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Abstract The field of wireless networking has received
unprecedented attention from the research community

during the last decade due to its great potential to create

new horizons for communicating beyond the Internet.
Wireless LANs (WLANs) based on the IEEE 802.11 stan-

dard have become prevalent in public as well as residential

areas, and their importance as an enabling technology will
continue to grow for future pervasive computing applica-

tions. However, as their scale and complexity continue to

grow, reducing handoff latency is particularly important.
This paper presents the Behavior-based Mobility Prediction

scheme to eliminate the scanning overhead incurred in

IEEE 802.11 networks. This is achieved by considering not

only location information but also group, time-of-day, and
duration characteristics of mobile users. This captures

short-term and periodic behavior of mobile users to provide

accurate next-cell predictions. Our simulation study of a
campus network and a municipal wireless network shows

that the proposed method improves the next-cell prediction

accuracy by 23*43% compared to location-only based
schemes and reduces the average handoff delay down to

24*25 ms.

Keywords Mobility prediction ! Fast handoffs !
WLANs ! WMNs

1 Introduction

Wireless LANs (WLANs) based on the IEEE 802.11 stan-

dard have become pervasive in our society. WLANs offer
high data transfer rate and are low-cost and easily

deployable. These characteristics allow mobile users with

portable devices to not only connect to the Internet but also
use various services such as Voice over IP (VoIP) and real-

time multimedia data transmission, e.g., streaming audio
and video. Until recently, deployment and coverage area of

WLANs have been limited to variety of isolated hotspots,

such as coffee shops, buildings, airport terminals, etc. But
now Municipal Wireless Networks [1–4] based on Wireless
Mesh Networks (WMNs) [5] allow the coverage area to be

extended across a larger geographical area, e.g., a city.
Moreover, WLANs will play a crucial role as backbone

networks for emerging pervasive computing technologies,

such as wearable computers, Wireless Body Area Net-
works (WBANs) [6], Wireless Personal Area Networks
(WPANs), and Vehicular Ad hoc Networks (VANETs) [7].
Nevertheless, achieving seamless, mobile access is a major
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challenge because of large handoff delay incurred scanning

for available access points (APs) when a mobile station
(MS) switches connection from one AP, or cell, to another.

Recent studies found that passively scanning for APs

during a handoff can be as much as a second [8] and
actively scanning for APs requires 350*500 ms [8]. This

becomes a major concern for mobile multimedia applica-

tions such as VoIP where the end-to-end delay is recom-
mended to be not greater than 50 ms [9].

The key to reducing the scanning overhead and thus the
handoff delay is to predict the next point-of-attachment of a

MS, i.e., mobility prediction. This way a MS can directly

authenticate/re-associate with the target AP thereby elim-
inating the scanning overhead. Numerous efforts have

already been made to reduce the scanning overhead in

WLANs. These include methods to employ extra hardware,
either in the form of additional radios [10] or an overlay

sensor network [11], to detect APs, selectively scan chan-

nels based on the topological placement of APs [12], and
predict the next point-of-attachment based on signal

strength [13].

Unfortunately, these techniques neither provide next cell
predictions that can eliminate the need to scan for APs nor

consider mobility patterns of MSs, which are dictated by

the structure of a building or a city block and the past
behaviors of MSs. In our previous work [14], we proposed

a location-based technique that considers the long-term

history of handoff patterns. Although this technique is
effective in performing next cell predictions for majority of

MSs, it does not consider short-term and periodic behavior

of mobile users that cause some MSs to behave differently
from the norm and thus suffer mispredictions.

This paper presents a solution called the Behavior-based
Mobility Prediction (BMP) technique that provides accu-
rate mobility prediction by considering multifaceted user

behavior based the following four factors: location, group,
time-of-day, and duration. The location-based mobility
prediction is achieved by maintaining the handoff history

of all the MSs in the network, and then monitoring direc-

tion of movements of MSs relative to the topological
placement of cells to predict their next point-of-attachment.

In addition, next cell predictions are based on the fre-

quencies of occurrences rather than signal strength.
Therefore, it takes into consideration that mobility patterns

are dictated by the structure of a building or a city block

and the past behaviors of MSs. Moreover, the handoff
frequencies are treated as time-series data, thus when next

cell predictions fail future predictions are recalibrated

based on different groups, where each group of MSs has
similar mobility patterns, time-of-day, and duration

characteristics.

The paper is organized as follows: Section 2 overviews
the 802.11 scanning process. Section 3 presents the

proposed BMP method and Sect. 4 evaluates its perfor-

mance. Section 5 discussed the related work. Finally, Sect.
6 concludes the paper and discusses future work.

2 Background: 802.11 scanning process

In a WLAN, when a MS moves from one cell to another, its
network interface senses the degradation of signal quality

in the current channel. The signal quality continues to
degrade as MS moves further away from the current AP,

and a handoff to a new cell is initiated when the signal

quality reaches a preset threshold [15]. This process starts
with probing for new cells using either passive or active

scanning. In passive scanning, a MS switches its trans-

ceiver to a new channel and waits for a beacon to be sent
by the new AP, typically every 100 ms, or until the waiting

time reaches a predefined maximum duration, which is

longer than the beacon interval. The time a MS has to wait
varies since beacons sent by APs are not synchronized. For

these reasons, a recent study has shown that an MS can

spend up to 1 s to search all possible channels [8], which
results in unacceptable handoff delay.

In active scanning shown in Fig. 1, a MS broadcasts a

probe request and waits for a response. If the MS receives a
response from an AP, it assumes there may be other APs in

the channel and waits for MaxChannelTime. Otherwise, the
MS only waits for MinChannelTime. MinChannelTime is
shorter than MaxChannelTime to keep the overall handoff

delay low, but it should be long enough for MS to receive a

possible response. A typical duration for scanning each
channel is around 25 ms and 350*500 ms for all 11

channels [8].

MaxChannelTime 

Initiate Handoff 

MS 

Ch. #1 

No AP in Ch. 2 MinChannelTime 
Ch. #2 

Ch. #3 

Active scan complete  

No AP in Ch. 11 
Ch. #11 

…
 

No AP in Ch. 3 

APs 

MinChannelTime 
Ch. #1 

Handoff Complete 

Authentication Res. 

Authentication Req. 

Probe Req. 

Probe Res. 

Probe Req. 

Probe Req. 

Probe Req. 

Reassociation Req. 

Reassociation Res. 

Fig. 1 The 802.11 active scanning process
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After scanning, MS joins the cell with the strongest

signal strength, which is done by performing authentication
and (re)association. Authentication is the process that a MS

uses to announce its identity to a new AP. In the IEEE

802.11 standard, authentication is performed using either
open system or shared key. Open system authentication is

the default method, and involves the MS sending authen-

tication request frame to the AP containing its source
address in the frame header and the type of authentication

in the frame body. Then, the AP sends the authentication
response frame back to the MS. This frame has the

authentication result and the information that indicates the

type of authentication.
The next step is (re)association, which allows the dis-

tribution system to keep track of the location of each MS so

that frames destined for a MS can be forwarded to the
correct AP. How (re)association requests are processed is

implementation specific, but typically involves allocation

of frame buffers and, in the case of re-association, com-
municating with the old AP so that any frames buffered at

the old AP are transferred to the new AP. Finally, the last

step involves rerouting the network traffic by updating the
Forwarding Table in the switch that connects both the old

and new APs.

3 The behavior-based mobility prediction scheme

The basic idea behind BMP is to improve the prediction

accuracy by exploiting the behavior of mobile users. This

is achieved by identifying temporal segments of handoff
history that characterize certain user behaviors, and per-

forming handoff predictions that pertain to those periods.

3.1 User behavior

Behavior of mobile users can be characterized in many
different ways. In the proposed method, the four charac-

teristics that define user behavior are location, group, time-

of-day, and duration. The following discusses the motiva-
tion for using these characteristics.

The location factor, as discussed in Sect. 1, represents

the history of mobility patterns that can be either static or
dynamic. Static mobility patterns are dictated by fixed

structures, such as roads, building structures, and city

blocks. On the other hand, dynamic mobility patterns are
caused by user behavior as well as frequent and drastic

changes in the operating environment of wireless networks

due to multipath effects and electromagnetic interference.
The group factor reflects the fact that MSs often behave

as groups. For example, MSs in an academic setting can be

categorized as students, graduate students, and faculty/
staff, and the mobility behaviors of these groups are very

different. Moreover, MSs can be associated with specific

events that are derived from user habits, e.g., departmental
staff spends most of the day near the administrative offices

while students congregate in the atrium, classrooms, and

computer labs. The group factor can be statically applied
during the network registration phase. For example, users

in a typical campus network are registered with Unix

accounts that are grouped based on their status. Users in
large community networks are also registered based on

different types of memberships, such as residential, busi-
ness, free subscriber, etc. In addition to these pre-assigned

groups, other groups can be dynamically formed from a set

of MSs that suffer from high misprediction rate.
The time-of-day factor indicates that user behaviors

change as function of time. For example, mobility patterns

observed in an academic setting will change during the
course of a day depending on the schedule of classes. There

will be bursts of repetitive mobility patterns when students

move between classes, and mobility behaviors during the
evening will be different from the daytime. Most of MSs in

an academic network in the evening are graduate students

and, for most part, they tend to move only within limited
areas, i.e., graduate student offices, laboratories, and hall-

ways. Similarly, most users in a community network in the

evening tend to stay within residential areas. In addition,
both environments typically exhibit periodic behaviors

such as students attending classes and workers commuting.

The duration factor, which can be categorized as short,
medium, and long, directly represents how long a MS is

connected to a cell and indirectly represents the speed at

which it moves through a cell. Figure 2(a) shows an
example of a medium duration, which represents the default

case when a MS transits through a cell. For example, the

cells cx and cz in Fig. 2(a) do not overlap, thus the MS has
to transit through cy before it can reach the destination cz.
This is also the case when cx and cz overlap but a direct

pathway does not exist between the two cells. In WLANs,
most handoffs occur with medium duration because the

traveling distance of a MS is typically a lot further than

coverage area of a cell. Figure 2(a) also illustrates a long
duration that represents a MS performing some activity at

the destination cell cy. For example, in an academic setting,

MS performs a handoff to a cell that covers a classroom
and then spends a long period of time listening to a lecture.

Similarly, in a community network, a MS performs a

handoff in the morning to a cell that covers an office
building and stays connected to this cell for many hours.

A short duration often represents an unnecessary or false
handoff. For instance, consider a MS moving across three
adjacent cells cx, cy, and cz in Fig. 2(b). As the MS moves

from cx to cy, and then to cz, if the connection duration for

cy is very short then it indicates the three adjacent cells are
highly overlapped. This is important because if the degree
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of overlapping is sufficiently high then the prediction for

the handoff sequence cx ! cy ! cz can be replaced by

cx ! cz, which allows MS to move from cx directly to cz,
eliminating an extra handoff. Therefore, short duration
together with other behavior factors can be used to identify

and eliminate these unnecessary handoffs.

Based on our analysis of the simulated networks (see
Sect. 4), a typical short duration is few seconds while a

long duration lasts more than few minutes. All others are

considered as medium duration.

3.2 The proposed method

Figure 3 illustrates a possible configuration for the pro-

posed method, where the BMP scheme is assumed to be

implemented by a server and is collocated with the
authentication server. Moreover, the next-cell prediction cw
for the current handoff from cx to cw is assumed to be

available from the last handoff from cy to cx. Therefore, a
MS directly authenticates/re-associates with cw eliminating

the need to perform scanning. A full scan is performed

when an MS joins the network for the first time.
When the MS requires a handoff from cx to cw, it sends

pred_reqhID, HS, Di, where ID is the ID of the MS, HS is

the handoff sequence for the MS, and D is the duration of

time spent by the MS in the last cell cx, to the server as a

part of the authentication request via cw to obtain predic-
tions for the next handoff (Step 1).

The server then performs Next-cell Prediction (Step 2),

which involves the following operations illustrated in
Fig. 4. First, the last k handoffs in the handoff sequence,

i.e., cx ! cw, are used to search the HS Table for a set of

matching entries representing an unordered next-cell Pre-
diction List (uPL). At the same time, ID is used to

index the Group Table to obtain the group ID Gi in

fG0;G1; . . .;Gp"1g, where p represents the number of

groups. Second, Gi is used to select a particular group’s

Time-of-Day characteristic ToDi. As the name suggests,
ToDs model time-of-day characteristics of different groups

Medium 

Long 

Unnecessary 
Handoff 

(a)

(b)

Fig. 2 Long, medium, and short durations. a Medium and long
durations. b Short duration

cx
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5.  Ethernet Switch Update 
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Fig. 3 A possible BMP configuration in a WLAN environment
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Fig. 4 The BMP scheme
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of mobile users. The default period for a ToDi is T, e.g.,
T ¼ 1 day, which means MSs that belong to this group
exhibit similar handoff behavior during the entire period

T. Moreover, a group of MSs that exhibit short-term and

periodic handoff behaviors can be separately modeled as
ToDi ¼ fs0; s1; . . .; sq"1g, where sj represents a time seg-

ment, q represents the total number of time segments, andP
j sj ¼ T . Thus, the current time (i.e., clock) determines sj

for a particular group Gi, i.e., (ToDi; sj). The importance of

(ToDi; sj) is that it uniquely defines a set Integrated Moving
Averages (IMAs) to represent the frequencies of handoff

sequences for a particular group of MSs with specific time-

of-day and duration characteristics. Therefore, (ToDi; sj)
together with HSmatch determine the proper subset of IMAs

to be used in applying the priority order for the next-cell
predictions, i.e., ordered Prediction Lists, for both medium
(oPLmed) and long (oPLlong) durations.

Once the priority is determined, the BMP server returns
pred resphoPLmed; oPLlongi as a part of the authentication

response (Step 3). After receiving the authentication

response, the MS reassociates with the AP in cell cw (Step
4). This is followed by Ethernet Switch Update (Step 5)

and Prediction Update operations (step 6), which complete

the handoff.
During the next handoff, the 1st prediction in either

oPLmed or oPLlong is used as the next cell prediction based

on whether the duration of the MS in the current cell cw is
medium or long, respectively. The next-cell prediction

defaults to oPLmed if the MS experiences a short duration in

the current cell. If the 1st prediction fails, i.e., authentica-
tion/re-association fails, the 2nd prediction is used, and so

on. A full scan is performed when all the predictions in

oPLmed=oPLlong fails,

The following discusses the detailed operations of BMP.

3.2.1 HS Table

The mobility history of a MS is represented by a handoff

sequence of length l denoted as ðcn"l"1; . . .; cnÞ, where ci

indicates the cell ID of ith visited cell. Figure 5 shows the

HS Table, which is a collection of unique handoff sequences
that represents the global history of mobility patterns in the

network. The mobility prediction based on the HS Table can

be represented by an order-k Markov process

P̂ðXnþ1 ¼ cnþ1jXðn" k þ 1; nÞ ¼ ðcn"kþ1; . . .; cnÞÞ

¼ Nððcn"kþ1; . . .; cn; cnþ1Þ; LÞ
Nððcn"kþ1; . . .; cnÞ; LÞ

;
ð1Þ

where k = l - 1, L is the overall observed history of

mobility patterns, and N is the average frequency of

mobility patterns. Our simulation study in Sect. 4 shows
that l = 3 provides accurate next-cell predictions and yet

the amount of mobility history needed is minimal.

3.2.2 IMA

IMAs are typically used in forecasting time-series data and
can be derived from the more general AutoRegressive
Integrated Moving Average (ARIMA) model. ARIMA is

defined as ARIMA (p, d, q), where p, d, and q refer to the
order of the autoregressive, the differencing, and the

moving average parts of the model, respectively. Expo-
nential Weighted Moving Average (EWMA) is equivalent
to ARIMA (0, 1, 1) [16, 17] and is much simpler to for-

mulate than the general ARIMA model. The predicted

frequency of each HS for the next period t þ 1; ztþ1, can be
defined by the following EWMA:

ztþ1 ¼ ð1" kÞzt þ kzt; ð2Þ

where zt is the frequency of the handoff sequence during

the current period t; zt is the predicted frequency of the
handoff sequence in the current period t, and k is the

smoothing factor 0\ k\ 1. t represents the minimum

time interval for the time series data (i.e., t = 1 min). The
parameter k determines the characteristic of the EWMA

model and is typically chosen experimentally. Based on our

analysis of the simulated networks (see Sect. 4), k for the
time-series data representing the frequency of handoff

sequences is chosen to be 0.1. Although EWMA does not

rely on a full statistical analysis, this simple model gives
results that are relatively close to ones from ARIMA.

The IMA structure is shown in Fig. 6, which is essen-
tially a three-dimensional structure. HSmatch and ToDi are

used to index the first two dimensions of the IMA structure.

This results in a set of EWMAs, i.e., ztþ1, which corre-
sponds to a particular group’s (Gi) time-of-day character-

istics (ToDi). Each element in the last dimension is indexed

by sj corresponding to a particular time segment containing

a set EWMAs hzmed
tþ1 ; z

long
tþ1 ic, where zmed

tþ1 and zlongtþ1 represent

EWMAs for medium and long durations, respectively,

and c represents the predicted cell. Then, uPL from the HS

Past Current Next 

cx cw cx

cx cw cy

cx cw cz

… … … 

cy cx cW

HS Table 

HSmatch

Unorder Prediction List (uPL) 

Fig. 5 Handoff Sequence Table. This table shows a possible entries
for the example shown in Fig. 3, where the last k = l - 1 visited
cells (i.e., cx ! cw) are used to search for the next cell predictions
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Table is prioritized based on these EWMAs to generate
oPLmed and oPLlong.

3.2.3 Dynamic group formation

Separate IMAs are maintained for different user groups.
Groups that are formed statically are referred to as parent
groups. Child groups can be dynamically formed from a

parent group by applying heuristics to a set of MSs that
suffer from a high misprediction rate, which can be cause

by differences or changes in mobility behaviors within the

group. In order to gather the necessary information, each
MS keeps track of and submits its average 1st prediction

accuracy, l, to the BMP server at the end of each period

T. If the server detects a set of MSs in a group Gi with their
average 1st prediction accuracies lower than the threshold

qi ¼ li " 0:5ri, where li and ri represent the average and

standard deviation of the 1st prediction accuracy for the
group Gi during the last period T, a new child group Gi

0
is

formed with its own ToDi
0
. This will improve the prediction

accuracy for those set of MSs. However, if a set of MSs
within this newly formed child group still suffer from high

misprediction rate, i.e., their average 1st prediction accu-

racies are lower than qi of the parent group, then these MSs
rejoin their parent group. After rejoining their parent group,

if these MSs as well as other MSs continue to suffer from

high misprediction rate, they will form their own child
group. This process repeats every period T. In order to

reduce the processing load, the number of MSs in a group

must be more than some threshold M based on the traffic
characteristics of the network and capability of the server.

3.2.4 Time-of-day characteristic

The time-of-day factor is applied when the prediction

accuracy of a group is lower than some threshold for a
period of time. This is done by associating a separate time

segment sj with its own IMA. The motivation for

generating time-segments is to isolate periods when

mobility patterns can be better identified. The BMP server
does this by keeping track of the prediction accuracy of

each group during a period of smin (e.g., 1 h), which is the

minimum time-segment length. If the prediction accuracy
of a group Gi is lower than qi during the last smin, the server

assigns a new IMA to the time-segment. Again, the value

of smin is based on the network traffic and server capability.

3.2.5 Update operations

Different update operations are performed depending on

different time periods.
The following operation is performed after each

handoff:

– HS Table Update—A new HS Table entry is allocated
and updated when a new handoff sequence is

encountered.
– The following operation is performed after each

period t:
– IMA Structure Update—zt is determined based on the

number of times handoff sequences of MSs match with

an entry in the HS Table during the current period t. If
there are no matches, then zt is 0. Then, ztþ1 is
calculated for the next period t ? 1 using Eq. 2. Note

that zt is not maintained for a handoff sequence with

short durations. This way, any false or unnecessary
handoffs are eventually removed from the behavior

model.

– The following operation is performed after each
period T:

– Group Table Update—A MS is always registered to a

parent (i.e., static) group. A MS can also be registered
to a child group, and unregistered from the child group

when they rejoin the parent group. Thus, a MS

registered to a child group will also be registered to a
parent group. Once a child group is formed, the priority

is given to the child group for determining their time-

of-day characteristics.
– The following operation is performed after each period

smin:

– ToD Update—When IMA values of two consecutive
time segments are close together (e.g., closer than 10%)

they are combined.

3.3 A distributed implementation

Note that the discussion of BMP thus far has been based on

a centralized scheme. However, BMP can also be imple-

mented using a distributed scheme where each AP main-
tains its own portion of the global mobility history shown

in Fig. 4. This can be achieved by relaying next-cell

…
 

ToD0 ToD1 ToDr-1… 

τ0
τ1

τs-1 

…
 

HSmatch

ToDi

τj

… 

… 

… 

… 

… 

z t +1
med , z t +1

long

z

z t +1
med , z t +1

long

y

z t +1
med , z t +1

long

x

Fig. 6 The IMA structure
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prediction requests using re-association requests. For

example, consider again the handoff between cx and cw
shown in Fig. 3. After authentication, MS sends reassoci-

ation request containing pred_reqhID, HS, Di to cw.
Then, cw performs next-cell prediction and returns
pred resphoPLmed; oPLlongi as a part of the reassociation

response. Finally, cw sends the handoff sequence as a part

of either Inter-Access Point Protocol (IAPP) [18] or a
vendor specific protocol to cx. After APx receives the

handoff sequence, update operations are performed. This

allows MSs handing off from cx to obtain the next-cell
prediction list.

4 Performance evaluation

This section presents the performance evaluation of the

BMP scheme and compares its accuracy and delay results

against using only location information, such as our prior
work on Global Path Cache (GPC) [14], which has been

shown to be superior to Neighbor Graph [12] and Selective
Scanning with Caching [13].

4.1 Simulation environment

The two network topologies used in the simulation study

are shown in Figure 7, which are the first floor of the four-

story, 153,000-ft2 Kelley Engineering Center (KEC) at
Oregon State University, and a public WLAN service that

covers 2.5-mile2 area of Portland, Oregon, called MetroFir

[1]. The APs in KEC are connected by an Ethernet switch,

while APs in the MetroFir network are interconnected by
a WMN [5].

The simulated coverage area for KEC contains 6 APs

and 450 MSs, and the paths taken by MSs are limited to
hallways and the atrium. There are three groups of users,

i.e., Students, Graduate Students, and Faculty/Staff, with

each having a different type of mobility behavior. For
example, Students mostly move between the atrium, the

cafe, and the computer lab. In addition, Students move in

and out of the classrooms during the last ten minutes of
each class hour between 8 AM and 6 PM. In contrast,

Graduate Students mainly move between their offices, the

atrium, and the computer lab. Finally, Faculty/Staff moves
mainly between their offices and the atrium. All MSs move

at a pedestrian speed of 1.5 m/s.
The coverage area for Portland (indicated by the dotted

line) contains 40 APs and 4,500 MSs and the paths taken

by MSs are limited to sidewalks. The results for Portland
were generated based on nine different groups of users.

Nomadic represents a group of MSs that can move any-

where, any time within the simulated area. The next four
groups represent Commuters who work in each of the four

quadrants or regions, i.e., C-I, C-II, C-III, and C-IV in

Fig. 7(b), and are likely to travel long distances (i.e., 15–20
blocks) to work. Moreover, these groups of MSs only move
between 6 AM to 10 AM and 6 PM to 10 PM. The last four

groups represent Residents who live in each of the four

regions, i.e., R-I, R-II, R-III, and R-IV in Fig. 7(b). These
groups of MSs tend to stay at their homes most of time

(several hours) but when they move they are likely to only

move within few blocks (5–10 blocks) from their homes.
In order to accurately simulate mobility patterns and

handoffs in large networks, we developed a simulator that

implements a WLAN radio model, generates realistic
mobility patterns based on building and city layouts, and

supports management frames needed to implement scan-

ning, authentication, and re-association. The structure of
the simulator is shown in Fig. 8, which consists of Path

Fig. 7 Simulated WLAN coverage areas. a Kelley Engineering
Center building. b Public WLAN in Portland, Oregon (MetroFi")
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Generator, Path Finder, Mobility & Network Simulator,

and Data Analysis modules.
The Path Generator generates a new destination way-

point based on the Path Graph definition, User Mobility

definition, and the current Simulation State for each MS
that has completed its trip between the original and desti-

nation waypoints. The Path Graph definition is a graphical

representation of all the possible paths MSs can traverse
within a simulated area, which is similar to the ones pro-

posed in [19, 20]. Figure 9 shows the path graphs for the

two network topologies used in the simulation study—KEC
and Portland in Fig. 7. They consist of vertices represent-

ing waypoints and segments representing paths between

adjacent waypoints. The User Mobility definition defines
the number of MSs and APs as well how MSs move,

including when and where a MS moves to and how long it

stays at a waypoint. The Simulation State defines the cur-
rent time and the locations of all the MSs in the simulated

network area. The Path Generator uses these two defini-

tions together with the current state of the simulator to
randomly select destination waypoints based on a modified
Random Waypoint model [21, 22]. Our modified Random

Waypoint model allows a probability distribution to be
assigned to sub-areas or regions within a path graph based

on different groups of MSs at different times. The Path
Finder module then uses the path-finder algorithm [23] to
generate the shortest path between the source and desti-

nation waypoints. The resulting path consists of multiple
segments, which are then fed to the Mobility & Network
Simulator.

The Mobility & Network Simulator consists of Mobility
module, Radio Model, Handoff Detector, and MAC sub-

Layer Management Entity (MLME). The Mobility module

simulates the movements of MSs on the segments at one
meter resolution. The Handoff Detector monitors each

MS’s movement, and based on the Cell Coverage defini-

tion and the Radio Model, which is based on log-distance

path loss model [24], performs a handoff when the distance
between a MS and its associated AP reaches the maximum

radius of the coverage area. Handoffs are performed using

the MLME module, which supports beacons, probing,
authentication, and re-association. Finally, the Data Anal-
ysis module records the number of channel switches, the

number of times MS has to wait for MaxChannelTime,
MinChannelTime, Authentication delay/timeout, and

Re-association delay (see Sect. 4.2).

Fig. 8 Simulation model

Fig. 9 Path graphs for Fig. 7. a KEC. b Portland

Table 1 Delay parameters used in the simulation

Parameters Delay

Channel switching time (tswitch) 11:4ms

MinChannelTime (tmin) 20ms

MaxChannelTime (tmax) 200ms

Authentication delay (tauth) 6ms

Re-association delay (treassoc) 4ms
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4.2 Simulation delay parameters

The delay parameters used in the simulation are shown in
Table 1: Channel Switching Time (tswitch) is the time

required to switch from one channel to another; Min-
ChannelTime (tmin) is the minimum amount of time a MS
has to wait on an empty channel; MaxChannelTime (tmax)

is the maximum amount of time a MS has to wait to collect

all the probe responses, which is used when a response is
received within MinChannelTime; Authentication delay/
timeout (tauth) is the time required to perform authentica-

tion based on MAC addresses; and Re-association delay
(tassoc) is the time required to perform re-association.

These delay values represents the current off-the-shelf

NICs and obtained with an experimental setup that con-
sisted of two laptops with 802.11a/b/g NICs based on

Atheros AR 5002X chipset [25] running Linux 2.6 with

MadWiFi driver [26], a Sun SPARC Server with Ethernet
LAN NIC, and an HP ProCurve Wireless Access Point 420.

Measurements were gathered by having one laptop serve as

a MS that performs a channel switch and continuously
sends UDP traffic to a daemon running on the server while

the second laptop sniffs the traffic using tcpdump (see

[14]).

4.3 Simulation results

All the results in this section were obtained based on the

assumption that the HS Table contains a complete history

of handoff patterns. This is achieved by first running the
simulations for 104 handoffs for KEC and 106 handoffs for

Portland to allow the BMP system to ‘‘learn’’ all the

handoff sequences [14], and then gathering statistics for up
to 107 handoffs.

Figures 10 and 11 show the number of required HS

Table entries and the average number of next-cell predic-
tions returned per handoff, respectively, as function of

l (KEC on the left, Portland on the right). As can be seen

from Fig. 10, more entries are required to keep track of

MSs’ more complex moving paths as l increases. More-

over, the number of entries needed for Portland is higher
and grows significantly faster than KEC due to larger

number of APs. Similarly, Portland has, on average, a

larger set of next-cell predictions due to a larger number of
highly overlapped regions. Note that, for implementation

purposes, each entry in the HS Table contains multiple

next-cell predictions instead of one prediction entry as
illustrated in Fig. 5. Therefore, Figure 10 represents the

number of unique handoff sequences of length l - 1

observed in the two networks. The product of the number
of entries in Fig. 10 and the average number of predictions

returned per handoff in Fig. 11 represents the total number

of unique handoff sequences of length l.
Figure 12 shows the accuracies of individual next-cell

predictions based only on location information (starting

with the 1st prediction result on the bottom), which are
prioritized based only on their frequencies of occurrence.

The overall accuracy for both KEC and Portland is 100%,
which means one of the next-cell predictions is guaranteed

to be correct. However, the accuracy of each prediction is

more important because a misprediction incrementally
increases the average handoff delay by tswitchþtauth. For
KEC, the 1st next-cell prediction accuracy is 68% and

increase slightly as function of l. The 1st next-cell pre-
dictions that fail are satisfied by the 2nd next-cell predic-

tions, which represent accuracy rate of 28.5*25.1%

relative to all the next-cell predictions. Similarly, the 3rd
next-cell predictions that succeed make up 3.5*3.1%

relative to all the predictions. For Portland, the 1st next-cell

predictions accuracy start at 43% and increases as function
of l. The 2nd, 3rd, and 4th next-cell prediction accuracies

are 28.7*22.6%, 17.1*9%, and 7.9*3%, respectively,

relative to all the next-cell predictions. The combined
prediction accuracy beyond the 4th next-cell prediction is 3

*1.43%.Fig. 10 Number of entries in HS Table

Fig. 11 Average number of next-cell predictions returned per
handoff
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Based on Figs. 10–12, it is clear that suggested size of

l is 3, which provides good 1st prediction accuracy and yet
the number of entries required for the HS Table is minimal.

Figure 13 shows the 1st prediction accuracy of BMP,

which is importance because each misprediction from the
oPL incrementally increases the average handoff delay by

tswitchþtauth.
The average improvement for BMP compared to using

only location information for KEC is 23%. The largest

improvement comes from Static Group at 12.7%, followed

by Dynamic Group, ToD, and Duration with 7, 1.7, and
1.7%, respectively. These improvements also vary for

different user groups. For example, BMP improves the 1st

prediction accuracy for all three groups in KEC. The
largest improvement of 77% comes from Students because

their behaviors are dictated by schedule of classes, which

causes their handoffs to be bursty and periodic and also
results in longer durations. This is followed by Graduate

Students with an overall improvement of 61%, which is the

result of being able to better capture the fact that they work
late at night and on weekends. In contrast, improvement for

Faculty/Staff was less at 9.5% because the number of MSs

in this group is much less than the other groups and the

coverage area affected by their mobility is much more
limited.

The average improvement for Portland is much more
significant at 43%. The largest improvement came from

Static Group at 28%, and this is followed by Duration at

7.7%, ToD at 4.9%, and Dynamic Group at 2%. Again, all
of the user groups in Portland resulted in improvements.

Among them, Nomadic and Commuter groups (C-I*IV)

exhibit large improvements due to short-term surges in
handoffs caused by groups of users commuting during rush

hour. The Nomadic group is hardly affected by Dynamic

Group, ToD, and Duration factors because their mobility
behavior is uniformly random across the entire network

and independent of time. In contrast, the largest improve-

ment for Commuter groups came from the ToD charac-
teristic. For Resident groups (R-I*IV), the Duration factor

provided the most improvement.

Figure 14 compares the average handoff delays based
on the parameter set defined in Table 1 (Location-based

scheme on the left, and BMP on the right). These results

show that BMP provides 10 and 21% improvement for
KEC and Portland, respectively. This may appear to be

only a small improvement compared to the location-only

(a)

(b)

Fig. 12 Overall and individual prediction accuracies based only on
location information. a KEC. b Portland

(b)

(a)

Fig. 13 Improvement in 1st prediction accuracy for BMP. a KEC.
b Portland

654 Wireless Netw (2011) 17:645–658

123



based scheme, but the resulting delay for BMP is very close

to the lower bound delay, which is 21.4 ms ¼ tswitch þ
tauthþ tassoc. More importantly, when individual handoff
delays are considered, they resulted in significant

improvements for some user groups. For example, the

Student group in KEC resulted in 21.7% improvement,
while Grad. Students had 16.5% improvement. This was

also the case for Portland, where the Nomadic group

resulted in 107.2% improvement. In addition, all groups
resulted in similar average delay.

5 Related work

Many different mobility prediction techniques have been
proposed for a variety of wireless networks, such as cel-

lular [27–32], WLANs [10–13, 33, 34], ad hoc networks

[35, 36], and mesh networks [5], and applied to reduce
handoff latency [8, 12, 13, 37], provide efficient resource

reservation [27–33], improve routing protocols [35], and
conserve power [36]. However, these methods tend to be

general and thus do not consider the special characteristics

of WLANs, such as highly overlapped cell coverage, MAC
contention, and variations in link quality.

Location-based schemes provide predictions using the

current and past locations (i.e., cells). These are all based

on the order-k Markov predictor [34], and include Global
Path Cache [14], Selective Scan with Caching [13],
Movement Model [38], Two-Tier prediction [39, 40], and a

technique based on the use of directional vectors [28].

However, they do not consider other characteristics of
mobile users, such as group, time-of-day, and duration.

Therefore, these techniques will not properly capture

mobility patterns that deviated from the norm, such as
behaviors exhibited by a small group of users that tend

repeat in certain periods of time. There is a technique that
applies different predictors to different time segments [38].

There are also techniques that reduce the number of location

update operations in cellular networks by associating loca-
tions of individual users to different periods of time [41–43].

However, time is not the only factor that affects mobility

patterns. Therefore, these techniques are unable to properly
capture the behaviors exhibited by different groups.

Topology-based schemes define directed graphs that

represent topological placements of APs and mobility
patterns of MSs. These techniques are typically applied to

WLANs and include Neighbor Graph [8, 12] and Pre-
Authentication path [37]. Although these techniques reduce
the number of channels to scan, they do not provide next-

cell predictions.

Activity-based schemes provide next-cell predictions by
relating locations to users’ interests, such as schedules and

activities. These include Activity-based Mobility Prediction
[44], ComMotion [45], and GPS-based techniques [46, 47].
The mobility prediction is made based on the shortest path

between the current and the predicted locations. However,

these techniques may not be accurate since individual users
may take a path based on their point-of-interests, such as

ATM to withdraw money or simple idiosyncrasy of passing

by a park, rather than the shortest path.
Data Mining-based schemes [27, 31, 32] reduce the

signaling overhead during handoff and provide resource

reservation to MSs in cellular networks by logging users’
visited cells and time in a database. In addition, some

techniques record geographic coordinates and directional

movements of MSs from either GPS or triangulation of
signal strengths [29, 30]. The basic idea is to provide

predictions by searching the database using user contexts

stored in MSs. If a match or multiple matches are found,
predictions are provided based on location stored in the

context. However, data-mining techniques require a large

storage and fast processors to properly analyze long-term
mobility behavior of users. In addition, most techniques

typically require a GPS device to obtain information about

locations and directions of MSs. For systems that rely on
signal triangulation, their effectiveness may be limited due

to the fact that mobile devices are mainly used for indoors

and crowded outdoor areas where the signal strength is
highly affected by noise rather than distance [24].

(a)

(b)

Fig. 14 Average handoff delay. a KEC. b Portland

Wireless Netw (2011) 17:645–658 655

123



6 Conclusion

This paper presented the BMP technique to improve

mobility prediction in WLANs. BMP models mobility

patterns not only based on the location information of MSs
but also captures their group, time-of-day, and duration

characteristics. Therefore, it monitors the next-cell pre-

diction accuracies and readjusts its prediction model based
on the dynamic behavior of MSs. Our simulation study

shows that BMP provides better predictions than location-

only based schemes, and results in much lower handoff
delay for all MSs.

For future work, we plan to investigate couple of issues.

First, we plan to study the effectiveness of BMP for other
wireless networks, such as cellular networks, WiMAX, and

WMNs, not only to improve handoff latency but also to

improve resource reservation, routing protocols, and
energy efficiency. Second, we would like to investigate

how BMP can be utilized to speed up vertical handoffs in

heterogeneous networks.
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