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Abstract

This paper presents the implementation and performance of a hardware-VIA-based
network adapter on Gigabit Ethernet. VIA is a user-level communication inter-
face for high performance PC clustering. The network adapter is a 64-bit/66MHz
PCI plug-in card containing an FPGA for the VIA Protocol Engine and a Gigabit
Ethernet chip to construct a high performance system area network. The network
adapter performs virtual-to-physical address translation, doorbell, RDMA write,
and send/receive completion operations in hardware without kernel intervention. In
particular, the Address Translation Table (ATT) is stored on the local memory of
the network adapter, and the VIA Protocol Engine efficiently controls the address
translation process by directly accessing the ATT. In addition, Address Prefetch
Buffer is used to reduce the time of address translation process in the receiver. As a
result, the communication overhead during send/receive transactions is greatly re-
duced. Our experimental results show a minimum latency of 8.2 µs, and a maximum
bandwidth of 112.1 MB/s. In terms of minimum latency, the hardware-VIA-based
network adapter performs 2.8 times and 3.3 times faster than M-VIA, which is a
software implementation of VIA, and TCP/IP, respectively, over Gigabit Ethernet.
In addition, the maximum bandwidth of the hardware-VIA-based network adapter
is 24% and 55% higher than M-VIA and TCP/IP, respectively. These results show
that the performance of HVIA-GE is far better than that of ServerNet II, which is
a hardware version of VIA developed by Tandem/Compaq.
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1 Introduction

As cluster computing becomes more popular due to the increase in network
speed and the enhanced performance of computing nodes, a significant effort
has been made to reduce the communication overhead between cluster nodes
to maximize the overall performance. In particular, there have been much re-
search efforts in user-level communication to minimize the kernel intervention,
such as context switching and data copy between protocol layers. Examples
include Active Messages [1], Fast Messages [2], VMMC [25], U-Net [3], and
VIA [4]. Among them, Virtual Interface Architecture (VIA) was proposed
to standardize different features of existing user-level protocols for System
Area Networks (SANs). VIA can be implemented in either software or hard-
ware. Successful implementations include M-VIA [5], Berkeley VIA [6], Firm
VIA [16][17], ServerNet II [7] and cLAN [8]. Recently, InfiniBand Architec-
ture (IBA) [18] which evolved from VIA, has been presented and a number of
related works have been published [28][29]. In contrast to VIA, IBA has spe-
cific definitions for interconnections such as links, routers and switches. IBA
products such as host and target channel adapters and InfiniBand switches
are available from Mellanox Technologies [28].

Since VIA is a very flexible specification to implement, the prior work on
VIA have different design approaches and various network platforms. In this
paper, Gigabit Ethernet is adopted as an underlying network to construct a
VIA-based PC cluster. Since Gigabit Ethernet is a standard high-speed net-
work for LANs, it has an advantage in terms of cost when compared with
proprietary high performance networks, such as Myrinet [9] and InfiniBand.
Moreover, when VIA is adopted as a user-level interface on Gigabit Ethernet
based clusters, most of the low-level bandwidth can be redeemed at the appli-
cation level by removing the time consuming TCP/IP protocol. Recently, there
have been a number of efforts to implement software versions of VIA based
on Gigabit Ethernet using either M-VIA or Berkeley VIA [11][12][13][15].

On the other hand, Tandem/Compaq developed a hardware version of VIA,
called ServerNet II [7], using Gigabit Ethernet as a physical network. ServerNet
II uses its own switches that support wormhole routing with 512-byte packets
to connect cluster of nodes. ServerNet II has a minimum latency of 12 µs
for 8-byte data and a bandwidth of 92 MB/s for 64 KB data using RDMA
(Remote Direct Memory Access) writes on a single Virtual Interface channel.
Although, the specific details of the implementation were not reported, the
address translation table was not implemented in hardware because there is
no memory on the card. cLAN is also a hardware implementation of VIA [8],
which has a minimum latency of 7 µs and a maximum bandwidth of 110 MB/s.
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Although cLAN shows better performance than ServerNet II, it is based on
an expensive proprietary network, similar to Myrinet and InfiniBand.

This paper presents the design and implementation of HVIA-GE, which is a
H ardware implementation of VIA based on G igabit E thernet. HVIA-GE is
a PCI plug-in card based on 64-bit/66MHz PCI bus. An FPGA was used
to implement the VIA Protocol Engine and a Gigabit Ethernet chip was
used to connect the VIA Protocol Engine to Gigabit Ethernet. HVIA-GE
performs virtual-to-physical address translations, send/receive operations in-
cluding RDMA, and completion notifications fully in hardware without any
intervention from the kernel. In particular, the Address Translation Table
(ATT) is stored in the local memory of the HVIA-GE card, and the VIA Pro-
tocol Engine efficiently performs the virtual-to-physical address translations.
In addition, Address Prefetch Buffer is used to reduce the time of address
translation process in the receiver. The PCI logic was directly implemented
on the FPGA rather than using a commercial chip to minimize the latency of
DMA initialization. The HVIA-GE cards can be connected to Gigabit Ether-
net switches developed for LANs to form a cluster; therefore, a high perfor-
mance but low cost cluster system can be easily constructed.

This paper is organized as follows. Section 2 briefly overviews VIA, and Section
3 describes the implementation details of HVIA-GE. Section 4 discusses the
experimental results of HVIA-GE. Finally, section 5 provides a brief conclusion
and a description of future work.

2 VIA Overview

VIA supports low-latency, high-bandwidth communications on SANs. Figure 1
shows the organization of the VI Architecture. VIA uses the Virtual Interfaces
(VIs) to reduce the communication overhead. A VI for each node functions as
a communication endpoint, and VIs generated between two nodes establish a
virtual communication channel. VI Kernel Agent provides the necessary ker-
nel services, which include connection management and memory registration,
to establish VI connections between nodes. VI User Agent provides routines
for data transfer, connection management, queue management, memory reg-
istration, and error handling.

Each VI contains a Work Queue (WQ), which consists of a Send Queue and
a Receive Queue. A send/receive transaction is initiated by posting a VI de-
scriptor on the WQ, and the Network Interface Card (NIC) is notified of the
send/receive transaction using a doorbell mechanism. Each VI descriptor con-
tains all the information the NIC needs to process the corresponding request,
including control information and pointers to data buffers. Then, the NIC per-
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forms the actual data transfer using DMA without any interference from the
kernel. The send/receive transaction is completed when the VI descriptor’s
done bit is set and the Completion Queue (CQ) is updated by setting the
corresponding VI descriptor handle.

The VIA standard provides two types of communication methods: the tra-
ditional send/receive and the RDMA read/write. In case of the RDMA, the
initiator node of the RDMA operation specifies the virtual address of the local
and remote memory to be read or written. Then, data on the remote node can
be read or written without intervention from the remote processor. The mem-
ory region used for data transfer must be pinned down when it is registered
to prevent it from being swapped out during send/receive or RDMA. Thus,
the NIC can read/write data to the memory region safely and directly.

The VIA supports three levels of communication reliability: unreliable delivery,
reliable delivery, and reliable reception. Unreliable delivery only guarantees
that a send or an RDMA write is delivered at most once to the receiving side.
A reliable delivery guarantees that all data will arrive at its destination exactly
once, intact, and in order. In reliable reception, a data transfer is successful
only when the data have been delivered to the target memory location. This
reliability level is an attribute of a VI and only VIs with the same reliability
level can be connected. Support for reliable delivery and reliable reception is
optional as defined by the VIA specification 1.0 [4]. Thus, our implementation
is based on unreliable delivery.
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Fig. 1. VI architecture

3 Implementation of HVIA-GE

There are many possible approaches for implementing the mechanisms of WQ,
CQ, doorbell, and address translation [14][16]. While it is possible to imple-
ment them in either software or hardware, the choice depends on both the
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performance needs and cost. Even if a hardware implementation is chosen,
there are many ways to implement each component.

Our implementation of the major components of VIA is based on the following
motivations. First, it is not possible to store all the VI descriptors of WQ on
the local memory of the HVIA-GE card because the number of VI descrip-
tors can increase greatly depending on the characteristics of each application.
Therefore, WQ is stored in the host memory but the VI descriptors that are
currently being processed are copied and stored in HVIA-GE until the cor-
responding send/receive transactions are completed. Second, the send/receive
completion notification mechanism is implemented only using the ”done bit”
in the status field of the VI descriptor. If CQ is to be used for the completion
notification mechanism, it would be necessary to maintain CQ on the host
memory together with WQ, which will result in an extra DMA operation to
update the corresponding VI descriptor in CQ. Third, the doorbell mechanism
that notifies the start of a send/receive transaction is implemented using regis-
ters in the HVIA-GE card. Finally, since every send/receive operation requires
a virtual-to-physical address translation, ATT is stored on the local memory
implemented on the HVIA-GE card. This allows the VIA Protocol Engine to
efficiently control the address translation process based on the ATT.

Figure 2 shows the block diagram of the HVIA-GE card, which is a network
adapter based on 64-bit/66MHz PCI bus. The PCI interface logic, the VIA
Protocol Engine, the SDRAM controller, and the Gigabit Ethernet controller
are all implemented using an FPGA running at 66 MHz. The PCI interface
logic is implemented directly on the FPGA, rather than using a commercial
chip, such as PLX Technology’s PCI 9656 [22], to minimize the latency of
the DMA initialization. If a commercial PCI chip is adopted, a local bus is
necessary to connect the PCI chip with the VIA Protocol Engine. Thus, the
latency will increase since the information needed for the DMA initialization
has to move through the local bus. Intel’s Gigabit Ethernet Controller with
integrated PHY (82544EI) is used to connect the card to Gigabit Ethernet
[21]. On the software side, the Virtual Interface Provider Library (VIPL) and
the device driver were developed based on Linux kernel 2.4. The following
subsections provide the specifics of the HVIA-GE implementation.

3.1 VIA Protocol Engine and Gigabit Ethernet Controller

Figure 3 presents the VIA Protocol Engine and the Gigabit Ethernet Con-
troller (GEC), which are the core modules of HVIA-GE. The VIA Protocol
Engine consists of Send/Receive FIFOs, ATT Manager, Protocol Manager,
RDMA Engine, Doorbells, and local memory controller. It processes VIPL
functions delivered to HVIA-GE through the PCI bus. In the case of VipReg-
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Fig. 2. HVIA-GE Card block diagram

isterMem, which is the VIPL function used to perform memory registration
of a user buffer, the user buffer’s virtual address, physical address, and size
are sent to HVIA-GE as function parameters. The ATT manager receives in-
formation regarding the user buffer (i.e., virtual and physical addresses) and
stores them on ATT.

When a send/receive request is posted to a send/receive queue, HVIA-GE
is notified through the doorbell mechanism, and obtains the corresponding
VI descriptor via DMA. Then, the VIA Protocol Manager reads the physical
address of the user data through the ATT Manager. If the current transaction
is a send, it initiates a DMA read operation for the user data in the host
memory and transfers the data to the Tx buffer in the GEC via the Send
FIFO. A send/receive transaction can also be implemented using RDMA,
which enables a local CPU to read/write directly from/to the memory in
a remote node without intervention of the remote CPU. An RDMA can be
implemented as either RDMA read or RDMA write. If RDMA read is used,
the local CPU must first send the request and then wait for the requested
data to arrive from the remote node. Therefore, RDMA Engine in HVIA-GE
is based on RDMA write, which is more advantageous in terms of latency.

Since HVIA-GE directly drives the Medium Access Control (MAC), GEC
basically functions as a device driver for the MAC. GEC processes the ini-
tialization, transmit/receive, MAC management routines, and interfaces with
the MAC using PCI. Although accessing the MAC directly complicates the
design of the GEC and its internal buffers, the elimination of device driver

6



SDRAM 

Controller Send FIFO & 

Recv FIFO 

TX/RX Desc. 

Buffer & 

TX/RX Buffer

TX/RX 

Descriptor 

Controller 

TX/RX 

Buffer 

Controller 
Gigabit 

Ethernet 

Controller 

MAC PCI Bus 

PCI interface 

ATT 

Manager 
Doorbell 

VIA Protocol Manager 

VIA Protocol 

Engine  RDMA Engine 

PCI interface 

System PCI Bus 

Fig. 3. VIA Protocol Engine & GEC block diagram

access reduces the initialization overhead and the actual transmission time.

The operations of GEC are as follows: When a send transaction is executed,
Tx Descriptor Controller receives the size of the data to be transmitted and
the address of the remote node from the VIA Protocol Engine, and produces
a Tx descriptor. Meantime, Tx Buffer Controller adds the header information
to the data received from the Send FIFO, stores the packet on the Tx Buffer,
and informs MAC of the start of a transmission. Then, MAC reads the packet
from the Tx Buffer and transfers it to the PHY. On the other hand, when
a new packet arrives from a remote node, MAC refers to the corresponding
Rx descriptor stored previously, transfers the data packet to the GEC’s Rx
Buffer, and updates the Rx descriptor. Afterwards, Rx Descriptor Controller
determines that the packet has been received by polling the Rx Descriptor,
and forwards the data to the Receive FIFO. Finally, the data is DMAed to
the host memory.

3.2 Address Translation

During a VIA send operation, the user data is transmitted directly from the
sender’s user buffer to the receiver’s user buffer without producing a copy
in the kernel memory. To support this zero copy mechanism, the following
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features must be implemented. First, once a user buffer is allocated for a
send/receive operation, the virtual and physical addresses of the user buffer
must be obtained and sent to ATT on the HVIA-GE card using PIO. Sec-
ond, the user buffer must be pinned down when it is registered to prevent it
from being swapped out during send/receive operations. In our implementa-
tion, one of the Linux kernel’s features, KIOBUF (kernel I/O buffer) [20], is
used to pinned down the user buffer. KIOBUF is an efficient mechanism to
implement reliable memory locking [19]. KIOBUF makes it possible to map
the virtual address of the allocated user buffer to the kernel area by calling
the map user kiobuf function. Then, the user buffer is pin down by using the
lock kiovec function of KIOBUF. The virtual address and the corresponding
physical address of the user buffer obtained during the pin down process are
saved on ATT of the HVIA-GE card.

Figure 4 shows the ATT structure implemented in HVIA-GE. ATT is divided
into ATT Level 1 and ATT Level 2. Each 24-byte entry of ATT Level 1
corresponds to one of the allocated user buffers, which includes the number of
physical pages of the user buffer, the virtual address and the size of the first
page, and ATT Level 2 pointer. In addition, ATT Level 1 stores the memory
attributes needed for memory protection checking and RDMA read/write.
ATT Level 2 stores the physical addresses (4-byte each) of all the allocated
pages for the corresponding user buffer.
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Since ATT is implemented on the HVIA-GE card, it is important to acquire
enough space for the table and provide an efficient access mechanism. In our
implementation, a 64 MB SDRAM is used to store the ATT. If ATT supports
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1024 VIs and each VI uses one user buffer, then SDRAM can support up to 60
MB of user buffer for each VI. If only one page (4 KB) is allocated for each user
buffer, SDRAM can support more than 2.4 million user buffers. Therefore, the
capacity of ATT should be sufficient to support most practical applications.

The access mechanism to ATT operates as follows. The kernel agent assigns
a unique memory handle number to each user buffer in a linear fashion when
it is allocated. An ATT Level 1 entry is also assigned in the same fashion by
consulting the memory handle of the user buffer. Thus, the address of the entry
can be calculated by multiplying the memory handle number by the entry size.
The current ATT Level 2 pointer is calculated by adding the previous ATT
Level 2 pointer to the number of the pages of the previous entry.

After a send/receive request is posted, HVIA-GE obtains the corresponding
VI descriptor from WQ via DMA. The VI descriptor includes the correspond-
ing memory handle and the virtual address of the user data. Then, the VIA
Protocol Engine reads the corresponding ATT Level 1 entry using the memory
handle. This requires only one SDRAM access to read the entire 24-byte entry
in burst mode. The target address for the physical address at ATT Level 2 is
determined by adding the ATT Level 2 pointer in the entry to the offset of
the given virtual address. When a user buffer is allocated on the host mem-
ory, the start address of the user buffer can be at any place in the first page,
which is indicated by the size of the first page in the entry. Thus, the size
of the first page in the entry must be considered to properly determine the
correct target address of ATT Level 2. Finally, the physical address of the user
data is obtained by adding the physical address found at ATT Level 2 to the
offset of the given virtual address. Therefore, the virtual-to-physical address
translation can be processed using two SDRAM accesses.

Unlike the approach described here, it is also possible to implement ATT
on the host memory. In this case, the VIA Protocol Engine has to access
ATT via DMA reads. Although this method has an advantage in terms of the
hardware cost, it takes about three times longer to access ATT on the host
memory than SDRAM on the HVIA-GE card. Since ATT needs to be accessed
for each send/receive operation, this overhead is significant, particularly when
an application involves frequent communications between nodes in a cluster.
More importantly, since ATT is copied from the host memory to SDRAM
during memory registration in our implementation, this cost is not incurred
during the actual send/receive operations.

Our design focused on minimizing the address translation overhead by re-
moving the kernel intervention and the host memory accesses. However, it is
possible that user buffers are deregistered as an application runs. This may
cause fragmentation at ATT Level 2, and thus, some type of memory com-
paction scheme is needed.
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3.3 Send/Receive vs. RDMA Write Operations

It is well known that the performance of an RDMA write operation is supe-
rior to that of a send/receive operation [30]. The reason is that for RDMA
write operation the sender adds the virtual address of a remote node’s user
buffer to the address segments of the VI descriptor. Therefore, when a data
packet arrives, the receiver performs address translation using only the vir-
tual address information provided by the sender. However, in the case of a
send/receive operation, the receiver needs to first call the VipPostRecv func-
tion. That is, the receiver has to create and post a VI descriptor, process the
address translation, write data to the user buffer, and process completion for
the VI descriptor. Therefore, the send/receive operation has extra overhead
at the receiver causing the difference in performance.

However, the send/receive operation can be improved by modifying the ad-
dress translation process in the receiver using the VI descriptor information
generated by VipPostRecv. Since a receive operation calls VipPostRecv, the VIA
Protocol Engine can determine the data size and the virtual address for the
user buffer in advance. Then, the VIA Protocol Engine calculates the physical
address of the user buffer using the virtual address and stores the physical ad-
dress in an Address Prefetch Buffer, which can be accessed directly. Therefore,
the time of address translation is reduced at the receiver.

The Address Prefetch Buffer contains entries to store two physical addresses.
This is because the received data is in the form of an Ethernet packet and one
packet can be stored in two pages. When the VIA Protocol Engine completes
the processing of the current packet, it generates the two physical addresses
of the next data packet in advance and stores them in the Address Prefetch
Buffer. This is completed before the next data packet arrives. When the data
arrives, the VIA Protocol Engine writes the data to the user’s buffer using the
addresses in the Address Prefetch Buffer instead of ATT.

RDMA write operations cannot take advantage of the Address Prefetch Buffer
because the receiver does not know in advance the virtual address of the user
buffer. Thus, it only improves the speed of address translation at the receiver
for send/receive. Note that the sender’s data transmission rate does not change
because the Address Prefetch Buffer is only applied to the receiver, and the
arrival times of data packets at the receiver are the same as before. Therefore,
the performance advantage of the Address Prefetch Buffer is seen only for the
last data packet, and the performance improvement is uniform regardless of
data size. However, its effect can be significant for small message transfers,
compared with no Address Prefetch Buffer.
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3.4 Doorbell and Completion Mechanism

A doorbell is a notification mechanism that allows user processes to inform the
network adapter when new send/receive transactions are posted. In existing
software implementations, such as M-VIA, a doorbell is set by marking the
doorbell region allocated in the user address space of the host memory, or by
marking a flag in the corresponding VI descriptor. For the hardware imple-
mentation, a considerable amount of time will be required if the VIA Protocol
Engine has to poll the doorbell region in the host memory, especially when
many send/receive transactions are posted. In our design, the doorbell region
is implemented using registers in the HVIA-GE card and user processes are
allowed to access the region. Therefore, a user process can set the doorbell
on the card as soon as a VI descriptor is posted to WQ. Consequently, the
VIA Protocol Engine can quickly determine when a new send/receive request
is posted by polling the doorbell, thereby reducing the latency.

There are two possible ways to implement the completion mechanism of a
send/receive operation. First, it can be implemented by setting the done bit
in the VI descriptor’s status field and updating the corresponding VI descrip-
tor in the CQ. Second, it can be implemented using only the done bit. If the
second method is used, CQ is not involved in the completion mechanism and
VipCQDone/Wait is not necessary. Moreover, the first method requires an ad-
ditional DMA to update the VI descriptor in the CQ, and thus the second
method was adopted in HVIA-GE. The user can then recognize completions
by using polling functions (VipSendDone/VipRecvDone) or blocking functions
(VipSendWait/VipRecvWait). Polling can recognize completions more rapidly
because there is no interrupt processing overhead. However, CPU utilization
degrades as data size grows. Therefore, blocking is more effective for large
message transfers.

4 Experimental Results

The performance of the HVIA-GE card was evaluated using two 2 GHz Opteron
246 PCs with 64-bit/66MHz PCI bus [23]. The PCs were running Fedora
core 1 for x86 64 with Linux kernel 2.4.22. In addition, for comparison pur-
poses, the performances of TCP/IP and M-VIA were measured using an Intel
PRO/1000 MT Gigabit Ethernet card [24]. This card includes Intel’s Gigabit
Ethernet Controller with integrated PHY (82544EI), which is the same chip
with HVIA-GE’s. Latency and bandwidth of the HVIA-GE were measured
using a ping-pong program developed using VIPL. The performance of the M-
VIA was measured using the vnettest program included, by the distributors,
with the M-VIA. The performance of TCP/IP was measured by modifying
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the vnettest program using the socket library.

4.1 Performance comparison of HVIA-GE, M-VIA, and TCP/IP

4.1.1 Latency and bandwidth

Figures 5 and 6 show the latency and the bandwidth results of HVIA-GE,
M-VIA, and TCP/IP with an Ethernet MTU size of 1,514 bytes. The latency
reported is one-half the round-trip time and the bandwidth is the total message
size divided by the latency. The latency and bandwidth of the HVIA-GE were
measured using send/receive on a single VI channel.

The minimum latency results of HVIA-GE, M-VIA, and TCP/IP are 8.2 µs,
21.3 µs, and 27 µs, respectively. Therefore, the minimum latency of HVIA-
GE is 2.8 and 3.3 times lower than M-VIA and TCP/IP, respectively. The
maximum bandwidth results for 1 MB of user data are 112.1 MB/s, 90.5 MB/s,
and 72.5 MB/s for HVIA-GE, M-VIA, and TCP/IP, respectively. Therefore,
HVIA-GE attains 24% and 55% higher bandwidth than M-VIA and TCP/IP,
respectively.
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Fig. 5. Latency comparison

4.1.2 Small message transfer

Figure 7 shows the performance of send/receive operations for small messages,
which are typical in cluster systems. The results of the RDMA operations were
not included because the speed difference between send/receive and RDMA
was quite small. As a result of having hardware doorbell, address translation
using on-board SDRAM, pipeline data movement through the FIFOs, and fast
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completion mechanisms, the latency was less than 100 µs when the data size
was below 10 KB, and the performance was 1.5-3.5 times faster than M-VIA
or TCP/IP.
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4.2 Performance analysis of HVIA-GE

4.2.1 Latency analysis

The minimum latency analysis of HVIA-GE is shown in Figure 8. This analy-
sis is based on the send/receive mechanism with the Address Prefetch Buffer.
First, the time for posting a descriptor to the Send/Receive Queue (VipPost-
Send/VipPostRecv) is 0.9 µs. In the sender, the processing time required by the
VIA Protocol Engine and GEC is approximately 2.4 µs. During this period,
the VIA Protocol Engine reads a descriptor, calculates the physical address
and reads the user buffer. Then, GEC moves the data to the Tx buffer and no-
tifies the MAC to transmit the data, and at the same time, the VIA Protocol
Engine processes the completion mechanism. The data transmission time from
the Tx Buffer of the sender to the Rx Buffer of the receiver is approximately
3 µs. In the receiver, the time required for the VI descriptor generation and
address translation is not counted because those are performed at the same
time the sender creates the VI descriptor. The time required to transfer data
from Rx Buffer via the GEC and the VIA Protocol Engine to the host PCI
bus is approximately 1 µs, and completion time of a receive transaction is less
than 1 µs. If the address prefetch buffer is not used, the address translation
time in the receiver will be included in the latency. In our implementation, the
HVIA-GE card performs almost all of the send/receive processing; therefore,
that the time spent in the host is minimized.

� Posting on Send WQ (0.9 �s) 

� Process a VI descriptor 
� Address translation 
� Read data from user buffer 
� Move data to TX buffer 
� Send completion (2.4 �s) 

� Posting on Receive WQ  
� Process a VI descriptor 
� Address translation 
� Ready to receive Data Transmission 

(3 �s) 

Sender Receiver 

� Write data to user buffer 
� Receive completion (1.9 �s) 

Fig. 8. Latency analysis

4.2.2 Send/receive vs. RDMA

Performing address translation using SDRAM on HVIA-GE takes approxi-
mately 450 ns. If the address translation table is located on the host memory,
the time for address translation is slower by approximately a factor of three. In
addition, the Address Prefetch Buffer further reduces latency in a send/receive
transaction. Figures 9 and 10 show the effect of having the Address Prefetch
Buffer. Figure 9 shows the difference in latency between RDMA write and
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send/receive with and without the Address Prefetch Buffer. The average la-
tency difference between an RDMA and a send/receive with and without the
address prefetch buffer is 0.51 µs and 1.52 µs, respectively. Although these
differences are small for large messages, they are significant for small message
transfers. Figure 10 shows the performance ratio compared with RDMA. In
general, RDMA is faster than send/receive, but with the Address Prefetch
Buffer send/receive achieves performance similar to RDMA.
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80%

85%

90%

95%

100%

8B 16
B

32
B

64
B

12
8B

25
6B

51
2B 1K

B
2K

B
4K

B
8K

B
16

KB
24

KB
32

KB

Data Size

Pe
rf

or
m

an
ce

 R
at

io

RDMA vs. Send/Receive: Prefetch RDMA vs. Send/Receive: No Prefetch

Fig. 10. Performance ratio

4.2.3 Blocking vs. Polling

Figure 11 compares the latency of the two completion mechanisms: blocking
and polling. Latencies results for message sizes above 8 KB were excluded
because they were very similar. In case of blocking, the minimum latency is
14.1 µs and the average latency difference with polling is 5.2 µs, due to over-
heads for system calls, context switching, and interrupt processing. If small
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message transactions are used frequently, polling will be advantageous com-
pared to blocking in terms of latency. On the other hand, blocking is preferred
for larger messages because the performance is similar but CPU utilization is
greatly reduced.
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4.2.4 CPU utilization

Figure 12 shows the CPU utilization results for HVIA-GE with blocking, M-
VIA and TCP/IP. The elements that influence CPU utilization are the CPU’s
jobs, such as data copy, context switching, system calls and other tasks for the
CPU. CPU utilization for TCP/IP increases as data size grows, and becomes
saturated at 55%-60%. In the case of M-VIA, CPU utilization is almost 100%
when data size is below 4 KB, and saturated near 30%. This is because M-VIA
calls the polling function (VipSendDone) 50,000 times before suspending the
send/receive process [31]. For HVIA-GE, utilization decreases and saturates
to below 1% when data size increases to about 10 KB. As shown in Figure
8, almost all the task of a send/receive is processed in the HVIA-GE card.
The only portions that require CPU cycles are posting send/receive on WQ
and handling send/receive completion. Moreover, an RDMA write does not
necessarily require an explicit VipPostRecv in the receiver, therefore an RDMA
write is superior to a send/receive in terms of CPU utilization.
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5 Conclusions and Future Work

This paper presented the design and performance of HVIA-GE that imple-
ments the VIA protocol in hardware. The HVIA-GE card contains the VIA
Protocol Engine and a Gigabit Ethernet Controller, and supports virtual-to-
physical address translation, doorbell, RDMA write, and send/receive comple-
tion operations completely in hardware without intervention from the kernel.
In particular, the ATT is stored in the local memory on the HVIA-GE card and
the VIA Protocol Engine directly and efficiently controls the address transla-
tion process. In addition, the Address Prefetch Buffer reduces the time for the
address translation process at the receiver.

Our experiment with HVIA-GE showed a minimum latency of 8.2 µs, and a
maximum bandwidth of 112.1 MB/s. These results indicate that the perfor-
mance of HVIA-GE is much better than that of M-VIA, which is a software
implementation of VIA, and also better than that of ServerNet II, and com-
parable with cLAN. In addition, RDMA write is superior to send/receive not
only in terms of latency and bandwidth, particularly with data sizes below 10
KB, but also in terms of CPU utilization for applications that communicate
large data messages.

Currently, the HVIA-GE card is being tested with a video streaming server
and we are developing a zero-copy file transfer mechanism with RDMA using
the HVIA-GE. Unlike Direct Access File System (DAFS) [26][27], a user-
level file system based on VIA, our mechanism will provide simple and VIA-
like file transfer primitives without modifying the file system and is easily
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adaptable and reconfigurable to HVIA-GE. Also, the PCI interface of HVIA-
GE can be further upgraded to support PCI-X and PCI Express. With these
enhancements, the HVIA-GE card will be improved and practical for use in
Gigabit Ethernet-based cluster systems.
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