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Abstract
The Flexible Dual TCP-UDP Streaming Protocol (FDSP) combines the reliability of TCP with the low latency of UDP, thus 
providing transport layer improvements towards maintaining high QoE of multi-bitrate videos in adaptive streaming. FDSP 
delivers the more critical parts of the video data via TCP and the rest via UDP. FDSP also uses Bitstream Prioritization (BP), 
a sliding scale that determines the proportion of video data that is sent using TCP. BP can be adjusted according to the level 
of network congestion. FDSP-based streaming reduces total rebuffering time by over 90%, and rebuffering instances by 50% 
in many cases compared to TCP-based streaming. At the same time, packet loss reduces by over 75% for most BP levels 
compared to UDP-based streaming. In addition, FDSP-based streaming is potentially more suitable for adaptive streaming 
compared to the state-of-the-art TCP-based HTTP Adaptive Streaming (HAS), which is often plagued by high latency and 
high bandwidth requirements. In contrast, FDSP requires significantly less bandwidth than TCP in congested networks while 
exhibiting more stable client buffers.

Keywords Low latency streaming · Hybrid protocol · FDSP · DASH · Adaptive video streaming · QoE

1 Introduction

Global Internet traffic is projected to increase nearly three-
fold between 2016 and 2021, with video accounting for 
82% of the total traffic, of which 13% will be live video [1]. 
Currently, consumer video is dominated by High Defini-
tion (HD), but higher resolutions such as 4K are gaining 
mainstream popularity, with up to 10% market penetration in 
the US alone [2]. Furthermore, there is an increasing num-
ber of video streaming devices and platforms being added 
globally everyday. For instance, the current 2.7 billion LTE 

subscribers are expected to double by 2023, including 1 
billion 5G subscribers. All these factors will continue to 
increase global network congestion and pose even greater 
challenges to seamlessly delivering video at HD/4K resolu-
tion and beyond.

The unicast delivery model used in major Video on 
Demand (VoD) services such as Netflix, Hulu, and Amazon 
Video further exacerbates this situation. Since each client 
requests video directly from a server, the bandwidth require-
ments grow rapidly as the number of clients increases. VoD 
content providers have mitigated some of the increased 
bandwidth demands by decentralizing their infrastructure 
through Content Delivery Networks (CDNs), which brings 
proxy servers closer to end-users.

Another major development in streaming high quality 
video over networks with limited and varying bandwidth 
resources is HTTP Adaptive Streaming (HAS). In HAS, the 
client dynamically adjusts the video quality according to 
perceived network conditions by requesting video from a 
selection of different bitrate versions. That is, the higher the 
available bandwidth, the higher the selected video bitrate 
and its corresponding quality.

The HAS model introduces a number of factors that 
influence viewers’ Quality of Experience (QoE). These 
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include startup delay, rebuffering time and instances, 
bitrate switching frequency, and average video bitrate [3]. 
The main goal of improving QoE is minimizing startup 
delay and rebuffering as they have the greatest impact on 
viewers and are significantly affected by network conges-
tion and thus latency [4]. Startup delay in HAS is often 
20 seconds or more because two or more substreams, 
typically 10 seconds each, need to be buffered prior to 
playout [5]. Such a high startup delay is acceptable for pre-
recorded content (e.g., movies) as this maximizes a client’s 
video quality with reduced rebuffering. However, every 
1-second increase in startup delay increases the video 
abandonment rate by 5.8%, and viewing time decreases 
by 5.02% when rebuffering exceeds just 1% of the video 
duration. [4]. Furthermore, low latency is critically impor-
tant for live streaming as well as subscription-based live 
video services such as Internet Protocol television (IPTV), 
where channel switches need to be performed with hardly 
any noticeable delay.

Transmission Control Protocol (TCP) is the underlying 
transport protocol of HAS, and it provides transport services 
such as reliable in-order delivery, congestion control, and 
flow control. As a result, applications which rely on TCP 
often experience high latency, and this adversely affects the 
HAS model as well. On the other hand, the User Datagram 
Protocol (UDP) is a low-latency alternative without the 
services provided by TCP. Our hybrid streaming protocol, 
called Flexible Dual TCP-UDP Streaming Protocol (FDSP), 
combines the reliability of TCP with the low latency of UDP 
through a simple application-layer combination, thus elimi-
nating special network-layer modifications or additional 
protocols [6–9]. This is especially important for media con-
tent providers who need to deploy videos to heterogenous 
networks and diverse devices. Our initial simulation studies 
of FDSP have shown that it is effective in improving direct 
device-to-device (D2D) streaming in a wireless local area 
network [6]. The basic FDSP was then improved by adding 
Bitstream Prioritization (BP), where a percentage of more 
important elements of the H.264 bitstream were prioritized 
via TCP transmission [7, 8]. This was followed by a study 
using a client-server VoD testbed, which showed that FDSP-
based streaming achieves lower latency and less packet loss 
than TCP-based and UDP-based streaming, respectively [9].

This paper extends the work in [9] to show that FDSP 
is a suitable protocol for future integration into the trans-
port layer of today’s overwhelmingly TCP-based adaptive 
streaming systems for VoD. Therefore, in addition to pro-
viding a discussion of FDSP in the context of video stream-
ing server-client systems, for completeness, this paper pre-
sents a performance comparison among FDSP, TCP, and 
UDP for multiple bitrate versions of videos in congested 
networks. Our study shows that FDSP utilizes significantly 
less bandwidth resulting in better QoE than TCP for different 

video bitrate versions. Therefore, FDSP has the potential for 
improving adaptive streaming in the following ways: 

1. FDSP can sustain a particular bitrate version of video 
longer than TCP in congested networks with less packet 
loss and rebuffering. This can decrease the frequency of 
bitrate switches and increase average video bitrate.

2. The FDSP client buffer is more stable than in TCP-based 
streaming. This provides the client with a more relia-
ble measure for assessing the available bandwidth and 
developing more accurate buffer-based adaptation algo-
rithms [10]. This is in accordance with the DASH imple-
mentation guidelines, which emphasizes the importance 
of a rate adaptation algorithm to smooth out fluctuations 
in available bandwidth [11].

The rest of this paper is organized as follows. Section 2 
provides a background of HAS, FDSP with BP, and UDP 
firewall traversal. Section 3 discusses the related work. Sec-
tion 4 describes the experiment setup using a physical test-
bed. This is followed by a discussion of the results in Sect. 5. 
Finally, Sect. 6 concludes the paper and discusses possible 
future work.

2  Background

2.1  HAS

Several HAS implementations exist, including propri-
etary ones such as Microsoft Smooth Streaming (MSS) 
[12], Adobe HTTP Dynamic Streaming [13], and Apple’s 
HTTP Live Streaming (HLS) [14], as well as the open-
source standard, Dynamic Adaptive Streaming over HTTP 
(DASH) [15]. In HAS, each video on the server is encoded 
into different bitrate versions called representations. Each 
representation is subdivided into 2–10-s segments. The basic 
idea is for a client to send an HTTP request to a server for 
a segment whose encoded bitrate can be supported by the 
current available bandwidth. The client adapts to the varying 
available bandwidth using a bitrate adaptation algorithm to 
request segments from different representations. In general, 
the higher the available bandwidth, the higher the bitrate of 
the requested segment.

Bitrate adaptation algorithms can be broadly classified 
into three major categories: client-side, server-side, and 
network-level [16]. This paper will focus on client-side 
algorithms, which can be further classified into throughput-
based, buffer-based, and hybrid [16]. In general, throughput-
based methods select video bitrates according to bandwidth 
estimation while buffer-based methods do so based on a tar-
get client buffer occupancy. Hybrid methods are a combina-
tion of the two. There is a growing consensus on the greater 
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importance of analyzing buffer occupancy compared to 
bandwidth estimation towards developing bitrate adaptation 
algorithms. For instance, Huang et al. demonstrated the inef-
fectiveness of bandwidth estimation [17], especially when 
there are competing flows, and proposed a buffer-based 
approach to bitrate adaptation [10]. Similarly, Spiteri et al. 
ignored bandwidth estimation in favor of buffer occupancy 
[18]. Furthermore, Yin et al. formulated an optimization 
model between buffer occupancy and bandwidth estimation, 
and found that their effectiveness for bitstream adaptation 
was limited by the latter [19]. Our study on FDSP-based 
streaming showed that it exhibits a more stable client buffer 
compared to TCP-based streaming. Therefore, FDSP pro-
vides a more reliable reference in the transport layer for 
designing better buffer-based bitrate adaptation algorithms. 
This is important, especially given the growing evidence of 
how unreliable bandwidth estimation can be.

2.2  FDSP overview

This section provides an overview of FDSP, including its 
architectural features and video streaming using substreams. 
For more details, see [6, 7] and [8]. FDSP is a hybrid stream-
ing protocol that combines the reliability of TCP with the 
low latency characteristics of UDP. Figure 1 shows the 
FDSP architecture consisting of a server and a client.

At the server, the H.264 Syntax Parser processes video 
data in order to detect critical H.264 video syntax elements 
(i.e., Sequence Parameter Set (SPS), Picture Parameter Set 
(PPS), and slice headers). The MPEG-TS Packetizer within 
the Demultiplexer (DEMUX) module then encapsulates all 
the data according to the RTP MPEG-TS specification. The 
DEMUX module then directs the packets containing critical 
data to a TCP socket and the rest to a UDP socket as Dual 
Tunneling keeps both TCP and UDP sessions simultaneously 

active during video streaming. The BP Selection module 
sets the Bitstream Prioritization (BP) parameter, which is 
a percentage of I-frame data that is to be sent via TCP in 
addition to the original critical data. At the client, the Mul-
tiplexer (MUX) sorts TCP and UDP packets based on their 
RTP timestamps. This reordering is essential for the H.264 
Decoder to decode incoming data correctly.

When a stream is initiated, the FDSP server transmits 
the packets for the first 10-second substream. All the TCP 
packets for this substream ( T

1
…T

n
 ) must be received (i.e., 

buffered) before playback begins. This startup delay ( T
init

 ) is 
low since only the TCP portion of the data is sent rather than 
the whole 10 seconds of video. To minimize rebuffering, 
the TCP packets for the next substream are sent at the same 
time as the UDP packets ( U

1
…U

n
 ) for the current substream 

through a process called substream overlapping as illustrated 
in the transmission stream section of Fig. 2. In this particular 
example, note that the TCP packets for substream 2 are all 
transmitted together with UDP packets of substream 1. This 
is done before transmitting the UDP packets for substream 
2. Substream overlapping is repeated throughout the dura-
tion of the stream. However, when playback for a particular 
substream is complete and the TCP packets for the upcoming 
substream are not yet all available, the client has to wait, thus 

Fig. 1  Flexible dual TCP-UDP 
streaming protocol (FDSP) 
architecture [6]

T1 T2 … U1 U2 T1 U3 Tn…Tn Un

U1 U2 U3 T1 UnTnU4 …T1 . . .Tn

Substream 1 Substream 2

Substream 1

Playback

Tinit Tji�er

Playout deadline 
for substream 1

Transmission 
stream

Receiver 
stream

Substream 2

Fig. 2  Substream overlapping. Each packet is either UDP (U) or TCP 
(T), where the subscript represents the packet number within a sub-
stream
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causing a rebuffering instance. The playout deadline for all 
subsequent packets is then incremented by the rebuffering 
time.

2.3  UDP firewall traversal

FDSP’s TCP-UDP hybrid form is a useful and relevant tech-
nology for current innovations in HAS and video streaming 
transport in general. Even though HAS is primarily built on 
HTTP/TCP mainly due to HTTP’s ability to traverse network 
address translators (NATs) or firewalls [20], UDP-based 
technologies are also critical to supplementing the latest 
HAS systems, e.g., as in CDN-P2P architectures (see Sect. 3 
for more details on UDP-based streaming). As a result, there 
exist several UDP firewall traversal techniques.

For example, Peer5 offloads up to 98% of CDN band-
width [21] via Web Real-Time Communications (WebRTC), 
which is a popular open-source project that provides APIs 
for UDP-based peer-to-peer (P2P) connections. WebRTC 
provides a practical example of how UDP-based transport 
can traverse NATs. Similarly, UDP NAT Traversal can also 
be extended to additional networking scenarios including the 
UDP portion of FDSP streaming servers and clients.

For instance, consider two hosts within individual NAT-
protected private networks that wish to establish a UDP con-
nection. This could be a video server attempting to send a 
client UDP data via FDSP streaming. An intermediate well-
known globally reachable server can be used to establish 
UDP addresses and ports for both hosts prior to direct com-
munication. This is achieved using protocols such as Session 
Traversal Utilities for NAT (STUN), Traversal Using Relay 
around NAT (TURN), and Interactive Connectivity Estab-
lishment (ICE) [22]. Each host requests a public IP address 
and port number from a STUN server. This creates an exter-
nal NAT address that can be used for direct connections, 
including UDP, between the hosts. In some special cases 
(e.g., symmetric NATs), a proxy server connection for data 
transport is also needed via TURN. A host can build multi-
ple IP and port pair candidates for connecting to other hosts 
by making a series of requests to a STUN server. Finally, 
ICE determines the best candidate for creating a connection. 
STUN is preferred over TURN since it is faster and does not 
require a relay service.

3  Related work

TCP is the default transport protocol for HAS, but it exhibits 
shortcomings mainly due to latency. TCP’s reliable trans-
mission requires available bandwidth that is about twice the 
bitrate of video for satisfactory streaming performance [23]. 
In addition, the slow-start mechanism results in initial low 
throughput that requires pre-buffering as well as rebuffering 

when idle connections are restarted [24]. Furthermore, when 
congestion occurs, the sender retransmits TCP packets while 
halving the transmission rate. These factors result in low 
TCP throughput, which further jeopardizes low-latency 
streaming.

Since low latency is vital towards meeting the most sig-
nificant QoE metrics in HAS, i.e., startup delay and rebuff-
ering [4], several strategies have been proposed to either 
decrease latency or improve startup delay and rebuffering. 
For instance, reducing the segment size to just a few seconds 
is commonly used to decrease startup delay. However, this 
increases the total number of segments and, therefore, the 
number of client HTTP requests. These requests use pre-
cious bandwidth at a rate of one round-trip time (RTT) per 
video segment. For instance, a client that requests 2-s video 
segments on a network path with an RTT delay of 300 ms 
will experience 300 ms of additional delay every 2 s. FDSP 
drastically decreases latency by transmitting most of the data 
via UDP rather than HTTP/TCP.

Chakareski et al. used multiple TCP connections in con-
junction with Scalable Video Coding (SVC) [25] to decrease 
latency. Packets belonging to higher quality bitstreams in 
the SVC hierarchy were transmitted via better quality TCP 
connections. Therefore, these packets were less prone to 
retransmissions thus reducing delay in the transport layer. 
However, there is still potential for significant delay in the 
application layer due to buffering video segments (typically 
10-s). FDSP’s dual streaming significantly reduces applica-
tion layer delay by only buffering the TCP portions of future 
segments while streaming the UDP portion of the current 
segment. In addition, FDSP’s implementation is orthogonal 
to multipath-TCP schemes.

Swaminathan et al. used HTTP chunked transfer encoding 
to disrupt the correlation between latency and segment dura-
tion, particularly in live streaming [26]. This was done by 
using partial HTTP responses rather than waiting for com-
plete responses (i.e., full segments) to be generated by the 
server. Houze et al. also used HTTP chunked encoding, but 
to supplement an application layer multi-path TCP streaming 
scheme [27]. Here, video frames were subdivided in propor-
tion to network path speeds and reassembled by the client, 
thereby reducing latency and rebuffering. However, HTTP 
transfer chunked encoding can lead to extra overhead due to 
the increased volume of HTTP transfers. This is especially 
the case in congested networks, where timeout issues can 
occur when complete HTTP responses are not assembled 
punctually [28]. Rather than requiring chunked encoding, 
FDSP is readily compatible with basic HTTP while still 
reducing latency and rebuffering. At the same time, HTTP 
chunked encoding is an orthogonal issue and could option-
ally be implemented on FDSP.

Alternatively, HTTP/2 provides server push mechanisms 
that allow the client receives multiple video segments 
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per request instead of just a single segment [29–31]. This 
reduces the overall time needed for the client-server request-
response mechanism, thus reducing latency. However, 
HTTP/2 is not as widely available as the more established 
HTTP/1.1. HTTP/2 only has 15% worldwide deployment 
and, at a current growth rate of 5% additional coverage every 
year, it has a long way to go before becoming a widely rec-
ognized standard [32]. However, FDSP is a simple applica-
tion-layer combination of UDP and TCP, making it compat-
ible with HTTP/1.1. FDSP’s straightforward implementation 
also makes it compatible with HTTP/2.

UDP is well-suited for low-latency applications as it lacks 
the extra overhead necessary for TCP’s features, such as flow 
control and reliable delivery. However, UDP’s simplicity 
can result in packet loss, especially in congested networks. 
In addition, the lack of congestion control can lead to deple-
tion of network resources due to bandwidth over-utilization, 
placing UDP out of favor compared to TCP in the broader 
Internet landscape. Nevertheless, UDP’s low-latency offers 
an attractive option for contemporary HAS systems by sup-
plementing CDNs with UDP-based P2P networks [33, 34]. 
This helps content providers lower deployment and mainte-
nance costs [35]. At the same time, P2P networks improve 
live streaming latency by decreasing HTTP requests made 
to CDN servers [36, 37]. In fact, CDN caching can increase 
live streaming delay by 15-30 seconds [38]. CDN-P2P archi-
tectures have been commercialized for some time now by 
companies such as ChinaCache [33] and Akamai [34]. These 
hybrid architectures primarily rely on CDNs for HTTP-based 
retrieval of initial or critical video segments while using P2P 
networks for bandwidth relief or for retrieving future seg-
ments. Similarly, FDSP prioritizes the more important parts 
of the video bitstream via TCP while offloading the rest to 
UDP. Therefore, it can be integrated into a CDN-P2P-like 
framework, where the UDP portion of FDSP, in particular, 
can be reserved for a P2P network.

The work closest to ours is hybridization efforts at the 
transport layer to supplement the low latency and low over-
head of UDP with TCP-like features [39–42]. Velten et al. 
initially proposed the Reliable Data Protocol [39], which 
was designed to be a minimal variation of TCP for bulk 
data transfer with simplified flow control, buffering, and 
connection management. Bova and Krivoruchka followed 
this with the improved Reliable UDP (RUDP) [40]. RUDP 
extends UDP mainly by making some features mandatory, 
e.g., packet retransmissions, in-order delivery, and flow con-
trol. However, it is not standardized and is primarily limited 
to specific tasks, e.g., Microsoft’s proprietary version for its 
TV software, Mediaroom [41]. There are also several RUDP-
like protocols, but they are mostly application-specific. For 
example, Floyd et al. proposed the Datagram Congestion 
Control Protocol (DCCP), which adds congestion control to 
streaming media but without reliable in-order delivery [42]. 

FDSP is also a hybrid streaming protocol, in that the services 
it provides fall somewhere between pure TCP and pure UDP. 
However, FDSP has an advantage over other hybrid methods 
because it simply uses the existing TCP and UDP protocols 
without any modification to either.

More recently, Google has done work on an experimental 
transport protocol built on UDP called Quick UDP Internet 
Connections (QUIC) [43]. Its main goal is to improve the 
performance of TCP-based applications by reducing latency 
and connection time. This is achieved by customizing UDP 
with encryption support, real-time bandwidth estimation, 
and bitstream compression. However, QUIC has been shown 
to have higher protocol overhead than TCP at low video 
bitrates [44]. On the other hand, FDSP demonstrates good 
performance across a wide range of video bitrates, includ-
ing low ones.

4  Experiment setup

As in our previous work [9], the experimental testbed is 
shown in Fig. 3, which consists of a client-server pair and a 
traffic controller. The client and the server are each running 
VLC Media Player [45] on Mac OS X. The following modi-
fications were made to integrate FDSP with BP into VLC: 

1. Simultaneous streaming via UDP and TCP protocols.
2. Parsing H.264 video data at the server and subdividing 

it into TCP-bound and UDP-bound elements.
3. Reordering TCP and UDP packets and reconstructing 

the H.264 bitstream at the client prior to decoding.

The traffic controller, running on CentOS, connects the 
server to the client via a network bridge across interfaces 
eth2 and eth3, respectively. The Linux traffic control (tc) 
utility is then used to perform traffic control on the network 
bridge, which, in turn, sets the available bandwidth. The 
tc configures the Linux kernel primarily through queueing 
disciplines (qdiscs). A qdisc is an interface between the 
kernel and a network interface, where packets are queued 
and released according to tc settings. These settings are then 

Fig. 3  Experiment testbed. The client consumes video provided by 
the server, while the traffic controller sets the level of network con-
gestion
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used to create different levels of network congestion. For 
example, a loss setting drops packets from the qdisc accord-
ing to a specified percentage, while a delay setting prolongs 
the duration the packets spend in the qdisc.

This testbed provides a physical platform for two sets 
of experiments. The first is a fundamental video streaming 
comparison among the relevant protocols, i.e., FDSP, UDP, 
and TCP. This is used to corroborate our findings in favor 
of FDSP from our simulation-only device-to-device stud-
ies [6–8]. The second set of experiments are then used to 
explore the advantages of FDSP over TCP towards future 
integration into HAS. The rest of this section details each 
set of experiments, while the corresponding results are dis-
cussed in Sect. 5.

4.1  Basic comparison of FDSP, UDP and TCP

A summary of tc parameters used to compare the three pro-
tocols is shown in Table 1. The values chosen represent an 
array of Wide Area Network (WAN) scenarios that would 
typically plague Internet video streaming performance. The 
Delay setting, in conjunction with the other settings, was 
primarily used to generate five different levels of real-world 
Internet congestion [46]. The core network RTT latency1 is 
about 30 ms within Europe, 45 ms within North America, 
and 90 ms for Trans-Atlantic routes [47]. However, edge net-
works introduce additional latency. Therefore, Delay ranging 
from 25 to 125 ms in increments of 25 ms was used for each 
of the two bridged interfaces (eth2 and eth3), resulting 
in a total RTT latency of 50–250 ms in increments of 50 
ms. This corresponds to five different levels of congestion 
dictated by RTT latency, i.e., 50 ms, 100 ms, 150 ms, 200 
ms, and 250 ms. In addition, for each delay setting, the cor-
responding random Jitter value was set at 20% of the delay, 
while the Duplicate setting generates duplicate packets, e.g., 
due to retransmissions. The Loss setting causes a minimum 
ratio of packets to be randomly dropped by the network. The 

Corrupt setting introduces a random bit error in a speci-
fied percentage of the packets. Finally, the Reorder setting 
simulates multi-hop routing by further delaying a specified 
percentage of packets according to the Delay and Jitter set-
tings. For brevity, the Delay setting will be used to represent 
the 6-tuple settings.

The test videos used for streaming were two full HD 
(1920 × 1080 @30fps) 30-second clips from an animation 
video, Bunny, and a documentary video, Nature. These vid-
eos are encoded using x264 with an average bit rate of 4 
Mbps and four slices per frame. They were then streamed 
from the server to the client using FDSP, TCP, and UDP. 
For each streaming protocol, the five different levels of net-
work congestion were created via the network congestion 
settings. Furthermore, FDSP-based streaming was done for 
five different BP values (0%, 25%, 50%, 75%, and 100%) per 
congestion level. The general structure of the tc command 
applied to each interface is illustrated in the example below.
tc qdisc add dev eth2 root netem delay 

50 ms 10 ms loss 0.2% duplicate 0.2% 
corrupt 0.2% reorder 0.2%

4.2  Comparison of FDSP and TCP in multi‑bitrate 
streaming

For multi-bitrate streaming, the tc settings were chosen to 
control the amount of available bandwidth corresponding 
to different video bitrates. The general structure of the tc 
command applied to each interface is given by the example 
below:
tc qdisc add dev eth2 root tbf rate 

5mbit latency 50ms burst 625
The token bucket filter (tbf) is a packet queue model 

that releases tokens according the ratio between the rate 
parameter, i.e., the desired available bandwidth, and the ker-
nel frequency. The burst parameter must be set to at least 
this ratio in bytes. In this example, the rate is 5 Mbps and 
the kernel frequency is 1000 Hz for our testbed, which yields 
a burst of 625 bytes. A packet at the head of the queue is 
transmitted once there are enough tokens corresponding to 
the packet size in bytes.

The test videos consist of three sets of full HD (1920 
× 1080 @30fps) clips (approximately 2.5 min in length). 
They are Bunny2 (an animation), Bears (a documentary), 
and Hobbit (a movie trailer). Each video set includes three 
bitrate representations of 1 Mbps, 2 Mbps, and 4 Mbps. 
These videos were also encoded using x264 with four slices 
per frame. The videos were then streamed using FDSP and 
TCP in four different available bandwidth settings as shown 
in Table 2, which can be categorized as static and dynamic. 
The static settings indicate constant available bandwidth, 
while the dynamic settings include upper and lower limits 
of available bandwidth that oscillate with a 4-s duty cycle, 

Table 1  Network congestion settings for for tc 

Parameters Value(s)

Bridge interface eth2, eth3
Delay (ms) 25, 50, 75, 100, 125
Jitter (ms) 5, 10, 15, 20, 25
Loss 0.2%
Duplicate 0.2%
Corrupt 0.2%
Reorder 0.2%

1 RTT latency and RTT delay are used interchangeably.
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which is similar to the recommended network profiles pro-
vided by the DASH Industry Forum Guidelines [48].

Each category is further subdivided into congested and 
non-congested settings. Although our results are primarily 
focused on congested settings, the experiments were also 
repeated for non-congested settings for completeness. In our 
prior simulation studies, congestion was set at the average 
bitrate of the video, which proved sufficient. However, in 
our physical testbed, this severely hampered streaming, par-
ticularly with the addition of the traffic control latency 
parameter, which specifically refers to network latency. Our 
experiments showed that available bandwidth set at 25% 
above the average video bitrate provided sufficient conges-
tion for making useful comparisons between FDSP and TCP.

5  Results

This section discusses the results of our experiments. 
Sect. 5.1 analyzes the improvements of FDSP relative to 
both TCP and UDP in rebuffering and packet loss ratio 
(PLR) as BP increases from 0 to 100%. The corresponding 
tradeoffs are also discussed in detail. In summary, as BP 
increases, PLR decreases while rebuffering increases. Then, 
Sect. 5.2 shows why FDSP is more suitable than TCP for 
multi-bitrate streaming and, consequently, its potential as a 
transport protocol for improved adaptive streaming.

5.1  FDSP improvement over both UDP and TCP

Figure  4 shows an example of basic video streaming 
improvements of FDSP over TCP and UDP at 100 ms RTT 
delay for Nature and Bunny. Note that this and every other 
RTT delay setting is accompanied by corresponding tc 
parameters as described in Table 2 and Sect. 4.1. In gen-
eral, FDSP rebuffering time is significantly lower than TCP 

rebuffering time even though it increases with BP. At the 
same time, PLR also decreases within a particular range of 
BP. The other levels of network congestion chosen for our 
experiments (i.e., 50 ms, 150 ms, 200 ms and 250 ms) show 
similar results.

The rest of this subsection provides more details on 
results that demonstrate the fundamental improvements of 
FDSP over UDP and TCP, i.e., lower rebuffering and lower 
PLR, as well as the fact that there is an optimal range of BP 
that provides these improvements.

5.1.1  FDSP Improvement over TCP in Rebuffering

Reducing both rebuffering time and the number of rebuff-
ering instances is important towards improving the user’s 
QoE. Figure 5 shows the total amount of rebuffering time 
and instances for the different levels of network congestion. 
For each congestion level, rebuffering for FDSP is shown 
with different values of BP as well for TCP. For instance, 
for Nature with 150 ms RTT delay, FDSP rebuffering time 
ranges from 108 ms to 1616 ms, compared to 9410 ms 
in TCP. In addition, the number of rebuffering instances 
ranges from 2 to 3 for FDSP compared to 7 for TCP. Mean-
while, for Bunny with 150 ms RTT delay, FDSP rebuffering 
time ranges from 92 ms to 1441 ms with 2 to 6 instances, 
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Fig. 4  Rebuffering time and packet loss ratio (PLR) for FDSP, TCP, and UDP at 100 ms delay green colour indicates optimal range (colour fig-
ure online)

Table 2  Available bandwidth settings (Mbps) for comparing FDSP to 
TCP

Encoded Bitrate

1 Mbps 2 Mbps 4 Mbps

Static congested 1.25 2.5 5
Dynamic congested 1–1.5 2–2.5 4–6
Static non-congested 2 4 10
Dynamic non-congested 1.75–2.25 3–5 7.5–12.5
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compared to 8764 ms with 5 instances for TCP. The rest of 
the rebuffering results for the two videos are summarized 
in Tables 3 and 4. Note that the first rebuffering instance 
(Rebuff 1) is the startup delay. As can be seen, FDSP exhibits 
lower startup delay than TCP for all BP values.

While FDSP is significantly better than TCP in terms 
of rebuffering, it is important to note that rebuffering does 
increase with BP. This is because higher BP values result in 
more TCP data, which increases the chance of retransmis-
sions and thus rebuffering. A closer look at the behavior of 
just FDSP is illustrated by Fig. 6, which shows the rebuffer-
ing time and instances across the different network conges-
tion levels for each BP value.

5.1.2  FDSP improvement over UDP in PLR

FDSP-based streaming results in not only less rebuffering, 
but better video quality by reducing PLR. Figure 7 shows 
the effect of BP on PLR across different levels of network 

congestion for both Nature and Bunny. For each congestion 
level, PLR is shown for FDSP with different values of BP as 
well as for UDP. PLR can be minimized by increasing BP, 
which leads to better video quality. For example, in Nature, 
the PLR for 50 ms RTT delay decreases from 9 to 0.32% as 
BP increases from 0 to 75%. Similarly, in Bunny, the PLR 
decreases from 1.19 to 0.51% as BP increases from 0 to 25%. 
In addition, this implies that there is an optimal range of 
BP operation based on the type of video as shown in Fig. 4. 
As BP increases, more packets are sent via TCP rather than 
UDP. This protects them from network-induced losses. Since 
PLR is due to lost UDP packets, the overall PLR decreases 
as BP increases from 0% through the optimal range. Further 
details are discussed in Sect. 5.1.3.

Figure 8 shows a sample of the visual improvement of 
FDSP-based streaming with 0% BP over UDP-based stream-
ing in Bunny. The video frame in Fig. 8a is intact while 
the frame in Fig. 8b shows the effects of packet loss under 
UDP-based streaming. In such situations, the loss of just 
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Fig. 5  Rebuffering for different levels of network congestion for FDSP-based streaming at different values of BP and TCP-based streaming
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Fig. 6  An in-depth look at rebuffering time for different levels of network congestion at different values of BP. TCP has been omitted here as it 
has much higher rebuffering than FDSP
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a slice header or the first few bytes of a slice renders the 
rest of the slice data useless to the decoder, even if prop-
erly received. This results in the decoder performing error 
concealment on the lost data as shown in slice 4 of Fig. 8b. 
On the other hand, FDSP-based streaming, even at 0% BP, 
protects at least the slice headers through TCP transmission, 
thus making any available slice data useful to the decoder. 
As a result, FDSP produces better quality video frames as 
shown in Fig. 8a.

5.1.3  Optimal range of BP

Since overall rebuffering time is significantly lower in FDSP 
than TCP across all BP values as shown in Fig. 4, there is an 
optimal range of BP values for decreasing PLR as shown. 
If BP surpasses the optimal range and becomes too high, 
the network can become saturated with TCP packets. This 
will cause more packets to be delayed, reordered, or lost 
when there is network congestion. The TCP packets are then 
more prone to retransmissions so as to guarantee in-order, 

reliable delivery. Meanwhile, the IP queue at the sender is 
filled with staged TCP and UDP packets. These additional 
TCP packets in the IP queue then cause subsequent UDP 
packets to be dropped. This is the cause of most of the PLR 
when BP becomes too high. Note that additional PLR also 
occurs when some UDP packets arrive at the client too late, 
past the decoder’s playout deadline, and are thus also con-
sidered lost.

The frequency of I-frames can be used to categorize the 
type of video, and therefore determines the optimal range of 
BP. Videos such as Bunny are characterized by fast motion, 
many scene changes, and a corresponding higher number of 
I-frames. In fact, there are 37 I-frames in Bunny compared 
to just 5 in the low-motion Nature. UDP-based streaming 
PLR in low-motion videos is much lower than in high-
motion videos. For instance, as shown in Fig. 7, Nature has 
2.2–4.3% UDP-based streaming PLR across all congestion 
levels compared to 26.4–33.3% in Bunny. This is because 
Nature’s lower I-frame frequency reduces the likelihood of 
making network saturation worse.

 0

 5

 10

 15

 20

 25

 30

 35

 50  100  150  200  250

B
P

 0
%

B
P

 2
5%

B
P

 5
0%

B
P

 7
5%

B
P

 1
00

%
U

D
P

P
LR

 (
%

)

Delay (ms)

(a) Nature video

 0

 5

 10

 15

 20

 25

 30

 35

 50  100  150  200  250

B
P

 0
%

B
P

 2
5%

B
P

 5
0%

B
P

 7
5%

B
P

 1
00

%
U

D
P

P
LR

 (
%

)

Delay (ms)

(b) Bunny video

Fig. 7  PLR for FDSP-based streaming at different values of BP and UDP-based streaming for different levels of network congestion
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However, when low-motion videos are streamed via 
FDSP, the introduction of TCP packets at low BP values 
increases network saturation, thus increasing PLR. However, 
applying higher BP values (up to 75% in the case of Nature) 
lowers PLR significantly below that of UDP-based stream-
ing. On the other hand, low BP values (0–25% for Bunny) 
are effective towards minimizing PLR for high-motion vid-
eos. In both cases, BP values beyond the optimal range (> 
25% for Bunny and > 75% for Nature) will tend to saturate 
the network with TCP packets containing I-frame data and 
increase PLR. Nevertheless, PLR in this range is still less 
than that of UDP-based streaming. Determining an optimal 
BP range that minimizes PLR while keeping rebuffering low 
based on the type of video will be left as future work.

5.2  FDSP improvement over TCP for multi‑bitrate 
streaming

FDSP-based streaming improves the transmission of multi-
bitrate video representations for HAS in two ways: (1) lowers 
bandwidth requirements compared to TCP-based streaming 

and (2) maintains a more stable client buffer occupancy. The 
lower bandwidth requirement makes FDSP-based stream-
ing more suitable in congested networks. This also lays a 
foundation for more fairness when there is additional traf-
fic, including multiple video streams. At the same time, a 
more stable client buffer provides a reliable reference for 
developing buffer-based adaptation algorithms for adaptive 
streaming. The following discusses these two improvements 
in more detail.

5.2.1  Lower bandwidth requirement

Figure 9 shows the throughput results for the three sets of 
videos streamed via FDSP with 100% BP in static congested 
scenarios. The throughput profiles for the BP values 0%, 
25%, 50%, and 75% are very similar with minor proportional 
differences. FDSP-streaming required much less bandwidth 
than TCP-streaming in congested networks. For instance, the 
average throughput for Hobbit encoded at 4 Mbps was 2.87 
Mbps at 0% BP and 2.91 Mbps at 100% BP. The average 
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throughput was lower than the average encoded bitrate for 
two reasons: (1) packet loss reduced the overall amount 
of data; and (2) rebuffering lengthened the playback time 
and, therefore, increased the time value used in the average 
throughput calculations.

In contrast, TCP-based streaming utilized practically 
all of the available bandwidth. For example, the TCP 
throughput for 4 Mbps Bunny2 streamed on 5 Mbps of 
available bandwidth varied between ∼ 4.9 and 5 Mbps. 
This is due to a couple of reasons. First, even when there 
is no congestion, TCP streaming requires bandwidth that 
is about twice the average video bitrate as discussed in 
Sect. 3. Second, TCP transmission requires significantly 
more bandwidth than FDSP due to retransmissions. For 
instance, when streaming the 4 Mbps version of Bunny2 
in 5 Mbps of available bandwidth, 94,477 KB of video 

data was transmitted and received for FDSP-based stream-
ing compared to 155,441 KB for TCP-based streaming. 
This shows that FDSP would be more suitable for adap-
tive streaming in congested networks than TCP due to 
its lower bandwidth requirements. This would result in 
less bitrate switching, especially in congested networks. 
Furthermore, less bitrate down-switching would also raise 
the average bitrate.

FDSP-based streaming also exhibited very similar 
results for the dynamic congestion scenarios. However, the 
video completely stalled in the case of TCP-based stream-
ing. This is because pure-TCP throughput is adversely 
affected by the available bandwidth oscillation due to 
the inability of TCP slow-start to achieve a sufficiently 
large congestion window, which results in persistently 
low throughput and increased retransmissions. In contrast, 
FDSP’s UDP portion utilizes the oscillating bandwidth 

Table 3  Rebuffering time and instances for Bunny 

The percentage entries under protocol represent BP values for FDSP

Delay (ms) Protocol Rebuff 1 Rebuff 2 Rebuff 3 Rebuff 4 Rebuff 5 Rebuff 6 Total (ms) Instances

50 0% 8 85 – – – – 93 2
25% 12 2 114 – – – 128 3
50% 8 6 62 52 151 – 279 5
75% 122 3 7 23 3 68 226 6
100% 122 76 20 42 31 31 322 6
TCP 1147 – – – – – 1147 1

100 0% 9 73 – – – – 82 2
25% 10 154 – – – – 164 2
50% 6 473 – – – – 479 2
75% 465 237 – – – – 702 2
100% 9 159 249 358 – – 775 4
TCP 1090 – – – – – 1090 1

150 0% 9 83 – - - – 92 2
25% 25 65 105 – – – 195 3
50% 7 5 135 120 375 – 642 5
75% 479 51 158 584 118 371 1761 6
100% 34 706 26 142 40 493 1441 6
TCP 1941 755 1309 2114 2645 – 8764 5

200 0% 8 77 – – – – 85 2
25% 9 3 226 – – – 238 3
50% 33 5 129 11 665 – 843 5
75% 532 3 155 537 115 342 1684 6
100% 349 180 56 250 273 752 1860 6
TCP 2611 2813 4420 103 – – 9947 4

250 0% 60 171 – – – – 231 2
25% 8 68 177 – – – 253 3
50% 54 710 165 345 600 – 1874 5
75% 869 437 394 801 – – 2501 4
100% 175 196 85 210 934 1317 2917 6
TCP 3009 2626 2109 3376 3377 – 14497 5
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more effectively. Finally, neither FDSP nor TCP was nega-
tively affected by non-congested scenarios.

5.2.2  More stable client buffer occupancy

FDSP-based streaming showed more stable client buffer lev-
els than TCP-based streaming. Figure 10 shows the client 
buffer occupancy for all the test videos and encoded bitrates 
streamed via FDSP and TCP at different static congestion 
levels. In general, FDSP-based streaming shows a consist-
ent client buffer occupancy compared to more erratic results 
exhibited by TCP. This is the case for 0–100% BP for the 
videos encoded at 2 or 4 Mbps and 0–75% BP for the 1 Mbps 
videos. Since the client buffer behaves similarly for these BP 

ranges, the results for the highest respective BP values are 
shown in Fig. 10.

Among the three encoded bitrates, 1 Mbps videos 
exhibit the highest proportion of TCP data when streamed 
via FDSP. This is because most of the frames are so small 
that they have very little data beyond the slice headers. 
Consequently, protecting their slice headers via TCP trans-
mits almost all of the corresponding frame data via TCP. 
As a result, FDSP-based streaming and the correspond-
ing buffer occupancy at higher BP values (beyond 75%) 
greatly resembles TCP-based streaming for 1 Mbps videos. 
Therefore, the recommendation is to use the FDSP client 
buffer occupancy for buffer-based adaptation at the full 
BP range only when streaming at higher video bitrates. 
In this regard, lower video bitrates call for a more limited 
BP range. A scheme that maps a given video bitrate to the 
BP range that best leverages the buffer occupancy towards 

Table 4  Rebuffering time and instances for Nature 

The percentage entries under protocol represent BP values for FDSP

Delay (ms) Protocol Rebuff 1 Rebuff 2 Rebuff 3 Rebuff 4 Rebuff 5 Rebuff 6 Rebuff 7 Total (ms) Instances

50 0% 46 64 – – – – – 110 2
25% 117 10 – – – – – 127 2
50% 91 77 – – – – – 168 2
75% 141 100 115 – – – – 356 3
100% 253 53 – – – – – 306 2
TCP 948 – – – – – – 948 1

100 0% 26 100 – – – – – 126 2
25% 100 8 – – – – – 108 2
50% 156 7 – – – – – 163 2
75% 464 85 – – – – – 549 2
100% 505 467 – – – – – 972 2
TCP 1578 910 520 – – – – 3008 3

150 0% 37 71 – – – – – 108 2
25% 71 93 – – – – – 164 2
50% 104 10 289 – – – – 403 3
75% 789 85 130 – – – – 1004 3
100% 901 158 557 – – – – 1616 3
TCP 2112 1357 1129 1345 1507 1810 150 9410 7

200 0% 52 79 – – – – – 131 2
25% 9 116 – – – – – 125 2
50% 68 43 195 – – – – 306 3
75% 585 131 – – – – – 716 2
100% 1428 1335 911 – – – – 3674 3
TCP 2395 3012 4619 734 – – – 10760 4

250 0% 60 171 – – – – – 231 2
25% 27 54 – – – – – 81 2
50% 99 16 650 – – – – 765 3
75% 805 137 89 – – – – 1031 3
100% 1183 439 1623 – – – – 3245 3
TCP 3014 5023 4219 – – – – 12256 3
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buffer-based adaptation is beyond the scope of this experi-
mental study and reserved for future work.

6  Conclusion and future work

This paper shows that FDSP is suitable for high-quality, 
low-latency HD video streaming over the Internet by com-
bining the reliability of TCP with the low-latency of UDP. 
Our implementation and experiments on a real testbed 
showed that FDSP results in significantly less rebuffering 
than TCP-based streaming and much lower PLR than UDP-
based streaming.

Our testbed experiments also show that FDSP-based 
streaming outperforms TCP-based streaming of multi-bitrate 
videos in terms of lower bandwidth requirements and more 
stable client buffer occupancy. As a result, FDSP can be used 
to potentially improve QoE in adaptive streaming by reduc-
ing bitrate switches, increasing the average video bitrate and 
providing a platform for more precise buffer-based adapta-
tion algorithms.

As future work, BP will be dynamically adjusted in a 
physical testbed based on the results of an ongoing simula-
tion study that looks at the interaction of PLR and rebuffer-
ing and its effect on user QoE. Furthermore, FDSP will be 
integrated into adaptive streaming to provide an orthogonal 
option for adaptation algorithms via BP adjustment. Key 
developments would include an optimal BP range based 
on the network condition and the type of video in order to 
minimize both PLR and rebuffering while also providing a 
reliable buffer occupancy for an adaptation algorithm.
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