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Abstract Indoor positioning and tracking services are 

garnering more attention. Recently, several state-of-the-art 

localization techniques have been proposed that use radio maps 

or the sensors readily available on smartphones. This paper 

presents a localization system called Construction of indoor 

floor plan And LocaLization (CALL), which is based on a floor 

plan, access points (APs), and smartphone sensors. The public 

access points provide a number of reference points that can be 

used to build the floor plan automatically, and acquire the user 

initial position. Moreover, The APs are used to calibrate and 

adjust the user’s position, distance, and direction in real time. 

Smartphone sensors are used to detect the number of steps and 

the direction. The proposed method is implemented on a 

smartphone and tested in real indoor environments. Our 

experiment with CALL demonstrates that using a static floor 

plan instead of radio map will avoid the costly database updates 

and searches that are usually required in other approaches due 

to signal attenuation. It shows that CALL outperforms the 

existing works in terms of accuracy and effectiveness in indoor 

localization. 
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1. Introduction 

Indoor localization and tracking using smartphones have 

been widely investigated and their importance is continually 

increasing as a result of the numerous applications that 

require indoor positioning systems, such as healthcare, child 

tracking, mobile accessibility for the blind, advertisements in 

indoor environments, and so on [1]. 

Many techniques have been developed in this track of 

indoor positioning services that provide localization and user 

trajectories. The most popular technique is fingerprinting 

approaches, which use wireless technologies such as Wi-Fi, 

Bluetooth, or other radios [2, 3]. Other techniques provide 

locations based on radio signals, such as Time of Arrival 

(TOA) [4, 5], trilateration [6], and Angle of Arrival (AOA) 

[7].In radio signal-based localization techniques, such as 

TOA and AOA, at least three different signals, and 

sometimes additional hardware, are required in order to 

obtain the user’s location. In addition, sensor-based 

techniques that rely on smartphone sensors suffer from 



noises and can therefore lead to inaccurate position 

estimations.  

Fingerprinting-based techniques compare the measured 

radio signal with a radio map of a given area in order to 

locate the best match and generate the predicted location. 

This method has become the most popular localization 

technique for several reasons. First, additional hardware is 

not required. Second, the Received Signal Strength (RSS) is 

widely used in infrastructure networks. Third, it provides 

accuracy up to approximately 2 m [9]. However, this 

technique suffers from some significant problems that 

remain to be resolved. One of the problems  is known to be 

the recalibration problem in which indoor environments must 

be resurveyed regularly due to signal attenuation and/or 

scattering when any changes occur when installing or 

removing a new access point (AP) or rearranging the 

furniture (which potentially interferes with signals). Another 

problem is the processing overhead required to locate the 

large radio map database. Complex search algorithms have 

been employed in an attempt to reduce the overhead and to 

obtain the closest position. 

Another important issue in localization and tracking 

techniques is distance estimation. This is a critical issue 

because it directly affects the system accuracy. Some 

approaches use the characteristics of the radio signals, such 

as the path loss exponent, to estimate the distance [10]. 

However, this technique suffers from the signal multipath 

problem. Other approaches, such as that described in [1], use 

smartphone accelerometers to count the number of steps to 

calculate the distance. Despite this technique provides more 

accurate distance estimations, it suffers from miscounting of 

steps due to irrelevant smartphone movements.  

The pervasiveness of smartphones that are equipped with 

numerous sensors, such as accelerometer and compass, 

enables to acquire location tracking of mobile users. Many 

smartphone-based localization techniques have been 

developed by using various smartphone sensors.  LifeMap 

uses a global positioning system (GPS), accelerometer, and 

digital compass to track users [1]. Another technique called 

SMART uses Wi-Fi signals and smartphone sensors to 

perform localizations and map constructions [8]. Also, 

UnLoc [17] uses a number of landmarks with smartphone 

sensors to estimate the user position. 

This paper proposes a hybrid technique called 

Construction of indoor floor plan And LocaLization 

(CALL). It builds the floor plan automatically using 

smartphone sensors and public Wi-Fi APs. Then the public 

Wi-Fi APs are used to detect the initial position of the user. 

Furthermore, the public APs are used to calibrate and adjust 

the user position during the tracking in real time. Smartphone 

sensors such as accelerometer and digital compass are used 

to detect the steps and the direction of the user. CALL relies 

on an assumption that the public APs are attached to the 

ceiling of the corridors with well-distributed topological 

locations, and share the same service set identifier (SSID). 



The significant contributions of this work include the 

following five points: 

• A technique to automatically build the floor plan by 

leveraging the smartphone sensors and Wi-Fi RSS. 

• A new technique to dynamically detect any change in the 

environment, such as installing new AP; 

• A novel technique to adjust the user position according to 

the reference points given by APs; 

• A more accurate distance and direction estimation using a 

smartphone accelerometer and orientation sensor with 

respect to the floor plan database; 

• Implementation of the proposed method (CALL) in an 

Android-based smartphone and experimental analysis in a 

real environment for the validation of the feasibility. 

The rest of the paper is organized as follows: Section 2 

discusses the related work. Section 3describesthe proposed 

system design and architecture. Section 4 presents our 

evaluation. Finally, Section 5 concludes this paper and 

discusses the future work. 

2. Related Work  

The related work on indoor localization and tracking can 

be categorized into three foundational techniques: location-

based techniques, tracking-based techniques, and map 

construction techniques. 

2.1 Location-based Techniques 

Localization techniques use radio signals, smartphone 

sensors, and sound acoustics. In these approaches, the 

location is determined using a distance or angle estimation. 

Trilateration is a technique that requires the distances of 

three reference nodes to obtain the position as the 

intersection between the three circles formed [6]. In contrast, 

AOA requires angle estimations between the sender and 

receiver in order to obtain the location [7, 11]; this technique 

requires at least two reference points. The fingerprinting 

technique has two phases: an offline phase that collects a 

large number of radio signals to build a radio map and an 

online phase that measures the radio signals and then 

compares these with those in the radio map using several 

search algorithms to obtain the closest position. 

RADAR is one of the earliest fingerprinting techniques, 

and it collects Wi-Fi signal strengths during the offline phase 

for 70 locations in four directions [12]. These signal 

strengths are then compared with the radio map to generate 

the best match using the K-nearest neighbors. The authors in 

[9] attempted to reduce the search process overhead in 

fingerprinting using a transfer function to obtain the 

constructed states from the offline radio map. Then, during 

the online phase, the same transfer function was used to 

construct the online reconstructed states, which was 

compared with the offline reconstructed states using a 

probabilistic weighting function. 



In [13], an FM radio was used and its feasibility in indoor 

positioning was examined. Using a local FM transmitter, e.g., 

MP3/iPod transmitter, the accuracy of the approach 

improved, but the accuracy dropped significantly when a 

global FM transmitter (e.g., operating in global frequency 

range of 8 MHz – 108 MHz) was used. The indoor 

positioning system discussed in [2] used a magnetic field as a 

location reference instead of radio signals. They built a 

magnetic map as an array of e-compasses. Then, the nearest 

neighborhood algorithm was used to obtain the position. A 

significant limitation of this approach is the need for 

additional hardware in order to build the magnetic map 

during the offline phase. 

In [28], an offline and online algorithms for sensor 

networks were proposed to detect the position of the sensors 

based on RSS data. The system collects the RSS values with 

their corresponded location, and then the position is detected 

by calculating the distance between the node and the RSS 

collector node. In the online algorithm, the system groups the 

collected online RSS values based on a sliding window. 

Then it detects the location of the sensor if it collects enough 

number of credits, which is given to the sensor in each 

round. A localization algorithm based on Ultra Wide Band 

(UWB) was proposed in [29]. The algorithm uses some 

known coordinates anchor nodes to detect the target nodes 

locations based on path loss and Maximum Likelihood 

Estimator (MLE). 

The significant limitations of these location-based 

approaches are caused by signal attenuation and scattering. 

For example, in fingerprinting, recalibration is required to 

rebuild the radio map during the offline phase. The overhead 

involved in the search process also poses a large challenge. 

In the trilateration methods, the distance estimation is the 

primary issue in providing good accuracy. However, the 

multipath and signal attenuation were obstacles in obtaining 

accurate distance measurements. In AOA-based techniques, 

additional hardware is required in order to estimate the 

angles, which causes it to become more expensive than other 

techniques.  

2.2 Tracking-based Techniques 

Chon and Cha proposed LifeMap, which generates user 

trajectories using the accelerometer and digital compass in a 

smartphone [1]. They provided a technique to verify all 

possible movement directions of a user’s smartphone to 

circumvent noisy sensors. However, the initial position of the 

user must be detected using GPS, which is ineffective in 

indoor environments. This means that the user must begin 

from an outdoor position and then move into the indoor 

environment in order to obtain accurate results. 

Constandache et al. proposed CompAcc and it uses the 

compass and accelerometer in the smartphone to detect the 

direction and displacement to determine the user’s 

directional trail, which is then used to compute the path 

signatures [14]. Then, the directional trail is compared with 

the path signatures to determine the user location. However, 



this approach requires the user’s positions along a path to be 

estimated. In [15], a dynamic fingerprint approach is used by 

combing the acceleration data and the RSS values. The 

approach constructs the floor plan database and tracks the 

user based on these information. This approach needs to 

download an application on users’ phone to gather the 

information, such as, acceleration and RSS. 

Jin et al. developed SparseTrack, and it uses additional 

sensors to obtain more accurate step counts and displacement 

estimations to approximate the user trajectory [16]. 

However, the need for additional sensors renders this 

technique inappropriate for current smartphones.  

InUnLoc [17], a technique for correcting the user’s 

position based on landmarks, such as Wi-Fi APs, elevators, 

and other items was developed. It relies on a collaborative 

method to find a small Wi-Fi area of which all locations 

overhear a distinct set of APs. However, it is not easy to find 

much of those small areas to improve the accuracy; 

therefore, UnLoc found only 12 areas in two buildings. 

Furthermore, different devices can have different RSS 

values, which reduce the feasibility of clusters methods. EZ 

[21] uses RSS of APs to detect the user position via genetic 

algorithm. It uses log-distance path loss model to detect the 

distance of an AP. 

2.3 Map construction techniques 

CrwodInside [23] presented a technique to build the floor 

plan by tracing the users during their daily life. This 

technique equips the users’ phones with an application that 

sends some information, such as acceleration and Wi-Fi RSS 

to a server. After a period of time, the server builds the floor 

plan by clustering the users’ traces. However, this technique 

requires GPS to determine the building by detecting the GPS 

signals lost near the building entrance. GPS signals can be 

available for a few meters inside the building, which may 

affect the accuracy of this technique since the initial position 

should be determined by the GPS signal. Nevertheless, their 

approach presents a new trend in building the floor plan, 

especially tracing the users, which can be used to enhance 

the floor plan construction techniques. 

SLAM [24] is a technique in the mobile robotics to track 

a mobile robot in an unknown indoor environment. This 

technique builds the map automatically during tracking the 

robot. 

SmartSLAM [25] improved and modified SLAM [24] 

approach by employing smartphone sensors. They presented 

a motion model using sensors, and observation model using 

Wi-Fi signals. Their models improved the accuracy of the 

tracking system, which they used to build the floor map. 

However, the generated map does not include all the 

components of the building. Moreover, it does not give the 

position coordinates. 

ARIEL [26] presents a technique to automatically detect 

the room fingerprints based on Wi-Fi signature. Although 

this technique provides accuracy of 95% compared to some 



existing works, but the system still needs much effort to 

build the database. In contrast, CALL needs two rounds of 

walking in the building to detect the position of the reference 

points. In [27], a technique to build an indoor floorplan using 

room fingerprints was presented. It relies on the observation 

that the RSS values in adjacent rooms are similar. This 

approach can detect the rooms and the hallways, and then 

connect them.   

In summary, the existing works suffer from different 

problems. Fingerprinting technique needs to rebuild the huge 

radio map database from time to time due to signal 

attenuation, which needs a lot of effort. Trilateration 

techniques suffer from inaccurate distance estimation due to 

multipath. Sensor based techniques suffer from noisy 

sensors. Most of the existing works need to upload the 

floorplan, which is not available sometimes. The proposed 

method addresses the previous limitations in a number of 

ways. First, observing the RSS of APs provides a number of 

reference locations in indoor environments, which can then 

be used to adjust the user’s position in real time. Second, 

reference points are used to build the floor plan 

automatically. Third, the proposed approach provides a more 

accurate distance and direction estimation using an 

accelerometer and an orientation sensor with the help of the 

reference points. Fourth, the proposed approach can 

dynamically detect any changes in the environment using the 

feedback system phase. Fifth, the proposed approach can 

reduce the effort of building the database by automatically 

update the database. 

3. Proposed Method 

In this section, we present the overall design of the 

system as shown in Fig. 1. The system consists of several 

phases: Floor plan construction, Localization, and Feedback 

system. 

During the floor plan construction phase, three steps are 

performed. First, the user surveys a building one time for 

calculating a RSS threshold for each public AP, which is 

usually attached to the ceiling of the corridors and can be 

detected using the SSID. Second, the user surveys the 

building one more time and the system generates the position 

of each public AP based on its RSS threshold, which is 

computed in the first round. Third, when the user moves 

inside the building, the system stores his/her path according 

to the position of the public AP. Afterwards, the floor plan 

with the public AP positions is constructed. Note, the public 

AP will be called as reference point hereafter. 
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In the localization phase, the position of the user is 

provided using the closest reference point, and then the 

system tracks the user using smartphone accelerometer and 

digital compass sensors respectively. 

The feedback system phase observes the average RSS of 

the reference points and the data from the sensors in order to 

dynamically update the RSS thresholds and the positions of 

the reference points during the localization phase. It also 

stores the paths of the users during the localization phase to 

improve the floor plan.  

CALL relies on the following assumptions; First, each 

building has a number of public APs (reference points), 

which share the same SSID and attached to the ceiling of the 

corridors or rooms with well-distributed topological 

locations. It means that the network designer takes into 

account the distance between each two APs; therefore, the 

interference and overlapping will be very limited between 

the public APs. This assumption is applicable since attaching 

them to the ceiling gives better coverage. Second, the server 

contains a database of the MAC addresses for all the 

reference points and their corresponding building and floor 

number. This assumption can be easily applied since the 

network administrator already has the MAC addresses of all 

the public APs. Third, the user should hold the smartphone 

in his/her hand in order to watch advertisements, YouTube, 

TV program, and so on. Fourth, the multipath impact on Wi-

Fi RSS is not considered due to its negligible impact [22] 

because we consider the situation when the user is 

approaching and near an AP in order to guarantee that the 

signals are clear and in line of sight. 

3.1 Floor plan construction phase 

Providing the floor plan automatically makes the system 

more dynamic and flexible, since not all the buildings have 

floor plans that can be converted to digital ones. Moreover, 

the need to distinguish the floor plan components such as 

corridors and rooms makes the dynamic floor plan 

construction very important. For instance, the proposed 

system corrects the direction and predicts the coming 

reference point according to the corridor or the room that the 

user is located. 

The floor plan consists of several parts, the positions of 

the reference points, the corridors, the room, and the 

hallways. 

The challenge is how to accurately provide the floor plan 

with the position of the reference points. In this section, we 

provide the details about the floor plan construction. 

In order to provide the floor plan, our idea is to detect the 

positions of the reference points and then the floor plan is 

estimated by storing the trajectories of the users during their 

movement throughout the floor. The reference points will be 

used to detect the positions of the users. Also, the reference 

points will be used to adjust the position of the users in order 

to mitigate the error in distance estimation. Then by storing 

the trajectories of the users, the structure of the floor plan can 

be estimated over time. 



3.1.1 Reference point detection 

Our system detects the position of a reference point when 

the user passes under that reference point. Then the first 

detected reference point will be considered as a reference for 

the detection of remaining reference points. 

The general procedure of detecting the reference points is 

as follows: The user should survey the building twice. The 

first survey is to determine the RSS thresholds, which are 

required in the detection process of the reference points. And 

the second survey is to detect the position of each reference 

point. In the first survey, the user should survey the floor 

along a path that he/she traverses, and then the system 

computes the average RSS values for every time window 

(e.g., 2 seconds) and stores the RSS average in the server. In 

the second survey, as soon as the RSS value surpasses the 

RSS threshold of a reference point, then the system 

computes the RSS average for every time window surpassing 

the RSS threshold. The position of the reference point is 

detected when the RSS average is the strongest among the 

computed RSS averages. Usually the strongest RSS average 

is for the time window when the position of the user is under 

a reference point. Then, accelerometer and orientation 

sensors as well as the RSS average values are utilized to 

detect the position of remaining reference points with respect 

to the first detected reference point. The distance and the 

direction between the reference points are computed using 

the accelerometer and the orientation sensors, respectively. 

Since the reference points are the bases of our idea, 

detecting the accurate position of the reference point is the 

most critical challenge in our work. For this reason, we study 

the RSS when the user passes by a reference point to come 

up with an indicator that represents the time when the user 

passes under a reference point. RSS values are fluctuated and 

unstable; therefore, measuring the individual RSS values will 

be inaccurate. To overcome this issue, we measure the 

average RSS for a time window (e.g., 2 seconds).Our idea is 

to use the maximum average of the RSS as an indicator of 

the closest point from a reference point. In order to 

determine whether or not the maximum of the RSS average 

during a time window leads to the closest reference point, 

several experiments were conducted in the CS Department 

building and IT Convergence building at KAIST University 

during the daytime when many students were active and at 

nighttime when fewer students were active. These 

measurements were taken as a user passed a reference point.  

Fig. 2 demonstrates that the closer a user is to a reference 

point, the higher the RSS average will be, which means that 

at the time of the maximum average RSS value, the user is at 

the closest point to the reference point. 

 Fig. 2 RSS average within ±15 m from an AP 
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Depending on our observation that the maximum average 

RSS value gives the closest point from a reference point, we 

made our approach as follows: First, the user should survey 

the floor along a path he/she traverses, and then the system 

calculates the average RSS values for every time window 

(e.g., 2 seconds) and stores the RSS average in the server. In 

this experimentation three time windows associated with an 

AP are sufficient for calculating the RSS threshold 

considering the user walking speed. 

In Fig. 3, the solid and dotted lines represent the AP1 and 

AP2 RSS thresholds. Fig. 3 demonstrates that there are a 

small number of RSS average values above the RSS 

thresholds. This indicates that the RSS threshold can 

determine a small area surrounding a reference point (e.g., 

three values above the RSS threshold mean 6 seconds 

walking if the time window is 2seconds, which means that 

the area is small since the maximum time that the user needs 

to pass this area is 6 seconds for the regular walking). 

The values above the lines represent the values of the 

RSS averages when the user is at the closest point to the 

reference point. 

Second, the user should survey the building one more 

time. When the RSS average value for a window surpasses 

the RSS threshold for a reference point, then the user will be 

in the vicinity of that reference point. After that, the system 

observes the RSS average for each time window surpassing 

the RSS threshold until the strongest RSS average is 

determined, and then the system considers this place as the 

position of that reference point. 

To sum up, the user needs to survey the building twice. 

The first survey is to determine the RSS thresholds. The 

second one is to find the position for each reference point by 

calculating and observing the RSS average for each time 

window surpassing the RSS threshold until the strongest 

RSS average is detected.  

Our experiments demonstrate that the error of calculating 

the position of the reference points did not exceed 3 m (more 

details in the evaluation section). 

3.1.2 Path storing and initial floor plan 

After the reference points have been detected, the next 

step is to store the paths of the users inside the building. 

CrowdInside [23] takes advantage from the users’ 

movements during their daily life, such as moving inside 

their homes and offices, by recording their movements in the 

database, and then over time, the layout of the building can 

be detected. 

Our approach is similar to CrowdInside [23], with a few 

modifications. It works as follows: First, when a user 

Fig. 3 The RSS average values when a user passes by two 
reference points 
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encounters a reference point during his/her normal 

movement in the building, the system finds the user’s initial 

position as the position of the closest reference point. Note 

here, the database has a prior knowledge of MAC addresses 

of each reference point and which building and floor number 

that these MAC addresses belong to. This information should 

be provided by the network administrator before the system 

works.  Second, using smartphone sensors, accelerometer 

and digital compass, the system keeps observing the 

movement of the user during a time window (e.g., 2 

seconds). It stores the number of steps, the direction, and the 

average RSS value as a record in the database. Over time, 

number of paths will be stored in the database. These paths 

with the position of the reference points will form the initial 

floor plan. 

The floor plan consists of multiple paths; each path 

consists of number of points, which consist of RSS average 

value, number of steps, and the orientation average. The 

point is drawn every time window (e.g., 2 seconds).  

The initial floor plan consists of the positions of the APs 

and the relative corridors layouts. To mitigate the error in 

distance and direction estimation, the values of RSS average, 

number of steps, and orientation average will be reset every 

time window after storing those values in the database. 

Resetting these values makes the system avoid the 

accumulative error in distance and direction estimations. 

Although the initial floor plan consists of the positions of 

the reference points and the corridors layout, but later on, the 

system feedback is activated each time a user uses the 

system. When the users walk in the building and ask their 

positions, the system feedback sends the RSS average, steps, 

and the direction every time window as a point to the server. 

The server keeps storing the points to form the paths. 

Because the users visit many and different places in the 

building during their movement, such as different rooms or 

corridors, the server will be able to form the floor plan and 

attach the rooms and the hallways. 

3.2 Localization phase 

During the localization phase, the average RSS is verified 

in order to acquire the MAC address of the closest reference 

point, which represents the input for the 

InitialPositionEstimator. The InitialPositionEstimator uses 

the MAC address of the reference point with the maximum 

average RSS as input and verifies the database to determine 

which floor of the building this reference point belongs to. 

The current building floor that the user is located in and the 

closest reference point will be stored in a result database as 

the initial position of the user. When the user begins moving, 

the data from the accelerometer and digital compass sensors 

are monitored and collected in order to acquire the direction 

and the number of steps of the user. During the user 

movement, the Wi-Fi scanning process searches for the 

maximum of the RSS’s average, which represents the peak 

value. If the peak value is detected, the distance and position 



are corrected based on the location of the reference point. 

The maximum of the RSS’s average is monitored because 

only the step count using acceleration is insufficient to obtain 

accurate distance information. Therefore, the position of the 

reference point is used to correct the distance. Finally, the 

stored data in the database will be used to obtain the user’s 

trajectory. 

3.2.1 Initial Position and Reference point detector (IPR) 

One of the significant contributions of this paper is 

the adjustment of the user’s position in real time according to 

the stored reference points. Step counting algorithms, such as 

the Dead Reckoning algorithm [1], suffer from irrelevant 

user movements, such as the user’s hand shaking, which 

causes increases in the error bounds in the distance 

estimations the distance increases. If a fixed step length, 

which is usually used to determine the distance, is added, 

then the error bound becomes more serious. 

The initial position of a user is estimated when the 

reference points are detected. This is undertaken by 

searching for the maximum of the RSS’s average from these 

reference points. Then, the MAC address is extracted from 

the beacon frame, which is then used to extract the reference 

point’s location.  

 

The initial position estimator uses only the reference 

points that are stored in the database to detect the initial 

position. Several experiments were conducted in order to 

investigate the relationship between distance and RSS values 

when a user passes a reference point. Fig. 4 presents an 

example regression analysis, which was conducted for three 

different APs. It shows that there is a strong correlation 

between the distance and RSS values because the R2 is above 

0.5 in most cases and the slopes are negative, which implies 

that there is a strong negative correlation. 

The negative correlation between the distance and RSS 

values gives an indicator that the RSS value can be used to 

determine how far is a user from an AP. 

Fig. 4 also illustrates that there are some extreme RSS 

values due to the instability of the signals; therefore, 

preprocessing should be performed in order to eliminate the 

influences of these values. 

In order to eliminate the extreme values, the procedure is 

simple. First, the RSS values are stored and grouped for each 

window of time (e.g., one second). Second, the RSS median, 

max, and min values are computed. Third, the RSS value is 

marked as extreme value if its difference with the median 

RSS value of the time window is greater than the mid value 

between the maximum and the minimum RSS values of the 

time window((|Median – RSS|)> (|Max – Min|)/2).The 

system eliminates the extreme RSS values by excluding 

them from the average computing. For example, the 

correlation value for AP1’s RSSs versus distance was 0.6 for  
Fig. 4 Regression example of an RSS with distance 
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the first five beacons that were received during a window 

time of one second with a beacon time interval of one 

hundred milliseconds; however, after smoothing the data, the 

correlation was improved to 0.7. 

In summary, the initial position can be estimated as 

follows: the RSS average is computed for a window of time. 

The IPR observes the RSS average until it begins to 

decrease, which will be the time when the user passes under 

a reference point. 

The MAC address will be extracted from the beacon and 

the location of the user is determined as the location of the 

reference point based on the database. Fig. 5 illustrates the 

scenario of detecting the initial position. 

The maximum value of the average represents the time 

when a user passes under a reference point; this value is 

called the global maximum. However, due to the instability 

of the signals, the local maximum, which means that the 

average RSS decreases before reaching the global maximum 

might be obtained as shown in Fig. 5. In order to avoid 

adjusting the position based on the local maximum, the IPR 

tracks the maximum average for the last two continuous 

windows when the average begins to decrease. If the average 

increases again, then the IPR ignores the current maximum; 

otherwise, it stops and adjusts the user’s position based on 

the maximum average, which is the global maximum. For 

example, if the window time is one second, then the IPR 

tracks the average for the last two seconds until it finds the 

global maximum; therefore, the reference point requires 

three time windows in order to be determined. 

IPR stores the measured averages when the user is 

walking and stops measuring if the user is stationary.  

The significant advantage of the proposed CALL method 

over the existing methods is that a number of reference 

points are used to adjust user’s position in real time. The 

second task of the reference points is to adjust the user’s 

position each time the user encounters a reference point; 

thus, the error bound is limited as discussed in evaluation 

section. 

When the IPR detects the initial position, the reference 

point is determined. Depending on the database, which has 

information about the sections and directions, the upcoming 

reference points can be easily determined (e.g., suppose AP2 

and AP3 are on the west of AP1. If the initial reference point 

is determined using AP1 and the direction of the user is west, 

then IRP keeps observing RSS from AP2 and AP3 only). 

The IPR observes the average RSS for the upcoming 

reference points until it locates the global maximum; 

therefore, the IPR neglects other RSSs from other reference 

points. 

 
 

Fig. 5 RSS average with local and global MAX 



3.2.2 Direction estimator 

The direction of the user must be estimated after 

determining its initial position, and this is used as an 

indicator for the next building section that the user is moving 

toward. 

Han and Kim used a smartphone orientation sensor, 

which provides three values that represent the azimuth (the 

angle measured clockwise from the magnetic north of the 

Earth to the y-axis of the smartphone), pitch (rotation around 

the x-axis), and roll (rotation around the y-axis), to perform 

the mobility prediction [19]. One issue with orientation 

sensors is that they are easily affected by user movements 

such as shaky hands. In order to obtain more accurate results, 

the sensor values must be measured over a period of time. In 

the proposed CALL system, the situation where the user is 

holding the smartphone in their hand in order to watch 

advertisements, YouTube, TV program, and so on is 

considered. Then, the sensor data collection begins when the 

user enters a building section.  

The average azimuth is computed for each section during 

the period of time between the beginning of the section and 

the end. Computing the average azimuth value for a period 

of time can help to mitigate the errors in direction estimation. 

For instance, if there is an irrelevant movement, such as hand 

shaking or if the user passes by any magnetic source, then 

the azimuth suddenly changed. To overcome this problem, 

the direction estimator ignores any value and marks it as 

noise if there is any abrupt difference in azimuthhappened. 

Due to the noise from the sensor, the direction estimator 

uses the low pass filter to keep the azimuth values within a 

range. This procedure helps to reduce the error in the 

direction estimation, but because the error is accumulative, 

the system needs to mitigate this accumulative error. To do 

so, the direction is recalibrated each time a user encounters a 

reference point; therefore, the direction will be reset 

frequently during the user movements.  

One of the advantages of CALL is predicting the next 

reference point according to the user direction. For instance, 

suppose that the reference points y is located in the west of 

reference point x and reference point z is located in the east 

of x. If the detected reference point is x and the direction of 

the user is west, then smartphone will decide that the next 

reference point is y; therefore, the search algorithm will keep 

looking for the reference point y and ignores the reference 

point z from the search process. 

3.2.3 Step counting estimator 

Accurate distance estimation is a critical issue in indoor 

positioning systems. Therefore, in order to accurately 

estimate the distance using smartphone sensors, e.g., an 

accelerometer, the most widely used technique is to count 

steps using the Peak Detection Algorithm (PDA) [20]. 

The PDA uses an accelerometer sensor to locate peaks, 

where each peak represents a step. The algorithm functions 

as follows. If the current accelerations are greater than the 

movement standard deviation threshold for duration W, then 

a movement is detected. A peak is detected when the current 



acceleration is greater than the sum of the mean and standard 

deviations for a duration (i.e., between (current time – W) 

and current time). Finally, the distance is calculated by 

multiplying the number of steps by the fixed step length. 

The primary drawback of this technique is miscounting 

steps due to shaky hands or other irrelevant smartphone 

movements. Another problem is that the step length can 

vary. Therefore, the PDA is prone to errors. In order to 

address these problems, the real distances are stored in the 

database and are used to obtain the correct distances.  

The step counting estimator performs a data smoothing 

before detecting the peaks to mitigate the noise from the 

accelerometer sensor. High pass filter is used to mitigate the 

error by computing the real acceleration after eliminating the 

force of the gravity. 

The proposed CALL system corrects the user position to 

be the position of the reference point when the user 

encounters a reference point. In order to correct the distance, 

suppose that (x, y) is the position of a reference point, (x1, y1) 

is the user position according to PDA, and PDA_DIS is the 

distance measured by the PDA; then, the difference in the 

distance between the user position based on the PDA and the 

reference point is: 

Diff _DIS = (𝑥!-x)
2
+(𝑦!-y)

2
.   (1) 

The distance is corrected using Eq. 1 by adding or 

subtracting the Diff_DIS from the measured distance, as 

follows: 

Distance =
PDA_DIS +Diff _DIS, x1<x
PDA_DIS -Diff _DIS, x1≥x

. (2) 

In summary, PDA detects the current position according 

to the previous position based on the step counting and the 

direction. Therefore, the user can move without restrictions 

throughout the floor. If a reference point is detected, the 

current position will be adjusted according to the reference 

point position in order to solve the accumulative error due to 

the miscounting steps in PDA. 

The error bound in the distance and position estimation 

of the proposed CALL is very limited, because each 

reference point has a fixed location in the building according 

to the database. 

3.2.4 Tracking algorithm 

The tracking algorithm which is shown in the flowchart 

shown in Fig. 6 works as follows. First, if the user is walking 

inside the building, the tracking algorithm fetches the 

received beacon frame to extract the RSS and MAC address. 

If the average RSS within a time window is a global 

maximum value, then a query will be sent to the server with 

the MAC address. The server returns the building and the 

floor number, since it has a table that contains the MAC 

addresses and the corresponding floor numbers. Second, the 

tracking algorithm detects the initial position as discussed in 

Section 3.2.1, and then determines the direction and the 

number of steps of the user as shown in Sections 3.2.2 and 

3.2.3.  



 

Third, if the initial position is already estimated when the 

global maximum is found, it means the user has encountered 

a reference point during his movement; therefore, the 

tracking algorithm updates the position and distance as 

discussed in Sections 3.2.1 and 3.2.3. Feedback system keeps 

tracks of the average RSS, the direction, and the number of 

steps in the database. 

3.3 Feedback system phase 

This phase is embedded in the localization phase. It 

means that during the localization phase, the average RSS 

values are observed and the data is sent to the server. In the 

server side, reference points’ RSS thresholds and positions 

will be updated, and the paths of the users will be stored as 

well to update the floor plan each time a user uses the 

localization phase as shown in Section 3.1. 

After the initial floor plan is estimated using two rounds, 

then the system feedback is used to enhance the RSS 

threshold, the floor plan, and the position of the reference 

point. As a result, the other users do not need to survey the 

building again, feedback system provides all the information 

such as, the RSS thresholds, the floor plan, and the position 

of the reference points. Therefore, the system needs the two 

rounds only once. 

This phase makes the system dynamic and flexible for 

any change in the building, such as installing new reference 

point or removing one. Another benefit is to make the 

position of the reference points more accurate by calculating 

the position of each reference point each time a user uses the 

localization and then the average of these positions will be 

computed, which makes the system more robust. RSS 

threshold values will be more accurate and more 

representative by calculating the thresholds average 

regularly. The feedback system enhances the layout of the 

floor plan by storing the paths during the localization phase. 

As long as the user uses the localization phase, the visited 

places in the building will be increased. So the more paths 

we store, the more accurate floor plan we get. 

4. Evaluation 

4.1 Experiments setup 

The proposed CALL was evaluated in three different 

environments at KAIST: the CS Department, the IT 

Convergence building, and the KI building. 
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CS Department has four floors with dimensions of 120 m 

length and width of 70 m. IT Convergence has nine floors 

and dimensions of 70 m length and width of 30 m. KI 

building has four floors, the first floor is a huge open space 

with dimensions of 100 m length and width of 120 m. We 

chose this environment because it can be is similar with a 

shopping mall. 

The experiments were conducted in the first and second 

floors of CS Department, which have 8 and 7 reference 

points respectively, with average distance of 20 m between 

each two of them. And in floors seventh to ninth of IT 

Convergence, which have 8 reference points each, with 

average distance of 17 m between each two of them. The last 

experiment was conducted in KI building first floor to test 

the ability of CALL in the open space buildings. 

The proposed method was implemented on an Android-

based Galaxy SIII smartphone and an Android-based LG 

Optimus LTE2 smartphone, which are both equipped with 

accelerometer sensors, orientation sensors, and Wi-Fi. The 

experiments were conducted during the daytime when the 

RSS levels may be affected by obstructions between the APs 

and the user’s smartphone.  

4.2 Experiments results 

In this section, we present the result of floor plan 

construction, localization, and feedback system. 

4.2.1 Floor plan construction 

This section presents the experiment results for detecting 

the reference points and storing the users’ paths, the 

following subsections provide the details: 

• Detecting the reference points 

This subsection presents the result of the experiments of 

detecting the reference points in several floors of CS 

Department, IT Convergence building (N1), and KI building. 

Table 1 shows the obtained results. 

 

 

Table 1. Reference point detection results 

Floor 
No. of  

reference points 
No. of detected 
reference points 

Avg.  
error (m) 

N1 9th F 8 8 2.9 

N1 8th F 8 6 3 

N1 7th F 8 8 2.6 

CS 1st F 8 8 2.6 

CS 2nd F 7 6 2 

KI 5 5 2.9 

 

: Real position of the reference points
: Estmated position of the reference points

(a)

(b)

(c)

Fig.7 The process of detecting the reference points position and 
the initial floor plan. (a) The initial reference points positions,(b) 
The user path based on the estimated reference points, (c) The 
initial floor plan, which consists of the estimated reference points 
and the user path with the respect of the real position of the 
reference points 



Table 1 shows that the average distance error of detecting 

the reference points of different floors in different building is 

quite similar, and does not exceed 3 m. Also Table 1 shows 

that the system can detect most of the available reference 

points.   

Fig. 7(a) demonstrates an example floor plan of the 

reference points in 8th floor of IT Convergence building. The 

figure shows the real position of the reference points and the 

estimated position of the detected reference points. In order 

to verify the ability of the feedback system for detecting the 

remaining reference points, we chose 8th floor, since 

reference point detection found 6 reference points out of 8 in 

that floor. 

• Storing the path of user and initial floor plan 

Fig. 7 (b) shows the path of a user, which starts when the 

user encounters a reference point.  

A dot in the path is drawn every time window (e.g., 2 

seconds), and it represents some information, such as 

acceleration, average RSS, and digital compass value. Fig. 7 

(b) and (c) show the initial floor plan, which consists of one 

path and does not give any components of the building 

except the corridors. The initial floor plan, which consists of 

the reference points and relative corridor layout, will be used 

in the localization phase.  

The difference between this technique and CrowdInside 

[23] is that we need little effort to form the layout of the 

floor. Even though the initial floor plan is not accurate, but 

the feedback system improves the floor plan over time 

(Section 3.3). 

4.2.2 Localization 

The experiments were performed using two scenarios. 

Scenario 1 was performed on the eighth floor in the IT 

Convergence building. In this scenario, the user began from 

one reference point. Then, the user moved inside the hallway 

in the building. Several reference points were used in this 

scenario. In order to verify the efficiency of the proposed 

CALL, the user passes all reference points. Fig. 8 (a) 

illustrates the user trajectory and reference point locations.  

Fig. 8 (b) presents Scenario 2 that was conducted on the 

first floor of the CS Department building. In scenario 2, the 

user began in a corridor and moved inside the building. The 

user changed direction several times during the movement.  
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:Real Path
:CALL Path
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 :Represents user’s position adjustment when a reference 
point is detected

(a)

Fig. 8 Localization scenarios, (a) Scenario 1 in IT convergence 
building, (b) Scenario 2 in CS building 



Fig. 8 (b) also presents the user’s trajectory and reference 

point locations. The real path of the user is drawn with a 

green solid line, the CALL path is drawn with a red long 

dashed line, and the PDA with compass path is drawn with a 

blue small dotted line.  As seen from Fig. 8 (a), the CALL 

path is very similar to the real path, while the accuracy of the 

PDA decreases as the also shows that PDA path is relatively 

similar to the real path because PDA performs well in the 

simple topologies where the distance is short and the user 

movements are stable. ‘D’ in Fig. 8 (b) represents an incident 

in that the user encounters a reference point. As seen in the 

figure, the position has been adjusted directly to be the 

location of the reference point (nearest black dot). 

4.2.3 Feedbacksystem 

The purpose of the feedback system is to improve the 

accuracy of the positions of the reference points and the floor 

plan. Fig. 9 shows the reference point positions after five 

times of conducting the localization phase. The feedback 

system keeps track of the position of reference points each 

time the localization phase is used, and then the averages of 

all positions are computed as new positions of the reference 

points. The results of the feedback system are new positions 

of the reference points and the floor plan. In other words, the 

system feedback updates the database automatically during 

the localization; therefore, the more the localization phase is 

used, the more accurate position of the reference points and 

floor plan will be. 

 

According to Fig. 9(a) and (b), which show the reference 

point positions and the floor plan, we argue that over time, 

the general layout of the floor will be formed, since the 

number of visited places will be increased. 

The maximum error of localization was 6 m due to the 

inaccuracy in initial floor plan. However, after performing 

the feedback system, which enhances the initial floor plan, 

the error is reduced to less than 3 m. 

4.3 Error analysis 

The findings of our experiments indicate that there are 

some errors in reference point detection system and 

localization system. In this section we present the error 

analysis for both systems. 

: Real position of the reference points
: Estmated position of the reference points

(a)

(b)

 Fig. 9 Feedback system phase for updating the reference point’s 
position and the floor plan during localization phase. (a) The 
reference points positions after five times of localization in KI 
building,(b) The reference points positions after five times of 
localization in N1 building. 



4.3.1 Reference point detection  

In order to evaluate the robustness of the reference point 

detection system, Fig. 10 demonstrates the cumulative 

distribution function (CDF) graph, which shows the 

accumulative error in detecting the reference points in 

various floors. 

Fig. 10illustrates that the precision of detecting the 

reference points within 3 m is 80% in the three environments 

even though these environments have different dimensions. 

Thus, the system provides sufficient accuracy of detecting 

the positions of the reference points, which will be used to 

detect the users’ positions afterward. 

After performing the feedback phase with five times of 

localization, the average error was reduced to 2.5 m in the 

first floor of the CS building and 2 m on the eighth floor of 

the IT convergence building. The results show the impact of 

the feedback system in enhancing the accuracy of the 

system. 

 

4.3.2 Localization 

The findings of our experiments indicate that there are 

some errors between the real and estimated locations, which 

originate from the uncertainty in the measurements from the 

distance estimation and initial position estimation. The error 

bound of CALL can be derived by calculating the distance 

difference between the real position and the CALL position 

using Euclidean distance. 

Formally, let (xt, yt) is the real user position at time, t. 

and let (xt
1,yt

1) is the CALL user position at time, t. Then: 

Error = (x1
t -xt)

2
+(y1

t -yt)
2
. (7) 

In Scenario 1 (Fig. 8 (a)), the mean error and standard 

deviation error for the CALL were 2 m and 0.9 m, 

respectively. In contrast, the PDA had a mean error of 5 m 

and standard deviation of 2.2 m. In Scenario 2 (Fig. 8 (b)), 

the CALL mean error and standard deviation were 3 m and 

1.1 m, respectively. The PDA had a mean error of 6.3 m and 

standard deviation of 3 m. In both scenarios, the mean error 

of estimating the initial position for the CALL was 3 m, 

while the standard deviation was 1 m for both scenarios. 

Considering only the accuracy is not enough to test the 

robustness; therefore, the location precision, which means 

how consistently the system works, can be used to determine 

the robustness of the system.  

 

 
Fig. 10 CDF of reference points detection error for CALL 
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Fig. 11 CDF of positioning error for CALL 
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Location precision is determined by computing the CDF. 

Fig. 11 demonstrates the CDF graph, which shows that the 

CDF of distance error of 3.8 m is 0.9, which means CALL 

has a location precision of 90% within 3.8 m. Also, the CDF 

of distance error of 2.2 m is 0.6, which means a precision of 

60% within 2.2 m. 

4.4 Comparison  

We have compared CALL with different approaches as 

follows: 

• CALL versus fingerprinting:  

- Database size: CALL collects the RSS average values 

of the reference points during the first survey, in the 

end of the first survey (one round of walking), CALL 

calculates the RSS threshold for each reference point. 

During the second survey (another round of walking), 

CALL detects the position of the reference points 

using the strongest RSS average value with respect to 

the RSS threshold. In the end, the database of CALL 

contains the MAC addresses and the RSS threshold 

for each reference point. It means that the database is 

very small compared to fingerprinting approach, 

which needs to collect the data for long period of time 

(at least 20 - 30 fingerprints for each marked place). 

- Database calibration: Fingerprinting technique needs 

to build the radio map database from time to time due 

to any changes in the environment, such as installing a 

new AP. In constant, CALL has the feedback system 

phase, which updates the RSS thresholds 

automatically during the localization phase. 

- Energy and time: we have measured the time and the 

energy for CALL to compare it with fingerprinting. 

 In term of energy, CALL consumes low energy 

for surveying the building (e.g., 164 mW in IT 

convergence building). The consumed energy for 

localization is very low, because only few beacons are 

needed and the search algorithm is linear. In contrast, 

RADAR consumes high energy for surveying the 

building, because of the huge number of collected 

fingerprints. For time measurements, CALL needs 

few minutes in each floor for surveying the building, 

because only two rounds of walking are needed. 

RADAR needs to survey the building for long period 

of time in order to collect the fingerprints. CALL and 

RADAR need few seconds for localization. 

- Accuracy: CALL provides accuracy of 2 to 3 m, while 

RADAR system has accuracy of 3 to 5 m. Some 

fingerprinting approaches have better accuracy if the 

number of fingerprints is increased, which affects the 

time of surveying and rebuilding the database. 

• CALL versus smartphone sensors based approach:  

CALL corrects the user’s position and distance 

estimation each time he/she encounters a reference point. 

The current smartphone based approaches rely on the step 

detection algorithm to count the number of steps based on 



the peak value of the acceleration. This algorithm suffers 

from irrelevant smartphone movements, such as hand 

shaking; therefore, the more distance that the user moves, the 

bigger error will be. CALL solves this problem by correcting 

the position and the distance each time the user encounters a 

reference point, thus, the error is limited. Fig. 12 shows the 

errors in distance estimation using CALL and the 

conventional step detection. 

CALL has almost fixed error of 3 m in distance 

estimation. In contrast, the step detection algorithm, which is 

used by most of the smartphone based approaches has an 

accumulative error. 

 

• CALL versus hybrid techniques:  

UnLoc [17] and EZ [21] are ones of the recent papers, 

which are related with CALL. The details of UnLoc and EZ 

are described in Section 2.Table 2 shows the comparison 

between CALL and the aforementioned localization systems.  

 

4.5 Discussion  

One of the limitations of CALL is detecting the initial 

position. The user should encounter a reference point in 

order to detect his/her initial position. In the future work, we 

will provide the initial position even if the user is not close to 

any reference point. Another limitation could be the circular 

open space buildings, CALL performs well in these kinds of 

buildings but still needs to be enhanced since all the 

reference points are facing each other, which means 

predicting the next reference point will be more 

sophisticated. Another limitation is the direction estimation, 

where we assume that the user holds the phone. In the future 

work, we will consider when the user is not holding the 

phone.  

5. Conclusion 

This paper presents an indoor positioning floor plan 

construction and tracking system. The proposed approach 

builds the floor plan by detecting the reference points 

represented by public APs in the building. Typically, these 

reference points are attached to the ceiling of the corridors 

and have well-distributed topological locations. Based on 

this, the initial position of the user is determined using the 

nearest reference point with the strongest signal in average 

during a designated time window. In order to overcome the 

instability of the received signal strength, the search process 

is restricted to only the reference points recorded in the 

database. The user’s direction is estimated using the 

orientation sensor after obtaining the average value during 

 
Fig. 12Distance estimation using CALL and step algorithm 
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the user movement. In order to obtain the user movement, 

the acceleration data was gathered and the step counting 

technique can be used. In order to overcome the miscounting 

problem due to irrelevant movements of the smartphone, the 

AP locations in the building floor plan database are 

referenced to correct any errors in distance estimations. To 

improve the accuracy of the floor plan, a feedback phase is 

used to collect the sensors data and received signal strength 

averages during the localization system. As the feedback 

system accumulates the data, the positioning accuracy, the 

reference points’ locations, and the layout of the floor plan 

are enhanced. The experiments with the proposed CALL 

system in a real environments showed that the distance 

estimation had a mean error of 2 m and the initial position 

accuracy had a mean error of 3 m. Moreover, the mean error 

of detecting the reference points position did not exceeds 3 

m. With the fixed reference points’ locations, our proposed 

CALL system could avoid the problems of signal attenuation 

and/or scattering, and additional overhead of database search 

for tracking the user.  
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