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Abstract The Cognitive Radio (CR) technology enables Secondary Users (SUs) to occupy licensed 

bands when Primary Users (PUs) are not occupy them. Spectrum sensing is a key technology for SUs to 

detect PUs, and the sensing time is a critical parameter for spectrum sensing performance. Optimum 

sensing time tradeoffs between the spectrum sensing performance and the secondary throughput. This 

paper proposes a novel spectrum sensing scheme that performs spectrum sensing for either one period or 

two periods based on the previous sensing result. Due to the energy constraint in Cognitive Radio Sensor 

Networks (CRSNs), the energy efficiency is maximized by optimizing spectrum sensing time. In order to 

seek the optimal sensing time, the objective function is proven to be a concave function and the Golden 

Section Search method is employed. Our simulation study verifies that the proposed scheme improves 

the network energy efficiency, especially when PUs are more active. 

Keywords Cognitive radio sensor networks, sensing time, energy efficiency, golden section search 

method. 

1 INTRODUCTION 

Due to the fixed spectrum allocation policy and the rapid deployment of wireless devices, the 

problem of spectrum scarcity is becoming more severe. Nevertheless, Federal Communications 

Commission (FCC) has reported that most licensed wireless spectrum bands are underutilized [1]. 

Recently, Cognitive Radio (CR) technologies have been proposed to alleviate the spectrum scarcity 

problem [2]. CR has attracted a lot of attention because it allows unlicensed Secondary Users (SUs) to 
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opportunistically access the licensed bands when licensed Primary Users (PUs) are not occupying them. 

Due to this benefit, CR technologies have been extensively applied in various wireless networks to 

improve spectral efficiency [3-5].  

SUs utilizing CR technologies can find spectrum holes or white spaces, and share the licensed 

bands with PUs in a collision-free manner. Fig. 1 presents a simple Cognitive Radio Network (CRN), 

where the PU has higher priority for occupying the licensed bands. The shaded area indicates the 

communication range of the PU, and the solid and the dashed arrows represent the data transmission 

between SUs and the PU detection, respectively. When the SUs in the shaded area detect that the PU is 

busy, they cannot occupy the licensed band and communicate with other SUs. If the SUs detect that the 

PU is not busy, they can transmit data (using RTS/CTS or other methods to coordinate the 

communications among SUs). Fig. 1 shows a simple CRN with one PU and several SUs. However, if 

more than one PU exist, SUs must perform spectrum sensing on all the licensed bands they occupy. Thus, 

it is very important for SUs to accurately determine whether or not PUs are present. Spectrum sensing is 

the key technology used to detect PUs, and the amount of time spent sensing is a critical parameter for 

performance. The optimal sensing time trades off between the detection accuracy and the achieved 

secondary throughput. More specifically, a longer spectrum sensing time leads to better sensing accuracy, 

but less time remains for data transmission degrading the throughput of the secondary network. 

For the optimum spectrum sensing time, miss detection and false alarm probabilities are the main 

performance metrics. A miss detection occurs when an SU fails to detect a PU that is present. A false 

alarm occurs when an SU detects a PU when it is actually absent. If a miss detection occurs, the 

communications by SUs will interfere with the PUs’ communications. As a result, PUs can have better 

protection from interference if miss detection probability is lower. From the perspective of SUs, if the 

 
Fig. 1 Architecture of cognitive radio network 
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probability of false alarm is lower, opportunities for SUs to utilize spectrum holes for data transmission 

become higher and the secondary throughput will increase. A longer sensing time will lead to a lower 

miss detection probability (i.e., higher detection probability) but a higher false alarm probability (see Sec. 

4.1). 

Energy consumption is the most important factor in CRSNs. In CRSNs, low-cost, battery-powered 

sensor nodes are dispersed in a specific area to satisfy various applications, including environment 

monitoring, surveillance, health care, and battlefield control [6]. Due to the application environment, it is 

hard or impossible to change or recharge the batteries for the sensor nodes. Therefore, improving energy 

efficiency and prolonging the network lifetime become the crucial issue for the development of CRSNs. 

Therefore, this paper proposes a novel spectrum sensing scheme to improve the energy efficiency 

of CRSNs. The proposed scheme takes into consideration the previous sensing result. If the sensing 

result of the current frame is the same as the sensing result of the previous frame, the SU simply performs 

a spectrum sensing once. Otherwise, the SU will perform another spectrum sensing for a second time to 

ensure the correctness of the first sensing result. There are two main advantages to the proposed method: 

(a) If a PU is actually absent during both the previous and the current frames and a false alarm occurs 

during the first spectrum sensing of the current frame, then the probability that the sensing error can be 

corrected during the second spectrum sensing increases. As a result, the secondary throughput can be 

improved. 

(b) If a PU is actually present during both the previous and the current frames and a miss detection occurs 

during the first spectrum sensing of the current frame, then the probability that the sensing error can 

be corrected during the second spectrum sensing increases. As a result, PU can obtain a better 

protection from interference and energy efficiency can be improved by reducing the number of 

invalid transmissions due to miss detection. 

Our simulation study validates that the proposed scheme reduces sensing errors and improves 

network energy efficiency, especially when PUs are relatively active. 

The rest of the paper is organized as follows. Sec. 2 discusses the related work. Sec. 3 presents the 

system model of the proposed method. In Sec. 4, an optimization problem is formulated to obtain the 

optimal sensing time. In Sec. 5, the performance of the proposed scheme is evaluated using simulations. 

Finally, Sec. 6 concludes the paper and discusses a possible future work. 

2 RELATED WORK 
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Some recent work on sensing time optimization for CRNs have been presented in [7-12]. Ewaisha 

et al. investigated a joint optimization of sensing time, decision threshold, and channel sensing order [7]. 

They derived a reward function that includes a negative term to penalize collisions with PUs, and the 

secondary throughput is maximized by finding the optimal solution for the reward function. In this work, 

the channels are sensed in order and if it is sensed to be idle, the capacity of this channel will be compared 

with the next idle channel. Then, the channel with the highest capacity is selected for data transmission. 

However, the state of channel occupancy is not considered when the channel sensing order is obtained. If 

the channel with the highest capacity is frequently occupied by the PU, more time and energy will be 

wasted to search for the optimal channel for data transmission. Hao et al. developed an adaptive 

spectrum sensing scheme to maximize the average throughput [8]. Their work considered time-varying 

channels, and adjusted the missing transmission probability to improve the average throughput. More 

specifically, they reduce the missing transmission probability when the channel is good and allow a high 

missing transmission probability when the channel is bad. Based on the previous sensing results and the 

channel state information, the current channel state is predicted and the sensing time is adjusted 

accordingly. This work assumes that the channel state information can only be obtained when the 

spectrum sensing is over and the sensing result indicates the channel is idle. This way, if the channel is 

rarely occupied by the PU, much time and energy will be needed to predict the current channel state 

before each spectrum sensing and data transmission. Shokri-Ghadikolaei et al. proposed a 

learning-based sensing time optimization scheme to maximize the average throughput [9]. More 

specifically, a multilayer feedforward neural network is utilized for learning the actual behavior of the 

secondary link, and based on this, a Kennedy-Chua neural network is employed to find the optimal 

sensing time. This work assumes that an SU senses several channels in order until a transmission 

opportunity is found. However, the authors only focus on sensing time optimization and the optimization 

of channel sensing order is ignored. An inappropriate channel sensing order will also result in more time 

and energy consumption to search the channel for data transmission. Sun et al. investigated the tradeoff 

between sensing accuracy and secondary throughput for cooperative spectrum sensing based on soft 

decision [10]. They analyzed the impact different system parameters have on the optimal sensing time, 

and showed that they can lead to different results. Liu et al. investigated a joint optimization of the 

sensing time and the number of cooperative users, which maximized CRN throughput subject to the 

constraints of both false alarm and miss detection probabilities [11]. Yin et al. proposed a joint 
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sensing-time adaption and data transmission scheme to improve spectrum utilization and throughput [12]. 

Their method bundles two adjacent sensing periods to form a sensing block. At first, an SU performs a 

partial spectrum sensing, and if it does not detect a PU, it transmits data; otherwise, the SU performs a 

full spectrum sensing. However, the aforementioned techniques are specific to CRNs and they do not 

take into consideration energy restriction for CRSNs. Therefore, these technologies cannot be directly 

applied to CRSNs. 

Zhong et al. investigated a joint optimal energy-efficient cooperative spectrum sensing and 

transmission in a multi-channel CR system [13]. The network energy efficiency is maximized by 

jointly optimizing the sensing time, the number of cooperative sensing SUs, and the transmission 

bandwidth. However, the authors optimize the number of cooperative sensing SUs using the exhaustive 

search method, and then investigate the optimum sensing time, transmission bandwidth and power. If 

the network consists of hundreds of SUs, the computational complexity will be high. Luo et al. 

proposed a scheme that minimizes the mean sensing time with the goal of meeting the basic requirements 

of a secondary network, i.e., the detection probability must not be smaller than a pre-defined threshold 

and the false alarm probability must not be larger than a pre-defined threshold [14]. Their scheme 

minimizes the spectrum sensing time, and thus maximizes the time remaining for data transmission. 

They show that the minimum average sensing time can be attained when the false alarm probability 

reaches its threshold. However, even though the maximum time is left for data transmission, the 

probability of sensing errors becomes high due to the low detection probability and the high false alarm 

probability. This will cause more interference to the PU and lose more opportunities for data 

transmission. 

In terms of CRSNs, Deepak et al. proposed a method based on cognitive monitoring network, 

where a separate network of sensors is deployed to perform cooperative spectrum sensing within a 

network coverage area [15]. Thus, instead of performing spectrum sensing, SUs spend a short amount of 

time to send query to and then receive sensing results from monitoring sensors. This allows the 

secondary throughput to be maximized irrespective of the sensing duration. However, the delay due the 

communication between SUs and monitoring sensors will increase. In addition, monitoring sensors will 

expend energy for spectrum sensing. Jiang et al. investigated an energy-efficient optimization method 

for spectrum sensing and node selection [16]. In this work, a dynamic censored spectrum sensing scheme 

is employed, where each sensor node compares the received power with a censoring threshold, and then 
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decides when to stop sensing. This way, the sensing time can be reduced and unnecessary sensing energy 

consumption can be avoided. However, if a sensor node collects just a few samples and then stops 

spectrum sensing, the probability of sensing error will increase. 

Awin et al. investigated a joint optimal transmission power and sensing time for energy-efficient 

spectrum sensing [17]. The optimization problem is formulated as a function of two variables (i.e., 

transmission power and sensing time) subjected to PU protection constraints. An iterative algorithm is 

applied to determine the optimal transmission power and sensing time that maximizes the energy 

efficiency of a CR system. Zhang et al. also investigated the power control and sensing time 

optimization problem for energy efficient cognitive small cell network [18]. The cross-tier interference 

mitigation, imperfect hybrid spectrum sensing, and energy efficiency are considered. A hybrid 

spectrum sensing that combines spectrum sharing access and opportunistic spectrum access is 

considered in the optimization problem. An iterative resource allocation algorithm is developed to 

achieve the optimal sensing time and power allocation, which in turn maximizes the energy efficiency. 

Li et al. proposed an energy-efficient technique for cooperative spectrum sensing [19]. In their method, 

all SUs perform cooperative spectrum sensing for one period. If the sensing result shows that the PU is 

absent, SUs will transmit data. The optimal sensing time is attained by optimizing the ratio of the 

secondary throughput and the total energy consumption. However, the work in [17], [18], and [19] 

perform spectrum sensing just once and then find the optimal sensing time that maximizes the network 

energy efficiency. If miss detections and false alarms occur, there is no opportunity to correct these 

sensing errors. This will cause interference and the available spectrum opportunities will be wasted. In 

our proposed scheme, spectrum sensing will be performed again when the sensing results of the current 

and previous frames are different. This allows the sensing errors have a certain probability to be 

corrected. 

3 SYSTEM MODEL 

This paper considers a CRSN consisting of a single PU and multiple SUs communicating on a 

licensed band, which is subdivided into several non-overlapping sub-bands. Moreover, an SU is assigned 

to a sub-band to sense whether it is occupied by the PU. Time is divided into equal sized frames, where 

each frame consists of two phases: the sensing phase and the data transmission phase. Each SU performs 

spectrum sensing during the sensing phase to detect the PU. Each SU will transmit data if the PU is 

detected to be idle or absent; otherwise, it will keep silent and wait for the next frame. Furthermore, each 
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SU is assumed to always have data to transmit if the sensing result shows that the PU is absent. If the 

sensing results of the current and previous frames are the same, an SU simply performs spectrum sensing 

only once for the current frame. If the sensing result of the current frame is different from the sensing 

result of the previous frame, an SU will perform another spectrum sensing to ensure the accuracy of the 

first sensing result. Note that if the first and the second sensing results of the current frame are different, 

the second sensing result will be taken as the final sensing decision, even if it is wrong. This can occur 

because the spectrum sensing is not perfect, and thus an SU may not be able to ascertain the actual states 

of the PU. The spectrum sensing accuracy is related to the miss detection and false alarm probabilities. 

Therefore, in order to simplify the proposed scheme, the sensing result of the previous frame is 

considered as the correct state (i.e., the actual state of the PU), even though it may be wrong.  

Fig. 2 shows the frame structure of the proposed scheme. The fame length is T and 𝑡1 and  𝑡2 

represent the first and the second spectrum sensing period, respectively. As mentioned before, if the first 

and the second sensing results of the current frame are different, the second sensing result will be taken as 

the final sensing decision. Since the longer sensing time can lead to a better sensing performance, the 

condition 𝑡2 ≥ 𝑡1 is imposed to increase the accuracy of the second sensing result. In addition, 𝑆𝑙 and 

𝑆𝑐 represent the actual state of PU for the previous and the current frame, respectively, and 𝑠1 and 𝑠2 

denote the first and the second sensing results of the current frame, respectively. The variables 𝑆𝑙, 𝑆𝑐 , 𝑠1, 

and 𝑠2 are assigned 0 and 1 to represent the absence and presence of a PU, respectively, and thus have 

the following meanings: 

𝑆𝑙=0 or 1: PU was idle or busy in the previous frame. 

𝑆𝑐=0 or 1: PU is idle or busy in the current frame. 

𝑠1=0 or 1: The first sensing result of the current frame indicating that PU is idle or busy.    

𝑡2 𝑡1 

Sensing Data Sensing 

T 

Fig. 2 Frame structure 

Frame1 Frame2 …… Frame j 

𝑆𝑙 

𝑠1 𝑠2 

𝑆𝑐 
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𝑠2=0 or 1: The second sensing result of the current frame indicating that PU is idle or busy. 

Based on 𝑆𝑙, 𝑆𝑐 , 𝑠1, and 𝑠2, there are 12 possible cases considered by the proposed scheme:  

Case 1 (𝑆𝑙=0, 𝑆𝑐=0, 𝑠1=0): The PU is idle during both the previous and the current frames, and the 

SU detects that the PU is idle during 𝑡1. Since the sensing result (𝑠1=0) is the same as the previous frame 

(𝑆𝑙=0), the SU will perform spectrum sensing only once, and then transmit data during the time period 

𝑇 − 𝑡1.  

Case 2 (𝑆𝑙=0, 𝑆𝑐=0, 𝑠1=1, 𝑠2=0): The PU is idle during both the previous and the current frames, but 

a false alarm occurs and the SU detects that the PU is busy during 𝑡1. Since the first sensing result (𝑠1=1) 

is different from the previous frame (𝑆𝑙=0), the SU will perform spectrum sensing again during 𝑡2. The 

second sensing result (𝑠2=0) is taken as the final sensing result. Since the final sensing result shows that 

the PU is idle, the SU will transmit data during the time period 𝑇 − 𝑡1 − 𝑡2. Even though a false alarm 

occurred during 𝑡1 , this error can be corrected during 𝑡2  and, as a consequence, higher secondary 

throughput will be achieved. 

Case 3 (𝑆𝑙=0, 𝑆𝑐=0, 𝑠1=1, 𝑠2=1): A false alarm occurs during both 𝑡1 and 𝑡2. The SU will keep 

silent and wait for the next frame, and thus there is no secondary throughput. 

Case 4 (𝑆𝑙=1, 𝑆𝑐=0, 𝑠1=0, 𝑠2=1): The first sensing result (𝑠1=0) is different from the final sensing 

result of the previous frame (𝑆𝑙=1), thus the SU will perform spectrum sensing again during 𝑡2. However, 

a false alarm occurs during 𝑡2. Therefore, the SU will keep silent and wait for the next frame, and thus 

there is no secondary throughput. 

Case 5 (𝑆𝑙=1, 𝑆𝑐=0, 𝑠1=0, 𝑠2=0): The SU performs spectrum sensing during 𝑡1 and 𝑡2, and both 

sensing results indicate that the PU is absent. The data will be successfully transmitted. 

Case 6 (𝑆𝑙=1, 𝑆𝑐=0, 𝑠1=1): A false alarm occurs during 𝑡1. Nonetheless, the first sensing result (𝑠1=1) 

is the same as the previous frame (𝑆𝑙=1), thus the SU will not perform spectrum sensing again. The SU 

will keep silent and wait for the next frame, and thus there is no secondary throughput.  

Case 7 (𝑆𝑙=1, 𝑆𝑐=1, 𝑠1=0, 𝑠2=1): A miss detection occurs during 𝑡1 and the first sensing result 

(𝑠1=0) is different from the previous frame (𝑆𝑙=1), but the PU is detected during 𝑡2. As a consequence, a 

better protection is provided against miss detection and more energy will be saved.  

Case 8 (𝑆𝑙=1, 𝑆𝑐=1, 𝑠1=0, 𝑠2=0): A miss detection occurs during 𝑡1 and 𝑡2. Since the SU failed to 

detect the PU, it will transmit data. However, the data transmission will fail and there will be no 

secondary throughput.  
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Case 9 (𝑆𝑙=1, 𝑆𝑐=1, 𝑠1=1): The SU successfully detects the PU, and it will remain silent and wait for 

the next frame.  

Case 10 (𝑆𝑙=0, 𝑆𝑐=1, 𝑠1=0): A miss detection occurs during 𝑡1 and the sensing result (𝑠1=0) is the 

same as the previous frame (𝑆𝑙=0), thus spectrum sensing will be performed only once. Since data 

transmission is successful only when the PU is actually absent, there will be no secondary throughput. 

Case 11 (𝑆𝑙=0, 𝑆𝑐=1, 𝑠1=1, 𝑠2=0): The SU detects the PU during 𝑡1. Since the sensing result (𝑠1=1) 

is different from the sensing result of the previous frame (𝑆𝑙=0), the SU performs spectrum sensing again, 

and a miss detection occurs during 𝑡2. Therefore, the data transmission will fail and there will be no 

secondary throughput.  

Case 12 (𝑆𝑙=0, 𝑆𝑐=1, 𝑠1=1, 𝑠2=1): The SU successfully detects the PU during 𝑡1 and 𝑡2, and thus it 

will remain silent and wait for the next frame.  

Based on the aforementioned cases, the valid secondary throughput can be achieved only for cases 1, 

2 and 5, while cases 3, 4 and 6 will lead to false alarm. Cases 7, 9 and 12 can successfully detect the PU, 

while cases 8, 10, and 11 will cause miss detection. The summary of 12 cases is presented in Table 1, 

which also includes for each case whether or not false alarm (FA), miss detection (MD), and valid 

throughput (TP) occur.  

4 PROBLEM FORMULATION 

This section analyzes how sensing time affects the sensing accuracy and the secondary throughput 

Cases State Outcome 

𝑆𝑙 𝑆𝑐 𝑠1 𝑠2 FA MD TP 

1 0 0 0 N/A N N Y 

2 0 0 1 0 N N Y 

3 0 0 1 1 Y N N 

4 1 0 0 1 Y N N 

5 1 0 0 0 N N Y 

6 1 0 1 N/A Y N N 

7 1 1 0 1 N N N 

8 1 1 0 0 N Y N 

9 1 1 1 N/A N N N 

10 0 1 0 N/A N Y N 

11 0 1 1 0 N Y N 

12 0 1 1 1 N N N 

Table 1 Summary of spectrum sensing cases 
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by developing an analytical model. The main objective of the analysis is to find an optimal sensing time 

that maximizes network energy efficiency as well as yields good sensing accuracy.  

4.1 Energy Detector Based Spectrum Sensing 

Our analysis uses a binary hypothesis to formulate the spectrum sensing. Let 𝐻0 and 𝐻1 denote 

the hypothesis of the idle and busy states of a PU, respectively. The probabilities of 𝐻0 and 𝐻1 are 

denoted as 𝑝0  and 𝑝1 , respectively, and 𝑝0 + 𝑝1 = 1. In the proposed scheme, the PU’s spectrum 

occupancy is assumed to follow a Markov chain model shown in Fig. 3. The existence of a Markov chain 

for the spectrum occupancy by PUs has been validated in [20]. The state space of the Markov process is 

X={𝐻0, 𝐻1}, where 𝐻0 = 0 and 𝐻1 = 1. As shown in Fig. 3, 𝑞𝑛 which denotes the actual state of PU 

can be 0 or 1 (i.e., 𝐻0 or 𝐻1). The state transition probability matrix A is defined as A={𝑎𝑖𝑗}, 𝑎𝑖𝑗 =

𝑃(𝑞𝑛+1 = 𝑗|𝑞𝑛 = 𝑖)  for i, j ∈ X, where 𝑞𝑛  and 𝑞𝑛+1  denote the actual states of PU in 𝑛𝑡ℎ  and 

(𝑛 + 1)𝑠𝑡frame, respectively. More specifically, 𝑎00 and 𝑎11 denote the probabilities that the state of 

PU maintains 𝐻0  and 𝐻1  from the current frame to the next frame, respectively. 𝑎01  and 𝑎10 

denote the probabilities that the state of PU becomes 𝐻1 from 𝐻0 and 𝐻0 from 𝐻1 in the next 

frame, respectively. In addition, 𝑎00 = 𝑎10 = 𝑝0 and 𝑎01 = 𝑎11 = 𝑝1 are assumed. Moreover, the busy 

and idle periods of PU are assumed to be longer than the frame length. As a consequence, the probability 

that the state of PU changes more than once in a frame is negligible. 

In order to maximize the secondary throughput and at the same time provide some desired level of 

protection to PU, 𝑡1 needs to be minimized. Moreover, if a false alarm or a miss detection occurs, the 

second spectrum sensing time 𝑡2 provides an opportunity to correct the sensing errors with a certain 

probability to improve performance. Therefore, 𝑡1 can be expressed in terms of detection probability, 

𝑝𝑑, and false alarm probability, 𝑝𝑓 , as follows: 

𝑚𝑖𝑛  𝑡1    𝑠. 𝑡.  𝑝𝑑 ≥ 𝑝𝑑
𝑡ℎ, 𝑝𝑓 ≤ 𝑝𝑓

𝑡ℎ ,                                                   (1) 

where 𝑝𝑑
𝑡ℎ  and 𝑝𝑓

𝑡ℎ  represent the respective predefined thresholds that guarantee the necessary 

protection against interference and secondary throughput for PUs. 

𝑎11 𝑎00 

𝑎01 

𝑎10 

𝑞
𝑛

= 0 𝑞
𝑛

= 1 

Fig. 3 Markov model for spectrum occupancy of PUs 
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Due to the energy constraint in CRSNs, the value of 𝑡2 can be calculated by maximizing the 

network energy efficiency. The proposed method utilizes an energy detector for spectrum sensing, which 

is widely used due to its simplicity and requires no prior knowledge of PUs [21-23]. The test statistic of 

an energy detector 𝑇(𝑦) can be calculated as follows:  

𝑇(𝑦) =
1

𝜎𝑢
2

∑|𝑦(𝑛)|2

𝑁

𝑛=1

,                                                          (2) 

where N is the number of samples performed during the sensing phase and 𝑦(𝑛) is the sampled signal. 

When the state of PU is 𝐻0 , then 𝑦(𝑛) = 𝑢(𝑛), where 𝑢(𝑛) is the noise, which is a Gaussian iid 

random process with mean of zero and variance of 𝜎𝑢
2. On the other hand, when the state of PU is 𝐻1, 

𝑦(𝑛) = 𝑠(𝑛) + 𝑢(𝑛), where 𝑠(𝑛) is the signal of PU, which is an iid random process with mean of zero 

and variance of 𝜎𝑠
2 . The test statistic follows the central and non-central chi-square distribution with 2N 

degrees of freedom under the hypotheses 𝐻0  and 𝐻1 , respectively [24]. The test statistic can be 

approximated as a Gaussian random process because the central limit theorem can be utilized when the 

value of N is sufficiently large [25], and thus 𝑇(𝑦) is given by 

𝑇(𝑦)~
   𝒩(𝑁, 2𝑁)                    𝐻0  

𝒩(𝑁(1 + 𝛾), 2𝑁(1 + 𝛾)2)       𝐻1
,                                          (3) 

where 𝛾 =
𝜎𝑠

2

𝜎𝑢
2 is the received Signal to Noise Ratio (SNR) from PU for PU detection. The detection 

probability 𝑝𝑑 and the false alarm probability 𝑝𝑓 can be expressed by 

𝑝𝑑 = 𝑝(𝐻1|𝐻1),                                                                    (4) 

𝑝𝑓 = 𝑝(𝐻1|𝐻0).                                                                    (5) 

The miss detection is defined as when SU does not detect the presence of PU when PU is actually 

present. Therefore, the miss detection probability 𝑝𝑚 can be expressed as 𝑝1(1 − 𝑝𝑑). Based on the test 

statistics of 𝑇(𝑦), the detection probability 𝑝𝑑 = 𝑝(𝑇(𝑦) > 𝜆|𝐻1) and the false alarm probability 𝑝𝑓 =

𝑝(𝑇(𝑦) > 𝜆|𝐻0) can be evaluated in terms of Q-function as [12, 26]:  

𝑝𝑑 = 𝒬 (
𝜆

√2𝑁(1 + 𝛾)
− √

𝑁

2
),                                                     (6) 

𝑝𝑓 = 𝒬 (
𝜆

√2𝑁
− √

𝑁

2
),                                                            (7) 

where 𝜆 is the sensing threshold. If the received power is higher than 𝜆, PU is considered to be busy; 

otherwise, PU is considered to be idle. 𝒬(∙) is the Q-function given as 
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𝒬(𝑥) =
1

√2𝜋
∫ 𝑒𝑥𝑝 (−

𝑢2

2
) 𝑑𝑢.

∞

𝑥

                                              (8) 

The number of samples N can be represented by the following equation [24]: 

𝑁 = 2𝑡𝑊,                                                                          (9) 

where 𝑡 is the sensing time and 𝑊 is the bandwidth of the PU signal. Since 𝒬(𝑥) is a monotonically 

decreasing function, both 𝑝𝑑 and 𝑝𝑓 will increase as sensing time increases. The sensing threshold 𝜆 

can be calculated using Eq. (6) as shown below: 

𝜆 = √2𝑁(1 + 𝛾) (𝒬−1(𝑝𝑑) + √
𝑁

2
).                                       (10) 

Substituting Eqs. (9) and (10) into Eq. (7) leads to the following equation for 𝑝𝑓: 

𝑝𝑓 = 𝒬 ((1 + 𝛾)𝒬−1(𝑝𝑑) + 𝛾√𝑡𝑊).                                       (11) 

According to Eq. (11), 𝑝𝑓  decreases as 𝑝𝑑  decreases. Since the objective is to maximize the 

secondary throughput and at the same time provide protection for PU from interference, the detection 

probability during 𝑡1, 𝑝𝑑
1 , is set equal to 𝑝𝑑

𝑡ℎ. As mentioned earlier, 𝑡1 can be calculated based on Eq. (1) 

subject to the constraint 𝑝𝑓 ≤ 𝑝𝑓
𝑡ℎ. Thus, when 𝑝𝑓 for 𝑡1 equals to 𝑝𝑓

𝑡ℎ, 𝑡1 is minimized. Therefore, 

solving Eq. (11) for 𝑡 with 𝑝𝑓 set to 𝑝𝑓
𝑡ℎ and 𝑝𝑑 set to 𝑝𝑑

𝑡ℎ leads to the following equation for 𝑡1:  

𝑡1 =
((𝑄−1(𝑝𝑓

𝑡ℎ) − (1 + 𝛾)𝑄−1(𝑝𝑑
𝑡ℎ)) /𝛾)

2

𝑊
.                                       (12) 

As mentioned earlier, 𝑡2 can be calculated by maximizing the network energy efficiency. In the 

following subsection, an analytical model is developed to seek the optimal value of 𝑡2. In the proposed 

scheme, the detection probability for 𝑡2, 𝑝𝑑
2, is also fixed at 𝑝𝑑

𝑡ℎ. As previously mentioned, 𝑡2 should 

not be smaller than 𝑡1. Since Q in Eq. (11) is a decreasing function, 𝑝𝑓 decreases as sensing time 𝑡 

increases, i.e., 𝑝𝑓
2 ≤ 𝑝𝑓

1 , where 𝑝𝑓
1  and 𝑝𝑓

2  denote the false alarm probabilities of 𝑡1  and 𝑡2 , 

respectively. Thus, the sensing accuracy of 𝑡2 is better. This is the reason why the sensing result of 𝑡2 is 

taken as the final sensing result if it is different from the sensing result of 𝑡1.  

4.2 Problem formulation 

Among the 12 possible cases discussed in Sec. 3, the ones that provide valid secondary throughput are 

cases 1, 2 and 5, which are denoted as 𝑅1, 𝑅2, and 𝑅5, respectively, and are represented as follows: 

𝑅1 = 𝑝0
2(1 − 𝑝𝑓

1)(𝑇 − 𝑡1)𝐶,                                           (13𝑎)

𝑅2 = 𝑝0
2𝑝𝑓

1(1 − 𝑝𝑓
2)(𝑇 − 𝑡1 − 𝑡2)𝐶,                             (13𝑏)      
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𝑅5 = 𝑝1𝑝0(1 − 𝑝𝑓
1)(1 − 𝑝𝑓

2)(𝑇 − 𝑡1 − 𝑡2)𝐶,              (13𝑐) 

where 𝐶 denotes the channel capacity under the hypothesis 𝐻0. According to Shannon theory, 𝐶 can be 

calculated by 

𝐶 = log2(1 + 𝛾𝑠).                                                            (14) 

where 𝛾𝑠 is the SNR received from the SU transmitter. 

The total average secondary throughput 𝑅𝑡𝑜𝑡𝑎𝑙 is then given by 

𝑅𝑡𝑜𝑡𝑎𝑙 = 𝑅1 + 𝑅2 + 𝑅5.                                                    (15) 

Based on the above discussion, the energy consumption for the 12 cases, 𝐸1−12, and the total 

average energy consumption, 𝐸𝑡𝑜𝑡𝑎𝑙 , can be expressed as follows: 

𝐸1 = 𝑝0
2(1 − 𝑝𝑓

1)(𝑡1𝐸𝑠 + (𝑇 − 𝑡1)𝐸𝑡),                                  (16𝑎) 

𝐸2 = 𝑝0
2𝑝𝑓

1(1 − 𝑝𝑓
2)((𝑡1 + 𝑡2)𝐸𝑠 + (𝑇 − 𝑡1 − 𝑡2)𝐸𝑡),                      (16𝑏) 

𝐸3 = 𝑝0
2𝑝𝑓

1𝑝𝑓
2(𝑡1 + 𝑡2)𝐸𝑠 ,                                             (16𝑐) 

𝐸4 = 𝑝1𝑝0𝑝𝑓
2(1 − 𝑝𝑓

1)(𝑡1 + 𝑡2)𝐸𝑠,                                     (16𝑑) 

𝐸5 = 𝑝1𝑝0(1 − 𝑝𝑓
1)(1 − 𝑝𝑓

2)((𝑡1 + 𝑡2)𝐸𝑠 + (𝑇 − 𝑡1 − 𝑡2)𝐸𝑡),               (16𝑒)                          

𝐸6 = 𝑝1𝑝0𝑝𝑓
1𝑡1𝐸𝑠,                                                   (16𝑓) 

𝐸7 = 𝑝1
2𝑝𝑑

1(1 − 𝑝𝑑
2)(𝑡1 + 𝑡2)𝐸𝑠,                                       (16𝑔) 

𝐸8 = 𝑝1
2(1 − 𝑝𝑑

1)(1 − 𝑝𝑑
2)((𝑡1 + 𝑡2)𝐸𝑠 + (𝑇 − 𝑡1 − 𝑡2)𝐸𝑡),                 (16ℎ)                  

𝐸9 = 𝑝1
2𝑝𝑑

1𝑡1𝐸𝑠,                                                      (16𝑖) 

𝐸10 = 𝑝0𝑝1(1 − 𝑝𝑑
1)(𝑡1𝐸𝑠 + (𝑇 − 𝑡1)𝐸𝑡),                                 (16𝑗) 

𝐸11 = 𝑝0𝑝1𝑝𝑑
1(1 − 𝑝𝑑

2)((𝑡1 + 𝑡2)𝐸𝑠 + (𝑇 − 𝑡1 − 𝑡2)𝐸𝑡),                    (16𝑘) 

𝐸12 = 𝑝0𝑝1𝑝𝑑
1𝑝𝑑

2(𝑡1 + 𝑡2)𝐸𝑠,                                           (16𝑙) 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸1 + 𝐸2 + 𝐸3 + 𝐸4 + 𝐸5 + 𝐸6 + 𝐸7 + 𝐸8 + 𝐸9 + 𝐸10 + 𝐸11 + 𝐸12, (16𝑚) 

where 𝐸𝑠 and 𝐸𝑡 are the energy consumed by spectrum sensing and data transmission for unit time, 

respectively.  

In this paper, energy efficiency is defined as the number of bits transmitted per unit of energy 

consumption [27]. Therefore, the objective function of energy efficiency 𝜂 can be expressed as: 

𝜂 =
𝑅𝑡𝑜𝑡𝑎𝑙

𝐸𝑡𝑜𝑡𝑎𝑙

.                                                                    (17) 

In Eq. (17), 𝑡2 is the only unknown variable. The value of 𝑡2 that maximizes the function 𝜂 is the 

optimal sensing time. As mentioned before, the second sensing result will be taken as the final sensing 
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decision when the first and the second sensing results of the current frame are different. Therefore, the 

condition 𝑡2 ≥ 𝑡1 is assumed to increase the accuracy of the second sensing result. Moreover, since the 

frame time is set as T, 𝑡2 must satisfy the constraint  𝑡1 ≤ 𝑡2 ≤ 𝑇. In addition, since both 𝑝𝑑
1  and 𝑝𝑑

2 

are fixed at 𝑝𝑑
th,  𝑝𝑓

2  must also satisfy the constraint  𝑝𝑓
2 ≤ 𝑝𝑓

𝑡ℎ  to guarantee the requirement of 

secondary throughput for CRSNs when the optimal value of 𝑡2  is calculated. Therefore, the 

maximization problem can be formulated as follows: 

𝑚𝑎𝑥  𝜂 (𝑡2)   𝑠. 𝑡.  𝑡1 ≤ 𝑡2 ≤ 𝑇,  𝑝𝑓
2 ≤ 𝑝𝑓

𝑡ℎ.                                   (18) 

4.3 Golden Section Search method 

In order to determine the optimal value of 𝑡2, the Golden Section Search method is applied to find 

the extremum (minimum or maximum) of a unimodal function. This subsection proves that the objective 

function 𝜂(𝑡2) is a concave function, and the Golden Section Search method can be used to find the 

optimal value of 𝑡2 that maximizes the energy efficiency. 

Based on Eq. (15), the second derivative of 𝑅𝑡𝑜𝑡𝑎𝑙 can be calculated as follows: 

𝑅𝑡𝑜𝑡𝑎𝑙
′′ = 𝑅1

′′ + 𝑅2
′′ + 𝑅5

′′,                                          (19) 

where 𝑅1
′′, 𝑅2

′′, and 𝑅5
′′ are the second derivatives of 𝑅1, 𝑅2, and 𝑅5 in terms of 𝑡2, respectively. 

According to Eq. (13a), (13b), and (13c), 𝑅1
′′, 𝑅2

′′, and 𝑅5
′′ can be expressed as follows: 

 𝑅1
′′ = 0,                                                                                    (20𝑎) 

𝑅2
′′ = −𝑝0

2𝑝𝑓
1𝐶(𝑇 − 𝑡1)𝑝𝑓

2′′
+ 2𝑝0

2𝑝𝑓
1𝐶𝑝𝑓

2′
+ 𝑝0

2𝑝𝑓
1𝐶𝑡2𝑝𝑓

2′′
,                        (20b) 

𝑅5
′′ = −𝑝1𝑝0𝐶(1 − 𝑝𝑓

1)(𝑇 − 𝑡1)𝑝𝑓
2′′

+ 2𝑝1𝑝0𝐶(1 − 𝑝𝑓
1)𝑝𝑓

2′
+ 𝑝1𝑝0𝐶(1 − 𝑝𝑓

1)𝑡2𝑝𝑓
2′′

,         (20𝑐) 

where 𝑝𝑓
2′

 and 𝑝𝑓
2′′

 are the first and second derivatives of  𝑝𝑓
2  in terms of 𝑡2 , respectively. 

According to Eq. (11), it can be obtained that 𝑝𝑓
2′

< 0 and 𝑝𝑓
2′′

> 0. In addition, because 𝑇 − 𝑡1 ≥ 𝑡2, 

𝑅2
′′ < 0 and 𝑅5

′′ < 0. Therefore, the relation 𝑅𝑡𝑜𝑡𝑎𝑙
′′ = 𝑅1

′′ + 𝑅2
′′ + 𝑅5

′′ < 0 can be obtained, and thus 

𝑅𝑡𝑜𝑡𝑎𝑙 is a concave function.  

Then, the second derivative of 𝐸𝑡𝑜𝑡𝑎𝑙  can be calculated in the same manner as given below: 

𝐸𝑡𝑜𝑡𝑎𝑙
′′ = 𝐸1

′′ + 𝐸2
′′ + 𝐸3

′′ + 𝐸4
′′ + 𝐸5

′′ + 𝐸6
′′ + 𝐸7

′′ + 𝐸8
′′ + 𝐸9

′′ + 𝐸10
′′ + 𝐸11

′′ + 𝐸12
′′ ,        (21) 

where 𝐸1−12
′′  denote the second derivatives of 𝐸1−12 in terms of 𝑡2, respectively. According to the 

functions of 𝐸1−12, 𝐸1−12
′′  can be expressed as follows: 

𝐸1
′′ = 0,                                                                        (22𝑎) 

𝐸2
′′ = −𝑝0

2𝑝𝑓
1(𝑇𝐸𝑡 − 𝑡1𝐸𝑡 + 𝑡1𝐸𝑠)𝑝𝑓

2′′
− 2𝑝0

2𝑝𝑓
1(𝐸𝑠 − 𝐸𝑡)𝑝𝑓

2′
− 𝑝0

2𝑝𝑓
1(𝐸𝑠 − 𝐸𝑡)𝑡2𝑝𝑓

2′′
,   (22𝑏) 
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𝐸3
′′ = 𝑝0

2𝑝𝑓
1𝐸𝑠𝑡1𝑝𝑓

2′′
+ 2𝑝0

2𝑝𝑓
1𝐸𝑠𝑝𝑓

2′
+ 𝑝0

2𝑝𝑓
1𝐸𝑠𝑡2𝑝𝑓

2′′
,                                          (22𝑐) 

𝐸4
′′ = 𝑝1𝑝0𝐸𝑠𝑡1(1 − 𝑝𝑓

1)𝑝𝑓
2′′

+ 2𝑝1𝑝0𝐸𝑠(1 − 𝑝𝑓
1)𝑝𝑓

2′
+ 𝑝1𝑝0𝐸𝑠(1 − 𝑝𝑓

1)𝑡2𝑝𝑓
2′′

,         (22𝑑) 

𝐸5
′′ = −𝑝1𝑝0(1 − 𝑝𝑓

1)(𝑇𝐸𝑡 − 𝑡1𝐸𝑡 + 𝑡1𝐸𝑠)𝑝𝑓
2′′

− 2𝑝1𝑝0(1 − 𝑝𝑓
1)(𝐸𝑠 − 𝐸𝑡)𝑝𝑓

2′
                  (22𝑒) 

−𝑝1𝑝0(1 − 𝑝𝑓
1)(𝐸𝑠 − 𝐸𝑡)𝑡2𝑝𝑓

2′′
,    

𝐸6
′′ = 0,                                                                          (22𝑓) 

𝐸7
′′ = 0,                                                                          (22𝑔) 

𝐸8
′′ = 0,                                                                          (22ℎ) 

𝐸9
′′ = 0,                                                                           (22𝑖) 

𝐸10
′′ = 0,                                                                          (22𝑗) 

𝐸11
′′ = 0,                                                                         (22𝑘) 

𝐸12
′′ = 0.                                                                          (22𝑙) 

 Since 𝐸1
′′ = 𝐸6

′′ = 𝐸7
′′ = 𝐸8

′′ = 𝐸9
′′ = 𝐸10

′′ = 𝐸11
′′ = 𝐸12

′′ = 0, focusing on 𝐸2
′′, 𝐸3

′′, 𝐸4
′′ , and 𝐸5

′′ 

leads to the following equations: 

𝐸2
′′ + 𝐸3

′′ = −𝑝0
2𝑝𝑓

1𝐸𝑡(𝑇 − 𝑡1)𝑝𝑓
2′′

+ 2𝑝0
2𝑝𝑓

1𝐸𝑡𝑝𝑓
2′

+ 𝑝0
2𝑝𝑓

1𝐸𝑡𝑡2𝑝𝑓
2′′

,               (23) 

𝐸4
′′ + 𝐸5

′′ = −𝑝1𝑝0𝐸𝑡(1 − 𝑝𝑓
1)(𝑇 − 𝑡1)𝑝𝑓

2′′
+ 2𝑝1𝑝0𝐸𝑡(1 − 𝑝𝑓

1)𝑝𝑓
2′

+ 𝑝1𝑝0𝐸𝑡(1 − 𝑝𝑓
1)𝑡2𝑝𝑓

2′′
.        (24) 

Since 𝐸2
′′ + 𝐸3

′′ < 0 and 𝐸4
′′ + 𝐸5

′′ < 0, 𝐸𝑡𝑜𝑡𝑎𝑙
′′ < 0 and as a result 𝐸𝑡𝑜𝑡𝑎𝑙  is also a concave 

function. In addition, 
𝑅𝑡𝑜𝑡𝑎𝑙

′′

𝐸𝑡𝑜𝑡𝑎𝑙
′′ =

𝐶

𝐸𝑡
, where 

𝐶

𝐸𝑡
 is a fixed positive number larger than 1 according to the 

predefined values in Table 2. This means 𝑅𝑡𝑜𝑡𝑎𝑙 and 𝐸𝑡𝑜𝑡𝑎𝑙  increase or decrease simultaneously, and 

the variation rate of 𝑅𝑡𝑜𝑡𝑎𝑙 is 
𝐶

𝐸𝑡
 times of the variation rate of 𝐸𝑡𝑜𝑡𝑎𝑙 . 

Based on Eq. (17), the following equation can be obtained for 𝜂(𝑡): 

𝜂(𝑡) =
𝑅𝑡𝑜𝑡𝑎𝑙(𝑡)

𝐸𝑡𝑜𝑡𝑎𝑙(𝑡)
,                                                             (25) 

𝜂(𝑡 + ∆𝑡) =
𝑅𝑡𝑜𝑡𝑎𝑙(𝑡 + ∆𝑡)

𝐸𝑡𝑜𝑡𝑎𝑙(𝑡 + ∆𝑡)
,                                               (26) 

where ∆𝑡  denotes the increased time. Therefore, the difference of 𝜂(𝑡 + ∆𝑡)  and 𝜂(𝑡)  can be 

expressed as  

𝜂(𝑡 + ∆𝑡) − 𝜂(𝑡) =
𝑅𝑡𝑜𝑡𝑎𝑙(𝑡 + ∆𝑡)

𝐸𝑡𝑜𝑡𝑎𝑙(𝑡 + ∆𝑡)
−

𝑅𝑡𝑜𝑡𝑎𝑙(𝑡)

𝐸𝑡𝑜𝑡𝑎𝑙(𝑡)
.                          (27) 

When both sides of Eq. (27) are multiplied by 
𝐸𝑡𝑜𝑡𝑎𝑙(𝑡+∆𝑡)

𝑅𝑡𝑜𝑡𝑎𝑙(𝑡)
, the following can be obtained. 

𝐸𝑡𝑜𝑡𝑎𝑙(𝑡 + ∆𝑡)

𝑅𝑡𝑜𝑡𝑎𝑙(𝑡)
(𝜂(𝑡 + ∆𝑡) − 𝜂(𝑡)) =

𝑅𝑡𝑜𝑡𝑎𝑙(𝑡 + ∆𝑡)

𝑅𝑡𝑜𝑡𝑎𝑙(𝑡)
−

𝐸𝑡𝑜𝑡𝑎𝑙(𝑡 + ∆𝑡)

𝐸𝑡𝑜𝑡𝑎𝑙(𝑡)
.              (28) 
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As mentioned before, we have known that the variation rate of 𝑅𝑡𝑜𝑡𝑎𝑙 is 
𝐶

𝐸𝑡
 times of the variation 

rate of 𝐸𝑡𝑜𝑡𝑎𝑙 , and 
𝐸𝑡𝑜𝑡𝑎𝑙(𝑡+∆𝑡)

𝑅𝑡𝑜𝑡𝑎𝑙(𝑡)
 is positive. When 𝑅𝑡𝑜𝑡𝑎𝑙  and 𝐸𝑡𝑜𝑡𝑎𝑙  increase, 

𝑅𝑡𝑜𝑡𝑎𝑙(𝑡+∆𝑡)

𝑅𝑡𝑜𝑡𝑎𝑙(𝑡)
 becomes 

larger than 
𝐸𝑡𝑜𝑡𝑎𝑙(𝑡+∆𝑡)

𝐸𝑡𝑜𝑡𝑎𝑙(𝑡)
 and thus 𝜂(𝑡 + ∆𝑡) − 𝜂(𝑡) > 0 . When 𝑅𝑡𝑜𝑡𝑎𝑙  and 𝐸𝑡𝑜𝑡𝑎𝑙  decrease, 

𝑅𝑡𝑜𝑡𝑎𝑙(𝑡+∆𝑡)

𝑅𝑡𝑜𝑡𝑎𝑙(𝑡)
 becomes smaller than 

𝐸𝑡𝑜𝑡𝑎𝑙(𝑡+∆𝑡)

𝐸𝑡𝑜𝑡𝑎𝑙(𝑡)
 and thus 𝜂(𝑡 + ∆𝑡) − 𝜂(𝑡) < 0. In other words, 𝜂(𝑡) 

increases when 𝑅𝑡𝑜𝑡𝑎𝑙  and 𝐸𝑡𝑜𝑡𝑎𝑙  increase and 𝜂(𝑡) decreases when 𝑅𝑡𝑜𝑡𝑎𝑙  and 𝐸𝑡𝑜𝑡𝑎𝑙  decrease. 

Therefore, 𝜂(𝑡) is also a concave function, and the optimal value of 𝑡2 that maximizes the energy 

efficiency must exist.  

In addition, MATLAB was also utilized to show that 𝜂(𝑡) is a concave function. 

Criteria: A function 𝑓(𝑥): 𝑈 ⊂ 𝑅 → 𝑅 is concave if and only if its second derivative 𝑓′′(𝑥) ≤ 0. 

Proof: The second derivative of 𝜂(𝑡)  is calculated using MATLAB with 𝑝0 = 0.7  and the 

parameters presented in Table 2. The result is presented in Fig. 4, which shows that the second derivative 

of 𝜂(𝑡2) is always less than 0, and as a consequence, 𝜂(𝑡2) is a concave function. Moreover, Fig. 4 

shows that the range of 𝑡2 is between 0.01 and 0.18.  

The Golden Section Search method can be applied if a function 𝑓(𝑥) is continuous and unimodal 

within the interval [𝑎,𝑏]. The golden ratio can be used to determine location of two interior points within 

the interval [𝑎 ,𝑏 ], and one of the interior points can be re-used in the next iteration. Thus, the 

approximation of extremum can be achieved by successively narrowing the interval in which the 

 

Fig. 4 The second derivative of objective function 𝜂 as a 

function of sensing time 𝑡2 
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extremum lies on. In general, the Golden Section Search method is used to find the minimum. Thus, 

−𝜂(𝑡2) is minimized (which means the energy efficiency of the SU is maximized) to find the optimal 

value of 𝑡2.  

The pseudo-code for the Golden Section Search method used in this paper is presented in Algorithm 

1. In line 1, the lower and upper bounds of interval 𝑎 and 𝑏 and the error limit 𝜀 are provided as input. 

Note that 𝜀 should be a small value. 𝜆 is the golden ratio (𝜆= 1.6180...). Then, the interior points 𝑎1 and 

𝑎2 within the interval [𝑎,𝑏], and the corresponding values of −𝜂(𝑎1) and −𝜂(𝑎2) are calculated (line 

3-4). In lines 5-9, a check is made to determine whether the new lower and upper bounds of the interval 

satisfy the condition |𝑎 − 𝑏| ≤ 𝜀 . If the condition is satisfied, the optimal sensing time 𝑡2
∗  can be 

approximated as  1/2 (𝑎 + 𝑏) (line 10); otherwise, the procedure repeats from line 5.  

 

5 PERFORMANCE EVALUATION 

This section presents the performance evaluation of the proposed scheme using MATLAB. The 

performance of the proposed scheme is also compared with two other schemes proposed in [14] and [19]. 

In addition, our simulation study considers varying levels of PU activity, which is in contrast to most 

prior work that simply perform simulations using a fixed level of PU activity.  

5.1 Simulation parameters 

The simulation environment is a CRSN with one PU and ten SUs that are allocated randomly within 

the communication range of the PU. The licensed band occupied by the PU is subdivided into ten 

Algorithm 1 The pseudo-code of the golden section 

search method 

1: procedure GOLDEN_SEARCH_METHOD (𝑎, 𝑏, 𝜀) 

2:       𝜆 = 0.618 

3:       𝑎1 = 𝑏 − 𝜆(𝑏 − 𝑎), 𝑦1 = −𝜂(𝑎1) 

4:       𝑎2 = 𝑎 + 𝜆(𝑏 − 𝑎), 𝑦2 = −𝜂(𝑎2) 

5:       while |𝑎 − 𝑏| ≥ 𝜀 do 

6:          if 𝑦1 > 𝑦2 then 

7:           𝑎 = 𝑎1, 𝑎1 = 𝑎2, 𝑎2 = 𝑎 + 𝜆(𝑏 − 𝑎) 

8:        else 

9:           𝑏 = 𝑎2, 𝑎2 = 𝑎1, 𝑎1 = 𝑏 − 𝜆(𝑏 − 𝑎) 

10:      return  𝑡2
∗ =

1

2
(𝑎 + 𝑏) 
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non-overlapping sub-bands, which are assigned to the ten SUs. The parameters used in our simulations 

are shown in Table 2. The values of 𝑝𝑑
𝑡ℎ and 𝑝𝑓

𝑡ℎ are set according to the IEEE 802.22 cognitive radio 

Wireless Regional Area Network (WRAN) standard [28]. The frame length T and the bandwidth of a 

sub-band W are set as 0.2 s and 6 MHz, respectively. Since 𝛾𝑠 is 20 dB, each SU has a channel capacity 

(𝐶) of log2(1 + 𝛾𝑠)= 6.6582 bits/sec/Hz. The level of PU activity is defined as the probability that PU is 

absent 𝑝0 , where 0 < 𝑝0  < 1. Finally, the energy consumed by spectrum sensing (𝐸𝑠 ) and data 

transmission (𝐸𝑡) for unit time are set to the same values as in [19].  

5.2 Simulation results 

Fig. 5 shows the energy efficiency 𝜂 of the proposed scheme as a function of sensing time 𝑡2 when 

𝑝0 = 0.7. Note that 𝑝0 is fixed at 0.7 to show the variation of the energy efficiency as a function of 𝑡2. 

The simulation results with varying 𝑝0 will be shown in Figs. 7~9. In Eq. (12), since 𝑝𝑑
𝑡ℎ = 0.9, 𝑝𝑓

𝑡ℎ= 

0.1, W = 6 MHz, and 𝛾= -20 dB, the sensing period 𝑡1 is the only unknown variable and can be 

calculated as 0.011 s. As can be seen, the energy efficiency at first increases as 𝑡2 increases, and then 

after the optimal point, it decreases again. The main reason for this is that 𝑝𝑑
2 is also fixed at 𝑝𝑑

𝑡ℎ, and 

therefore 𝑝𝑓
2 decreases as 𝑡2 increases according to Eq. (11). During 𝑡2, the probabilities of correcting 

false alarm and miss detection that occurred during 𝑡1 are 1 − 𝑝𝑓
2 and 𝑝𝑑

𝑡ℎ, respectively, which improve 

energy efficiency. However, the time remaining for data transmission decreases as 𝑡2 increases, which 

degrades network throughput. Therefore, after the optimal point for 𝑡2, the energy efficiency decreases 

again, even though the sensing performance of 𝑡2 improves. Fig. 5 confirms that the objective function 

𝜂(𝑡2) is a concave function, and its optimal value that maximizes the network energy efficiency actually 

exists. Note that the false alarm probability 𝑝𝑓
2 is greater than 𝑝𝑓

𝑡ℎ when the sensing period is very short. 

Parameters Value 

𝑝𝑑
𝑡ℎ 0.9 

𝑝𝑓
𝑡ℎ 0.1 

𝑇 0.2 s 

𝑊 6 MHz 

𝛾 -20 dB 

𝛾𝑠 20 dB 

C 6.6582 bits/sec/Hz 

𝐸𝑠 0.1 W 

𝐸𝑡 3 W 

Table 2 Simulation Parameters 
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In the next set of simulations, the optimal sensing period for 𝑡2  will be obtained subjected to the 

requirement 𝑝𝑓
2 ≤ 𝑝𝑓

𝑡ℎ. Actually, because 𝑡2 ≥ 𝑡1, the constraint 𝑝𝑓
2 ≤ 𝑝𝑓

𝑡ℎ must be satisfied.  

Fig. 6 shows the optimal energy efficiency 𝜂∗ of the proposed scheme as a function of frame time T 

when 𝑝0 is fixed as 0.7. As can be seen, the optimal network energy efficiency of the proposed scheme 

increases with T. The reason is that in general miss detection and false alarm have a greater negative 

impact on energy efficiency when T is longer. For example, if a miss detection occurs, the PU will be 

interfered by SUs’ communications for a longer time as T increases. If a false alarm occurs, the 

opportunities for SUs to achieve secondary throughput decreases as T increases. However, these sensing 

errors can be corrected to some extent by the proposed scheme. Hence, energy efficiency can be 

 
Fig. 5 Energy efficiency 𝜂 as a function of sensing time 𝑡2 

with 𝑝0 = 0.7 

 

Fig. 6 The optimal energy efficiency 𝜂∗ as a function of 

frame time T with 𝑝0 = 0.7 
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improved when T becomes longer.  

Fig. 7 compares the optimal energy efficiency 𝜂∗ of the proposed scheme against the methods 

proposed in [14] and [19] as a function of 𝑝0 (where 𝑝0 is in the interval [0.1, 0.95]) with the frame 

length T fixed at 0.2 s. As can be seen, the proposed scheme is much better than the other two schemes 

when PUs are more active. More specifically, when 𝑝0 = 0.1, the energy efficiency of the proposed 

scheme is 52% and 47% higher than the methods proposed in [14] and [19], respectively. As 𝑝0 

increases, the energy efficiency of the proposed scheme becomes slightly lower than the ones proposed 

 

Fig. 7 Comparison of the optimal energy efficiency as a 

function of 𝑝0 and T=0.2 s 

 

Fig. 8 Comparison of the optimal secondary throughput as 

a function of 𝑝0 and T=0.2 s 



21 
 

in [14] and [19]. When 𝑝0 = 0.7, the energy efficiency of the proposed scheme is only 1.3% and 1.5% 

lower than the ones proposed in [14] and [19], respectively. Furthermore, the energy efficiency of the 

proposed scheme is almost the same with the ones in [14] and [19] when the value of 𝑝0 becomes 0.95. 

These results clearly show that our proposed scheme is better when the varying PU activity is considered. 

The reason for this can be explained by Fig. 8 and Fig. 9.  

Fig. 8 shows that the secondary throughput results of these three schemes as a function of 𝑝0 for T 

fixed at 0.2 s. In the proposed scheme, even though the SUs may spend more time performing the second 

spectrum sensing, the network throughput can be improved when false alarms can be corrected. This is 

the reason why the throughput results of these three schemes are almost the same.  

Fig. 9 compares the miss detection probability 𝑝𝑚 of the three schemes as a function of 𝑝0 for T 

fixed at 0.2 s. Note that the methods proposed in [14] and [19] have the same miss detection probability, 

denoted as 𝑝𝑚
2 , as given below: 

𝑝𝑚
2 = 𝑝1(1 − 𝑝𝑑),                                                           (29) 

Fig. 9 shows that the miss detection probability of the proposed scheme is much lower than the ones 

proposed in [14] and [19] when 𝑝0 < 0.5. In particular, when 𝑝0 = 0.1, the miss detection probabilities 

of the methods in [14] and [19] are 257% higher than our proposed scheme. However, when 𝑝0 ≥ 0.5, 

the miss detection probability of the proposed scheme is slightly higher. When 𝑝0 = 0.7, the miss 

detection probability of the proposed scheme is 36% higher than the other two schemes. Among the 12 

 

Fig. 9 Comparison of the miss detection probability as a 

function of 𝑝0 and T=0.2 s 
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cases, the cases 8, 10, and 11 can lead to miss detection. Therefore, the mathematical model for miss 

detection probability of the proposed method 𝑝𝑚
1  can be formulated as follows:  

𝑝𝑚
1 = 𝑝1

2(1 − 𝑝𝑑)2 + 𝑝0𝑝1(1 − 𝑝𝑑) + 𝑝0𝑝1𝑝𝑑(1 − 𝑝𝑑),             (30) 

where the first, second, and third terms represent the probabilities of the cases 8, 10, and 11, respectively. 

Therefore, the difference between 𝑝𝑚
1  and 𝑝𝑚

2  can be calculated as 

𝑝𝑚
1 − 𝑝𝑚

2 = 𝑝1𝑝𝑑(1 − 𝑝𝑑)(𝑝0 − 𝑝1).                                            (31) 

Since Fig. 8 shows that all of these three schemes have similar secondary throughputs, the energy 

consumption is the only factor that influence the energy efficiency. When 𝑝0 > 0.5, the miss detection 

probability of the proposed scheme is a slightly higher than the ones in [14] and [19], thus the energy 

consumed by invalid data transmission will be higher. When 𝑝0 < 0.5, the miss detection probability of 

the proposed scheme is much lower than the ones in [14] and [19]. Therefore, even though the proposed 

scheme spends more time to perform the second spectrum sensing when the first sensing result shows 

that the state of the PU has changed, there is a certain probability to that the miss detection can be 

corrected and thus provide better protection. This reduces the amount of invalid data transmissions 

performed by SUs, and decreases unnecessary energy consumption. This improves the network energy 

efficiency and prolongs the network lifetime. 

6 CONCLUSION AND FUTURE WORK 

This paper proposed a novel spectrum sensing scheme for CRSNs. Based on the sensing result of 

the current frame, SU can dynamically decide to perform spectrum sensing for another period. The 

second spectrum sensing is performed to ensure the accuracy of the current sensing result if it is different 

from the previous sensing result. The first spectrum sensing period for the current frame can be 

calculated based on the detection probability and false alarm probability that satisfy the essential 

requirements of CRSNs. The second spectrum sensing period is optimized by optimizing network energy 

efficiency. In order to find the optimal second spectrum period, the Golden Section Search method is 

employed. Finally, our simulation study showed that the proposed scheme is more energy efficient than 

existing methods. As a future work, we plan to further improve the network energy efficiency by 

optimizing the frame length, and the multicast of multichannel multiradio system combined with CR 

technology will also be considered as the future research direction [29]. 
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