small size data (16 bytes or less) [2].
Bhoedjang et al. also presented a comparison of data
transfer performance between DMA and PIO [8]. Their
results shown that PIO using Pentium-Pro™ write
combining buffers, which combines multiple write
commands over the I/O bus into a single bus transaction,

transfers data faster than DMA for data size up to 1,024
bytes because of the DMA start-up cost. However, DMA
is more efficient than PIO for large data because data
transfers can be performed in bursts and without disturbing
the processor.

Since DMA transfers data to and from host memory,
both cache and memory must be coherent before a DMA
transfer can start. For systems that do not support cache
coherent DMA, software is used to explicitly flush the
dirty blocks from cache to memory using cache flush
instructions, such as cache (MIPS) [16], dcbf (PowerPC)
[17], and wbinvd (Intel) [18]. For systems that support
cache coherent DMA, there are two methods for
maintaining coherency between cache and memory using
hardware. The first option is to suspend the current DMA
transaction until the cache sends the dirty cache block to
the host memory [15]. This method, referred to as cache
coherent DMA with retry, forces DMA bus request to be
retried whenever the requested data is not in the host
memory. When the dirty cache block is written back to
the host memory, the DMA request is tried again and the
data is then read from the host memory. The second
option, called cache coherent DMA with intervention, is
based on using a cache coherent bus [19]. The idea is to
have the cache snoop the cache coherent bus and whenever
there is a request for a dirty cache block, the cache supplies
the requested data. The main advantage of cache coherent
DMA with intervention is that the DMA accesses the
requested data without having to wait until the cache block
is flushed to the host memory.

The work closest to ours is Coherent Network Interface
(CNI), which was proposed by Mukherjee et al. [5-7].
CNI allows a coherent, cacheable memory block
implemented as a Cacheable Device Register (CDR) to be
shared between the host processor and NI. CNI reduces
unnecessary bus accesses by transparently transferring data
between the host processor and NI in cache blocks rather
than words. Cacheable Queue is an extension of CDR to
represent a contiguous region of memory blocks and is
managed by a pair of head and tail pointers. For example,
the host processor sends a data by simply writing it to the
next free queue entry and incrementing the tail pointer.
Then, the cache coherence protocol invalidates the copy of
the tail pointer in the NI, which causes the NI to initiate a
read request for the block. Mukherjee et al. [7] compared
regular PIO (i.e., without write combining buffers) and
CNI, and showed performance improvement over PIO by
17~53%.

The major advantage of EDT over CNI is the random
access capability, which is in contrast to CNI’s cacheable
queues that require the construction of arrays to be
performed in strict sequential order thereby restricting the
programming paradigm. A more detailed comparison
between CNI and the proposed EDT mechanism is
presented in Section 5.

Chulho Won, Ben Lee, Kyoung Park, and Myung-Joon Kim 35

3. Overview of VI Architecture

Virtual Interface Architecture (VIA) is an industry

standard developed by Compaq, Intel, and Microsoft [1].
VIA was designed to provide low-latency, user-level
communication over a System Area Network (SAN).
Unlike the legacy network protocols of TCP/IP and
UDP/IP, which were developed to operate in Wide Area
Network or the Internet, VIA is a light-weight protocol that
avoids the kernel involvement for time-critical
communication services, such as message send/receive,
and thus allows user applications to directly access the
network. This section briefly describes an
implementation of VIA and how data transfers are
performed between the host and NI.

Fig. 1 shows the basic components of VIA: Send Queues
(SQ) and Receive Queues (RQ), Completion Queues (CQ),
VI Network Interface (NI), VI Kernel Agent (VI-KA), VI
Provider Library (VIPL), and VI Application [1]. A work
queue pair SQ and RQ composes a Virtual Interface (VI),
which is the communication end point that allows an
application to submit message requests directly to the
communication facility running on the NI hardware. A
user application posts requests on the queues in the form of
descriptors. A descriptor is a data structure that contains
all the information needed to process the user request.
Each descriptor contains one control segment followed by
an optional address segment and zero or more data
segments. Each data segment contains the virtual address
of the user buffer. The address segment contains the
virtual address of the user buffer at the destination node.

Each VI is associated with send and receive doorbell
registers. A descriptor posting is followed by writing a
token to the doorbell register, which notifies the NI to
process the descriptor. When a user request completes,

the associated descriptor in the work queue is updated with
a status value, and a notification is inserted into the CQ.
Applications can check the completion status of their
message request via either the descriptor or CQ. Thus,
CQ merges the completion status of multiple work queues.

The VIA specification requires that a user application
register the virtual memory regions that are used to hold VI
descriptors, user communication buffers, and CQs. The
purpose of the memory registration is to have the VIPL pin
down the user’s virtual memory in physical memory so that
the NI can directly access the user buffers. This
eliminates the need to copy data between user buffers and
intermediate kernel buffers typically required in traditional
network protocols. VIA specifies two types of data
communications: the send/receive messaging model and
remote direct memory access (RDMA) model. This paper
focuses only on the send/receive messaging of VIA.

The detailed operations for VIA message send and re-
ceive are shown in Fig. 2, where it is assumed a DMA en-
gine is used to transfer user data between the host memory
region and NI. In order to perform a send operation, the
sender builds a message (Send1) and a descriptor (Send2)
in the registered memory regions. The descriptor includes
the address of the message buffer, message size, type of
operation, and a status field. Then, a token is written to
the send doorbell register to notify the NI of a message
send operation (Send3). The doorbell token includes the
address of the descriptor, which in turn holds the address of
the user message. Since the address of the user message
is contained in the descriptor, the NI executes a DMA
transfer for the descriptor (Send4), followed by another
DMA transfer for the message (Send5). After the mes-
sage is sent out to the network (Message Send), the com-
pletion status is set in the CQ (Send6). Finally, user ap-
plication can check the completion status of the send op-
eration (Send7).

According to the VIA specification, the receiver is re-
quired to post a descriptor before a message is sent. Thus,
message receive is performed in two separate sequences:
Posting a descriptor and receiving a message. A descrip-
tor posting for receive follows the same steps as in the send
case. The receiver builds a descriptor (Recv1) and writes
a token (Recv2) to the receive doorbell register, which is
followed by DMA transfer of the descriptor (Recv3). The
remaining steps are executed when a message arrives
(Message Receive). The NI moves the message into the
registered memory region, which is pointed to by the ad-
dress held in the descriptor (Recv4), and sets the comple-
tion status in the CQ (Recv5). The receiver polls the CQ
to detect a new message arrival (Recv6) and reads the mes-
sage from the registered memory region (Recv7).

Fig. 1. The VIA architecture.

!

VI Provider Library (VIPL)!

VI Application!

Descriptor!

CQ!

Send
Doorbell!

Receive
Doorbell!

VI Network Interface (NI)!

SQ! RQ!

VI Kernel
Agent

(VI-KA)!

(VI-KA)!
!

Descriptor!

Descriptor!

Descriptor!

Kernel!

Send! Receive!
Open/Connect/
Register Memory!
!

Status!
Control &
Interrupts!

36 Eager Data Transfer Mechanism

4. Eager Data Transfer

Fig. 3(a) shows the timing of the DMA-based approach

for a message send operation. As can be seen in the fig-
ure, there is a time interval between when the user process
writes data to the message buffer (Send1) and when data is
DMA-transferred from the message buffer to NI buffer
(Send5). Since this time accounts for a significant por-
tion of the overall latency, the primary motivation of EDT
is to overlap the execution of the user data writes (Send1)
and the DMA transfer of data to NI buffer (Send5) to re-
duce the overall latency for message send/receive. Fig.
3(b) illustrates the advantage of the EDT mechanism,
where data transfers are performed in cache-block units as
the user data is generated by the application. Therefore,
as the application builds the message in the user buffer, the
entire message is copied into the NI buffer. Thus, right
after a token is written into the doorbell register (Send3),
the NI can immediately proceed with sending of the mes-
sage.

To support such an implementation, the EDT-based NI
employs a simple cache coherence hardware, which in-
cludes a set of tags to hold memory addresses for regis-
tered memory regions. The tags are used for monitoring
the host memory bus to detect host processor’s memory
accesses to the registered regions. The bus traffic moni-
toring and the associated cache coherence control are im-

plemented by observing the subset of the underlying cache
coherence protocol. The tags are also used to associate a
registered host memory region with a NI memory region.
In addition, the NI buffer uses status bit per each cache
block to indicate the modification of the data. Memory
updates on a host memory region are reflected on the asso-
ciated NI buffer using the memory association information.
The proposed EDT mechanism does not depend on a spe-
cific cache coherence protocol. However, the MESI
(Modified, Exclusive, Shared, and Invalid) cache coherence
protocol is assumed for the sake of discussion [13]

Fig. 4 shows the hardware architecture of the EDT-based
NI, which includes doorbell registers, tags, local memory,
Packet-to-Address table, and cache controller. During the
registration of a host memory region (using VipRegister-
Mem), the corresponding NI buffer and tag entry are allo-
cated. The allocated NI buffer is the same size as the
message buffer in the host memory and is subdivided into
memory blocks, where each block is equal to the cache
block size. Each memory block has a Status bit (ST) in-
dicating the state of each cache block in the local memory.

Fig. 3. EDT vs. DMA-based data transfer.

Fig. 2. Message send and receive.

Fig. 4. Hardware architecture of the EDT-based

NI.

Chulho Won, Ben Lee, Kyoung Park, and Myung-Joon Kim 37

Each tag (TAG) entry consists of five fields: Start and End
Host Addresses (SHA and EHA), Start and End NI Ad-
dresses (SNA and ENA), and Access bit (A). The host
address pair, SHA and EHA, points to a registered memory
region in the host memory. The NI address pair, SNA and
ENA, points to the associated buffer in the NI local memory.
A-bit is used to represent the validity of the tag. The
Packet-to-Address Table (Pkt-to-Addr Table) is used during
message receive operations to map incoming packets to the
local memory. In addition, virtual-to-physical address
translation table for the register memory region is gener-
ated and copied (DMA) to the NI local memory (see Sec-
tion 5).

The cache coherence protocol for EDT consists of Modi-
fied (M), Shared (S) and Invalid (I) states and they share
similar meaning with their MESI protocol counterparts.
Once the Tag fields are properly set, the cache blocks for
the registered memory regions need to be set to either the S
or I state. This step is necessary so that the EDT-based NI
can monitor the host processor writes to the registered
memory region. There are two ways to accomplish this.
First method is to invalidate the cache blocks by flushing

the cache. The second method is to have the EDT-based
NI initiate read bus transactions for the registered memory
region. This is done by an initialization routine imple-
mented in VI-MSG (see Section 6). The data is copied
either from the host cache or from the host memory. If
data is copied from the host cache, both the NI buffer
blocks and the host cache blocks transition to the S state.
However, if the data is copied from the host memory, the
data is held only in the NI buffer and the memory blocks
transition to the S state (Note that unlike the MESI proto-
col, EDT does not need to differentiate between E and S
states. Thus, for simplicity S state is used instead of E
state.). In either case, the initialization overhead is a one-
time cost incurred during memory registration and does not
affect the communication latency of send/receive opera-
tions.

Fig. 5 shows the detailed operations for message send
assuming both memory blocks of the NI buffer and the host
cache blocks are in the S state (similar steps would be per-
formed if initialized to the I state). When the host proces-
sor writes to the registered memory region (Send1 of Fig.
2), there can be either a cache hit or a miss. If a processor

(a) Processor Writes

(b) Data Transfer

Fig. 5. EDT operations for message send.

(a) Network message receive

(b) Data transfer

Fig. 6. EDT operations for message receive.

38 Eager Data Transfer Mechanism

write hits on the cache, an invalidation bus transaction is
generated to gain exclusive ownership of the cache block.
On the other hand, if a processor write misses on the cache,
the cache block is first loaded from the host memory and
then an invalidation bus transaction is generated. In ei-
ther case, the cache block and the memory block in the NI
buffer transition to the M and I states, respectively. Then,
the EDT-based NI places a bus read request to read in the
cache block modified by the host processor. This causes
the requested block to be transferred to the NI local mem-
ory, and both the cache blocks in the host processor and the
local memory transition to the S state. As the host proc-
essor continues to write to the registered memory region,
memory blocks in the NI Local memory are invalidated
and the updated cache blocks are read into the NI buffer.

For the message receive case, it is important to note that
the host processor read operations do not begin until the
completion status is set in the CQ. Therefore, unlike the
message send case, the data transfer phase cannot be over-
lapped with the host processor reads. However, the EDT
mechanism can still avoid the use of DMA and thus elimi-
nate DMA startup and interrupt processing overhead result-
ing in small performance gain. There are two possible
EDT implementations for message receive. The first op-
tion is to rely on the cache coherence mechanism of EDT,
which results in symmetrical behavior for message send
and receive. The second method is to bypass the cache
coherence and operate the EDT mechanism as a DMA en-
gine. These two methods are described below.

Fig. 6 shows the operations performed by EDT for a mes-
sage receive using cache coherence. As soon as a mes-
sage is received, the network-side DMA (not shown in Fig.
6) transfers it to the NI buffer. The Pkt-to-Addr Table is
searched to determine the NI buffer address for the mes-
sage. As the message is moved to the NI buffer, invalida-
tion transactions are generated to invalidate the cache
blocks in the host processor’s cache (Fig. 6(a)). The
completion of the invalidation transactions causes the NI
buffer blocks to transition from the S state (initial state) to
the M state. Once the message is moved to the NI buffer,
VI-MSG starts its processing and notifies the receiver proc-
ess that a new message has arrived. After the notification,
the user process attempts to read the message by placing
read requests on the bus. This cause the blocks to be cop-
ied to the host processor’s cache and both blocks in the
host (I → S) and NI (M → S) transition to the S state.

If EDT operates as a DMA engine during message re-
ceive, simple Valid(V)/Invalid(I) states are used to indicate
the status of the memory blocks. When a message is re-
ceived, it is moved to the NI buffer and the memory blocks
are set to the V state indicating they contain a new mes-
sage. For each memory block set to the V state, the NI
cache controller issues a bus write-back request to flush the
memory block to the host memory.

The main difference between the two methods is that
when the host processor is ready to read the message, the
first method reads it from the NI buffer while the second
method reads it from the host memory. Therefore, both

methods result in similar performance but the latter method
is less complex since it does not rely on cache invalida-
tions.

5. EDT vs. CNI Comparison

Both EDT and CNI rely on the underlying cache coher-

ence mechanism to perform data transfers, but that is
where the similarity ends. Therefore, this section pro-
vides a more detailed comparison of the two methods and
discusses what effect these differences have on their la-
tency and the software abstraction for communication.

EDT implements message buffer as a randomly accessi-
ble memory space defined during memory registration.
Therefore, data can be written to the message buffer in any
order, but sent out to the network only after the doorbell is
rung. This is possible because invalidations from the host
processor act as notifications to EDT-based NI to issue bus
requests to read in the cache blocks. Thus, cache blocks
are transferred in the order they are written to. In contrast,
CNI implements the message buffer as a queue structure,
which requires user message to be written in strict sequen-
tial order. CNI polls the cache block at the head of the
queue to transfer the blocks. Since both head and tail
pointers are needed to determine whether the queue is full
or empty, updating of the tail pointer by the host processor
and head pointer by the CNI causes invalidations to ping-
pong back and forth increasing the traffic on the bus.

CNI employs three optimizations based on Lazy pointers,
valid bits, and sense reverse to reduce the bus traffic [6].
The idea behind lazy pointers is to remove the host proces-
sor’s dependency on the head pointer. This is done by
relying on a potentially stale head (called shadow) pointer
rather than keeping an actual copy of the head pointer.
Thus, the host processor can conservatively check whether
the queue is full by comparing the tail and the shadow head
pointers. Only when the queue is full, the shadow head
pointer is updated with the head pointer. On the other
hand, valid bits with sense reverse are used to eliminate the
CNI’s dependency on the tail pointer. Valid bits, which
are set by the host processor during a message send, indi-
cate the message on the head of the queue is valid. This
eliminates the need for CNI to check the tail pointer to de-
termine if the queue is non-empty (i.e., a message exists).
Sense reverse eliminates the need to clear valid bits, which
causes invalidations, after a message is read from the head
of the queue. This is done by alternating the encoding of
the valid bits on each pass through the queue. This way
both the host processor and CNI keep track of the sense of
their current pass, and the message is valid only when the
current sense matches with the valid bit in the message.

In terms of the best-case latency, both CNI and EDT
would exhibit similar performance. By best case, we
mean that data is written in-order and all the words in a
cache block are written before it is transfer to NI. Since
the bus transaction latency is much longer than the time
required to complete writes to the rest of the cache block

Chulho Won, Ben Lee, Kyoung Park, and Myung-Joon Kim 39

words, each cache block transfer would require two bus
transactions: One invalidation from the host processor to
gain exclusive ownership and one bus read request from NI
to transfer the block. For CNI with the three optimiza-
tions mentioned above, there is additional overhead of poll-
ing the head pointer to check whether the queue is empty
or full. This incurs only two additional invalidations for
each pass through the queue assuming queues are no more
than half full on average [6], and thus have minimal effect
on performance.

The worst-case latency occurs when non-sequential ac-
cess patterns cause cache blocks to be read into the NI
buffer before the host processor completes all the writes.
Note that CNI does not allow non-sequential accesses and
therefore this situation does not apply. In particular, con-
sider the case when consecutive writes are performed to fill
the message buffer, but with a stride equal to the number of
words in a cache block. When the host processor writes
to the first word of a cache block, invalidation bus transac-
tion is generated and the cache block transitions from the S
or I state to the M state and the memory block of the NI
buffer transitions from the S to I state. Then, the EDT-
based NI issues bus read transaction to transfer the cache
block. If the host processor writes to the second word of
the cache block after the bus read transaction, another set
of invalidation and bus read request is generated. This
causes the cache block to trash back and forth while the
host processor’s writes are being executed to the cache
block. Therefore, the worst-case latency is 2BW, where B
is the number of blocks and W is the number of words in
the cache block.

The most important advantage of EDT over CNI is that
random access capability of EDT allows for zero-copy
communication. In contrast, CNI was not designed with
zero-copy in mind due to its FIFO nature. For example,
EDT and CNI would serve as a low-level communication
facility for high-level message-passing facilities, such as
MPI. MPI is the de facto standard for user-level message-
passing [20], and there a number of implementations of
MPI on VIA [21-24] and InfiniBand [26-27]. In order to
facilitate communication, message buffers can be pre-
registered to avoid the cost of memory registrations and de-
registrations on the fly. To perform a send, the user mes-
sage is first copied to the registered message buffer and
then DMA-transferred to the network interface. Both
EDT and CNI would work in this case since user message
can be generated non-sequentially but would be copied
sequentially. However, implementing zero-copy message
transfer requires the user message area to be first registered
before the user message is generated. Therefore, unless
the user message is generated sequentially, cacheable
queue implementation of CNI would not suffice.

There are a number of ways to implement zero-copy us-
ing the EDT mechanism. One possible solution is to im-
plement pinned-down cache for the registered memory
regions [28]. The idea behind pinned-down cache is to
take advantage of the fact that often applications programs
repeatedly transfer data from the same memory area.

Therefore, rather than de-registering the memory region
right after a send, the request to de-register is delayed so
that the pinned-down area can be reused. A registered
memory region is released only when the total area of the
registered memory regions exceeds the predetermined
maximum size. This way, the cost of a single memory
registration can be amortized over multiple sends.

For CNI, the size of Cacheable Queue can be different
than the messages being sent. Lazy pointers used to
minimize the number of invalidations assume the queue is
no more than half full on average, and thus checks the head
pointer only twice for each pass around the queue. This
causes under utilization of the queue capacity and results in
throttling of the message send operation. In contrast,
EDT requires a buffer to be allocated in NI’s local memory
during memory registration that is the same size as the host
memory region. Therefore, the number of memory regis-
trations is bounded by the size of the NI memory. How-
ever, EDT is proposed for applications requiring low-
latency communications, such as parallel applications,
which use small message sizes that are typically much
smaller than 4 Kbytes [6]. For example, 4 Mbytes of NI
memory can accommodate a thousand of registrations with
a 4-Kbyte buffer. Considering today’s memory technol-
ogy, hundreds Mbytes of memory can be obtain at a small
cost. Therefore, providing a sufficient amount of NI
memory for low-latency application programs is not a
problem. If memory registration cannot proceed because
of lack of free space in the NI memory, it can be postponed
until a free space is available or EDT-based NI can fall
back to DMA-based transfer.

6. A VIA Implementation for the EDT-based NI

Fig. 7 shows our implementation of VIA for the EDT-

based NI, called SONIC-VIA, which is based on M-VIA [3].
SONIC-VIA consists of VI Message (VI-MSG) layer as
well as VIPL and VI-KA layers discussed in Section 3. The
protocol layers are distributed over the host and EDT-based
NI; i.e., VIPL is compiled into the application, VI-KA is
executed as a kernel module, and VI-MSG is executed on
the EDT-based NI.

VIPL provides VI library functions for user applications
and sends users requests to either VI-KA or VI-MSG.
Since user requests are sent to two different layers, VIPL
uses two different service callings; doorbell register and
IOCTL system call. Doorbell registers are used to notify
message send (VipPostSend) and receive (VipPostRecv)
requests to VI-MSG. IOCTL system calls are handled by
VI-KA, which services calls to VI primitives other than
message send and receive, such as VipOpenNI, VipConnec-
tRequest, and VipRegisterMem.

The VI-MSG layer includes routines for message send
and receive. When an application program writes a token
to a doorbell register, VI-MSG reads the token to determine
the user (virtual) address for the descriptor. Then, the
user address is mapped to an NI memory address through a
two-level translation scheme: User (virtual) address to host

40 Eager Data Transfer Mechanism

memory (physical) address and then the host memory ad-
dress to NI buffer address. The second memory transla-
tion is performed by looking up the tag entries (see Fig. 4).
The descriptor is then accessed from the NI buffer. Since
the descriptor holds the virtual address of the user data, VI-
MSG again goes through address translation and local
memory access for user data. Thus, VI-MSG is responsi-
ble for maintaining the address translation table, perform-
ing address translations, and accessing descriptors and data
from the NI buffer. The rest of the VI-MSG operations
involve processing packet frames, performing fragmenta-
tion/de-fragmentation for user data whose size is over the
MTU (Maximum Transfer Unit), and updating the status
flag in the VI or CQ.

7. Performance Evaluation

7.1 Simulation Environment

In order to evaluate the performance of the proposed
EDT mechanism, SONIC-VIA was implemented and simu-
lated on Linux/SimOS [10]. Since Linux/SimOS pro-
vides a real program execution environment, SONIC-VIA
and benchmark programs were executed on top of the
Linux/SimOS to perform detailed system evaluation in a
non-intrusive manner. This allows us to capture all as-
pects communication performance that includes the effects
of application, network protocol, and network interface.
The system configuration and parameters used in the simu-
lation study are summarized in Table 1.

The host processor model includes L1 and L2 caches
and follows the MESI cache coherence protocol to main-
tain data consistency between cache and memory. The NI

processor does not include private caches. This assump-
tion was made based on the fact that most commercial NI
processors, such as the Myrinet LANai processor, do not
have caches [31]. The EDT-based NI has a peak DMA
rate comparable to the burst-mode memory bandwidth be-
cause it is connected to the host memory bus. Since our
simulation study focuses only on network protocol process-
ing within a node, our simulation results are based on a no-
delay network model.

For performance evaluation, the EDT mechanism was
compared against CC-DMA with retry (CC-DMAretry) and
CC-DMA with intervention (CC-DMAintv). As mentioned
earlier, the difference between CC-DMAretry and CC-
DMAintv is that the latter scheme can read directly from the
cache memory, and thus eliminates the additional bus traf-
fic required to flush the cache blocks to the host memory.
A micro-benchmark was used to send and receive mes-
sages between two users on different hosts. A sender
sends a fixed-size message to the receiver and then waits
for a message arrive from the receiver. When the receiver
receives a message, it sends a new message back to the
original sender. Messages are sent back and forth be-
tween the sender and receiver for a number of times. To
show the impact of data transfer mechanism, message
send/receive time was measured as a function of message
size.

7.2 Simulation Results

The total execution times for message communication

between two user applications are presented in Fig. 8.
For each message size, there are three bar graphs represent-
ing the latencies (in cycles) of EDT (left), CC-DMAintv
(middle), and CC-DMAretry (right). These simulations
were run with a fixed MTU size of 1,500 bytes. The
communication latency represents the number of host

Table 1. System Parameters.
System Parameters

Processor Speed 1 GHz

L1 Cache Size/Line Size
/Assoc./Latency:

32KB/32B
/2-way/1 cycle

L2 Cache Size/Line Size
/Assoc./Latency

1M/128B
/2-way/10 cycles

Host
Processor

Cache Coherence MESI,
write-invalidate

Width 128 bits

Speed 100 MHz
System
Bus

Burst-mode BW (peak) 1,600 MB/sec

NI Processor Speed 100 MHz

Host-side DMA data
transfer rate (peak) 1,600 MB/sec NI

Local Memory Latency 10 ns

Fig 7. SONIC VIA.

!

VI Provider Library (VIPL)!

VI Application!

Descriptor!

CQ!

EDT-based NI!

SQ! RQ!

VI Kernel
Agent

(VI-KA)!

(VI-KA)!
!

Descriptor!

Descriptor!

Descriptor!

Kernel!

Send! Receive!
Open/Connect/
Register Memory!
!

Status!
Control &
Interrupts!

Send
Doorbell!

Receive
Doorbell!

VI Message (VI-MSG)!

Chulho Won, Ben Lee, Kyoung Park, and Myung-Joon Kim 41

processor cycles between the library call VipPostSend()
from the sender and the return of the library call VipPos-
tRecv() by the receiver. These results do not include the
effects of MAC, physical layer operations, and network
transfer time. The message size was varied from 64 bytes
to 4,096 bytes, which represent a typical range of message
sizes for a SAN environment [6]. Fig. 8 shows that the
proposed EDT mechanism results in much better perform-
ance compared to CC-DMAretry and CC-DMAintv. The
EDT-based NI attains 17% ~ 38% reduction in the user-to-
user messaging latency compared to CC-DMAintv. More
importantly, the performance improvement becomes more
significant as message size increases. It is important to
notes that the performance results in Fig. 8 are based on the
theoretical peak DMA rate of 1,600 MB/sec. However, a
typical DMA rate is much lower due to bus contention and
memory architecture, e.g., RAS-to-CAS latency due to a
page miss. Our simulation study based on 75% (1,200
MB/sec) and 50% (800 MB/sec) of the peak DMA rate
showed improvements of 27% ~ 40% and 34% ~ 42%,
respectively.

In order to gain a better understanding of the perform-
ance improvement, Fig. 8 also shows the user-to-user
communication latency subdivided into three most signifi-
cant operations: User Data, Data Transfer, and Transport.
User Data is the time required for the user program to write
a message to the user buffer (Send1 in Fig. 2). Data
Transfer includes the time to transfer data between host and
NI. For CC-DMAretry and CC-DMAintv, this includes the
time for DMA setup, DMA operations, and handling inter-
rupts after DMA operations complete. For EDT, this in-
cludes the time to perform bus write-back to flush the
memory block to the host memory during message receive.
Transport represents the time required to run the network
protocol (VI-MSG) to service the user send/receive re-
quests.

The breakdown view of Fig. 8 clearly shows how signifi-
cantly each portion affects the overall latency and increases
as data size grows. In particular, the amount of time spent
on the Data Transfer portion depends on the underlying

data transfer mechanism. The Data Transfer portions for
CC-DMAintv are smaller than the ones for CC-DMAretry.
This is because the CC-DMAintv mechanism supports
cache-to-cache transfer so that the user data and descriptor
can be moved directly from the cache memory on the host
processor. In contrast, the CC-DMAretry mechanism re-
quires two steps to move the user data from the cache
memory: The user data in the cache memory has to be first
flushed to the host memory and then moved to the NI
buffer. The Data Transfer portion for EDT is the smallest
because there are no DMA operations and the only cost is
the bus write-back operation on the receiver side. The
User Data portion increases with the message size, but are
the same for all the data transfer mechanisms. Similarly,
the Transport sections start to grow as the message size
increases beyond the MTU size. This is due to the fact
that the network protocol performs fragmentation and de-
fragmentation. Again, the Transport sections do not vary
with the underlying data transfer mechanism because all
three methods were implemented on a common platform,
i.e., SONIC-VIA.

The pie charts shown in Fig. 9 give a more detail break-
down of the communication latency for message size of
256 bytes. Transport is further subdivided into Send and
Receive portions. Data Transfer for CC-DMAretry and
CC-DMAintv is subdivided into DMA initiation (DMA Init),
execution (DMA Exec), and interrupt processing (DMA Intr).
DMA Init is the time to set up the DMA engine with address

(a) EDT

(b) CC-DMAintv

(c) CC-DMAretry

Fig. 9. Breakdown of the communication latency.

User Data

40%

Send

21%

Recv

27%

DMA Exec.

12%

User Data

18%

Send

18%

Recv

23%

DMA Intr.

10%

DMA Init.

5%

DMA Exec.

26%

User Data

15%

Send

16%

Recv

20%

DMA Exec.

36%

DMA Init.

4%

DMA Intr.

9%

Fig. 8. Communication latency.
.

!"

#!!!"

$!!!!"

$#!!!"

%!!!!"

%#!!!"

&'" $%(" %#&" #$%" $!%'" %!'(" '!)&"

!"
#$
%
&'
()
&'
&*
$
+,
(

-$++".$(/01$()2'#$+,(

*+,+"-.+/012."

-.+/034.,"

502."*+,+"

6*-7889*:;</,=7889*:;.2,.>"

42 Eager Data Transfer Mechanism

and length. DMA Exec is the time for the DMA engine to
move user data and descriptor between the host and NI
buffers. DMA Intr is the time taken to process the interrupt
signaling at the end of a DMA operation. Among the
various portions, only the DMA Exec portion increases with
increased message size, and the rest of the portions remain
constant. As explained earlier, DMA Exec is larger for
CC-DMAretry than CC-DMAintv because the user data is
transferred directly through host cache memory for CC-
DMAintv. These results clearly show that the EDT ap-
proach significantly reduce the communication latency
virtually eliminating DMA operations.

8. Conclusion

This paper proposed the EDT mechanism to reduce

communication latency for user-level network protocols.
The EDT reduces the time to transfer data between host
memory and NI by overlapping writes to the user buffer
with the actual transfer of data from user to NI buffer.
Our detailed simulation study using Linux/SimOS showed
that the EDT reduces the message latency by 17% ~ 41%
compared with the CC-DMA based schemes.

There are a number of ways the EDT can be extended.
First, more work is needed to measure performance with
various parallel and distributed applications. Another
challenge is to apply the EDT mechanism to the legacy
network protocols such as TCP/IP and UDP/IP. Even
though the user-level protocols have become imperative for
SANs, reducing the latency of the legacy protocols will
continue to be important. Another interesting application
of the EDT is on embedded NI for System-on-Chip system
(SoC). Because the EDT observes only a subset of cache
coherence protocol, the design can be simplified for SOC
applications. This will allow EDT-based embedded NI to
achieve low-latency communication with less complexity
and simpler design.

Reference

[1] Intel, Compaq and Microsoft Corporations, “Virtual
Interface Architecture Specification, Version 1.0,”
December 1997. Available at http://www.viarch.org.

[2] M. Banikazemi et al., “Design Alternatives for
Virtual Interface Architecture (VIA) and an
Implementation on IBM Netfinity NT Clusters,” Proc.
of the Int'l Parallel and Distributed Processing
Symposium, May 2000.

[3] NERSC, “M-VIA: A High Performance Modular
VIA for Linux,” Available from
http://www.nersc.gov/research/FTG/via.

[4] Infiniband Trade Association, “Infiniband
Architecture Specification, Vol. 1,” InfiniBand Trade
Association. Available from
http://www.infinibandta.org.

[5] S.S. Mukherjee and M.D. Hill, “Making Network
Interfaces Less Peripheral,” IEEE Computer,
31(10):70-76, October 1998.

[6] S.S. Mukherjee et al., “Coherent network Interfaces
for Fine-Grain Communication,” Proceedings of the
23rd International Symposium on Computer
Architecture (ISCA), 1996.

[7] S.S. Mukherjee et al., “The impact of Data Transfer
and Buffering Alternatives on Network Interface
Design,” Proceedings of the 4th International
Symposium on High-Performance Computer
Architecture (HPCA), Feb. 1998.

[8] R.A.F. Bhoedjang, T. Ruhl, and H.E. Bal, “Design
Issues for User-Level Network Interface Protocols on
Myrinet,” IEEE Computer, 31(11):53-60, November
1998.

[9] R.A.F. Bhoedjang et al., “Reducing Data and Control
Transfer Overhead through Network-Interface
Support,” First Myrinet User Group Conference
(MUG), September 2000.

[10] Won, C. et al., “Linux/SimOS - A Simulation
Environment for Evaluating High-Speed
Communication Systems,” Proceedings of the 2002
international Conference on Parallel Processing
(ICPP), August 2002. An extended version of this
paper appears in “Linux/SimOS: A Complete System
simulation Environment for Evaluating High-Speed
Communication Systems,” Journal of High Speed
Networks, 2005.

[11] H. Hellwagner, “Exploring the Performance of VI
Architecture Communication Features in the Giganet
Cluster LAN,” Proceedings of the International
Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA2000), 2000.

[12] F. Briggs et al., “The Intel 870 Family of Enterprise
Chipsets,” Proc. of the Hot Chips XIII, August 2001.

[13] Intel Corporation, “Pentium(R) Processor Family
Developer's Manual,” Available at
http://developer.intel.com/design/
intarch/manuals/241428.htm.

[14] M. Rosenblum et al., “Using the SimOS Machine
Simulator to study Complex Computer Systems,”
ACM Transactions on Modeling and Computer
Simulations, 7(1), January 1997.

[15] J. R. Thorpe, “A Machine Independent DMA
Framework for NetBSD,” USENIX 1998 Annual
Technical Conference, June 15-19, 1998.

[16] MIPS R1000 Microprocessor User’s Manual, Version
2.0. Available from
http://techpubs.sgi.com/library/tpl/cgi-
bin/getdoc.cgi/hdwr/bks/SGI_Developer/books/R10K
_UM/sgi_html/t5.Ver.2.0.book_396.html.

[17] The PowerPC Architecture: A Specification for a
New Family of RISC Processors, Edited by C. May,
D. Silha, R. Simpson, and H. Warren, Morgan
Kaufmann Publishers, Inc., 1994.

Chulho Won, Ben Lee, Kyoung Park, and Myung-Joon Kim 43

[18] Pentium Processor Family Developer’s Manual.
Available from
http://developer.intel.com/design/pentium/manuals/.

[19] The Alchemy Au1100TM From AMD Internet Edge
Processor Data Book. Available from
www.sagitron.es/data_sheet/au1100.pdf.

[20] Message Passing Interface Forum, “MPI: A Message
Passing Interface Standard,” The International
Journal of Supercomputer Applications and High
Performance Computing, Vol. 8, 994.

[21] MVICH: MPI for Virtual Interface Architecture,
Berkeley Lab:
http://www.nersc.gov/research/FTG/mvich/.

[22] T. Mehlan et al., “Providing a High-Performance
VIA-Module for LAM/MPI,” Parallel Computing in
Electrical Engineering, International Conference on
(PARELEC'04), September 07 - 10, 2004

[23] M. Bertozzi, M. Panella, and M. Reggiani, “Design
of a VIA based communication protocol for
LAM/MPI Suite,” 9th Euromicro Workshop on
Parallel Distributed Processing, Sept. 2001.

[24] R. Dimitrov and A. Skjellum, “An efficient MPI
implementation for Virtual Interface Architecture --
enabled cluster computing,” Proc. of the 3rd MPI
developer's and user's conference, Atlanta, Georgia,
March 1999.

[25] MPICH-A Portable Implementation of MPI:
http://www-unix.mcs.anl.gov/mpi/mpich/.

[26] Second Version of MPICH: http://www-
unix.mcs.anl.gov/mpi/mpich2/.

[27] MVAPICH: MPI for InfiniBand on VAPI Layer, Ohio
State University: http://nowlab.cis.ohio-
state.edu/projects/mpi-iba/

[28] H. Tezuka et al., “Pin-down Cache: A Virtual
Memory Management Technique for Zero-copy
Communication,” 12th International Parallel
Processing Symposium, Orlando, FL, March 1998.

[29] J. Liu et al., “Design and Implementation of MPICH2
over InfiniBand with RDMA Support,” International
Parallel and Distributed Processing Symposium
(IPDPS 04), 2004

[30] R. Grabner, F. Mietke, and W. Rehm, “An MPICH2
Channel Device Implementation over VAPI on
InfiniBand,” Proc. of CAC'04, Workshop on
Communication Architecture for Clusters held in
conjunction with IPDPS 2004, April 26-30 2004,
Santa Fe, New Mexico.

[31] N.J. Boden et al., “Myrinet: A gigabit-per-second
local area network,” IEEE Micro, 15(1):29-36,
February 1995.

Chulho Won received BS in
Electrical Engineering from
Korea Aerospace University, MS
in Electrical Engineering from
KAIST (Korea Advanced
Institute of Science and
Technology), and Ph.D. in
Computer Engineering from
Oregon State University, in 1985,

1987, and 2004, respectively. He was a senior technical
staff at ETRI (Electronics and Telecommunications
Research Institute) between 1987 and 1998. He is an
Assistant Professor of Electrical and Computer
Engineering Department at California State University,
Fresno. His current research interests include networked
embedded systems, large-scale wireless sensor networks,
and computer networks.

Ben Lee received his B.E. degree
in Electrical Engineering in 1984
from the Department of Electrical
Engineering at State University
of New York (SUNY) at Stony
Brook, and his Ph.D. degree in
Computer Engineering in 1991
from the Department of Electrical
and Computer Engineering at the
Pennsylvania State University.

He is currently an Associate Professor of School of Electri-
cal Engineering and Computer Science at Oregon State
University. He has published over 70 conference proceed-
ings, book chapters, and journal articles in the areas of em-
bedded systems, computer architecture, multithreading
and thread-level speculation, parallel and distributed sys-
tems, and wireless networks. He received the Loyd Carter
Award for Outstanding and Inspirational Teaching and the
Alumni Professor Award for Outstanding Contribution to
the College and the University from the OSU College of
Engineering in 1994 and 2005, respectively. He
also received the HKN Innovative Teaching Award from
Eta Kappa Nu, School of Electrical Engineering and Com-
puter Science, 2008. He has been on the program and
organizing committees for numerous interna-
tional conferences, including 2000 International Confer-
ence on Parallel Architecture and Compilation Technique
(PACT), 2001 and 2004 IEEE Pacific Rim Dependable
Computing Conference (PRDC), 2003 International Con-
ference on Parallel and Distributed Computing Systems
(PDCS), 2005-2008 IEEE Workshop on Pervasive Wireless
Networking (PWN), and 2009 IEEE International Confer-
ence on Pervasive Computing and Communications. He
is currently the Workshop Chair for PerCom 2009. He
was also an invited speaker at the 2007 International Con-
ference on Embedded Software and System. His research
interests include embedded systems, computer architecture,
multithreading and thread-level speculation, parallel and
distributed systems, and wireless networks.

44 Eager Data Transfer Mechanism

Kyoung Park received the M.E.
degree in Computer Engineering
from ChonBuk National Univer-
sity, Korea and the Ph.D. degree
from Korea University, Korea in
1993 and 2008, respectively. He
joined Electronics and Telecom-
munications Research Institute
(ETRI) in Daejeon, Korea in 1993
and he is serving as a section head

of software & contents future technology research team.
He developed main memory subsystem of a SMP system
called TICOM-III, router switch of a high performance par-
allel system called SPAX, on-chip multiprocessor called
Raptor, and InfiniBand HCA (Host Channel Adapter).
Recently, he has been involved with developing Ubiquitous
Service Platform as a system architect and a hardware de-
signer. His main interest is computer architecture with a
focus on multiprocessor, memory hierarchy, and advanced
I/O architecture for next generation computing.

Myung-Joon Kim received the
B.S. degree from Seoul Na-
tional University, Korea, the
M.S. degree from KAIST (Ko-
rea Advanced Institute of Sci-
ence and Technology) and the
Ph.D. degree from University
of Nancy I, Nancy France in
1978, 1980, and 1986, respec-

tively, all in computer science. He joined ETRI in
1986 and has worked for the development of system
software technologies especially database systems and
distributed system technologies. He served as head of
Database Section (1989-1992). In 1993, he worked at
University of Nice Sophia-Antipolis, France as a visit-
ing professor. He also served as Head of Software
Engineering Section (1994), Director of System Soft-
ware Department (1995-1997), Director of Internet
Service Department (1998-1999), Vice President of
Computer & Software Technology Laboratory (2000-
2001), Director of Contents Technology Department
(2001), Director of Computer System Department
(2002-2003) and Director of Internet Server Group
(2004-2008). Currently, he is a Vice President of
R&D Strategy Planning Division. His current research
interests include database system, real-time event proc-
essing, open source software technologies and their
deployment for new Internet applications such as
ubiquitous computing platform and next generation
software architecture.

