
C++ for Java Programmers

Timothy A. Budd

Oregon State University

Corvallis, Oregon

USA All rights reserved.

No part of this publication may be reproduced,

stored in a retrieval system, or transmitted,

in any form or by any means, electronic, mechanical,

photocopying, recording, or otherwise,

without the prior written permission of the Author.

Copyright 1998 by Timothy A. Budd

December 18, 1998

0

This is not a blank page.

Preface

The reader envisioned as this book was being developed is a programmer with a year or more
experience with Java, who has a good understanding of the language and Java libraries, and
who wishes to learn more about the programming language C++. Programs in Java and C++

share a super�cial resemblance to each other, but beneath the surface there lie a myriad
of practical and philosophical di�erences. The unwary programmer not cognizant of these
di�erences will encounter a host of problems in moving from one language to another.

This book is not intended to be a complete and thorough introduction to the C++ lan-
guage. The length of the book alone should be enough to indicate this fact, since most recent
introductions to the C++ language run to a thousand pages or more. Instead, this book tries
or organize the di�erences between C++ and Java into a coherent framework that facilitates
the transition from one language to the other. Where the reader desires more information
on a speci�c topic, one of the recent descriptions or tutorials on the C++ language should
be consulted. Excellent coverage can be found in the book by Stroustrup [Stroustrup 97] or
Lippman [Lippman 98].

Further Reading

There are literally hundreds of books on Java and/or C++. I have, of course, seen only a
small fraction of these. The following list is therefore quite idiosyncratic, re
ecting more
than a fair amount of whimsy and chance. These are books that I have read and appreciated.

A good introduction to the C++ language, including the recent changes to the language,
can be found in the books by Stroustrup (The C++ Programming Language [Stroustrup 97])
or Lippman (C++ Primer [Lippman 98]). Slightly less thorough but in some ways more
readable descriptions are presented by Eckel (Using C++ [Eckel 89]), and by Horstmann
(Mastering Object-Oriented Design in C++ [Horstmann 95]).

Two other books authored or co-authored by Bjarne Stroustrup, the designer of C++,
present much of the philosophy that lay behind the design of the language (The Annotated

C++ Reference Manual [Ellis 90], and The Design and Evolution of C++ [Stroustrup 94]).
A collection of papers by others involved in the evolution of the C++ language is provided
by Waldo (The Evolution of C++ [Waldo 93]). Another book by Lippman (Inside the C++

1

2

Object Model [Lippman 96]) describes the internal C++ view of the world.

The Standard Template Library, a major recent addition to the C++ language, is ex-
plained in an earlier book of my own [Budd 98a], as well as in books by Musser [Musser 96]
and by Glass [Glass 96].

There are various books that describe good C++ programming style. Perhaps the best
of these are the text by Cargill [Cargill 92], and the pair of books by Meyers [Meyers 98,
Meyers 96].

A wealth of information in the question and answer style of a FAQ is available in the
books that collect FAQ information on C [Summit 96] and C++ [Cline 95]. (There is a Java
FAQ book [Kanerva 97], that also has some discussion of C++).

There are several books that are almost the opposite of this book, that is, explana-
tions of Java for programmers familiar with C++. One of the best of these is the book by
Chew [Chew 98]. The more recent book by Wigglesworth and Lumby [Wigglesworth 99]
covers more of the recent changes to Java. The book by Daconta and others [Daconta 98]
is more complete, in that it covers both Java and JavaScript. Pappas [Pappas 96] presents
material speci�c to the Borland C++ system. Boone [Boone 96] tends to dwell more on
the programming environment and design di�erences, and less on the di�erences in the
languages.

In an earlier book I have tried to explain object-oriented programming in a language
independent fashion, including examples from both Java and C++ [Budd 97].

A book by Coplien [Coplien 92] presents an interesting discussion of many of the more
exotic features of C++, for the adventurous reader who wishes to explore further than most
programmers ever wish to go.

Marginal Notes

There are four types of marginal notes used in this book to highlight material of particular
important.

A De�nition introduces a term that may be unfamiliar to the programmer if their onlyDefine

De�nition background is in the language Java.

A Rule provides advice that the reader is strongly encouraged to follow. Like all rules,Rule Rule
there may be some times when the advice must be rejected, but rules generally re
ect years
of painful learning concerning the consequences of not performing some action.

A Warning highlights a potential danger that the programmer should be aware of. OftenWarning

Warning these re
ect subtle issues easily overlooked, or places where Java and C++ constructs have
similar appearances but di�erent meanings.

A Note simply provides an additional or important bit of information that might easilyNote Note

be overlooked.

3

Acknowledgements

Several people provided useful advice and suggestions both in the conception of this book
and comments on the many early drafts of the manuscript. These include Yechiel Kimchi
from The Technion, Israel, Joe Bergin, from Pace University, and students Nandhini Gana-
pathiRaman, Thomas Godin, David Hackenyos, and Hari Narayanan, from Oregon State
University.

Chapter 1

Basic Philosophical Di�erences

Given their historical roots, it is not surprising that programs in Java and C++ have a similar
appearance. On the other hand, given the contrasting goals and objectives put forth by the
designers of the two languages, it is also not surprising that at a deeper level they are very
di�erent. Thus, for the Java programmer to understand C++, they must �rst comprehend a
little bit of its history, philosophy, and background.

1.1 The Language C

To appreciate C++ one has to realize that it descends from an earlier language named C.
The language C was conceived and implemented at Bell Labs in the early 1970's by a
research scientist named Dennis Ritchie. The primary objective for the language was to
assist Ritchie and fellow researcher Brian Kernighan in the creation of an operating system
for a small computer they had sitting around their lab. This, in turn, was mainly so that
they could develop programs for their own use. They called this operating system Unix,
a name intended to contrast with Multics, an operating system running on much larger
machines of the period. Other researchers in Bell Labs soon became interested in Unix, and
its usage spread. In time Unix, and with it C, became popular in both the research and
commercial worlds.

The fact that C and Unix developed in tandem is important, because from the �rst
C was a language designed for systems programming. The language emphasized modern
(for the time) control
ow constructs and data structures, an economy of expression that
would eventually draw equal parts praise and damnation, and a useful ability to access the
underlying machine at both a very high level of abstraction, as well as at a primitive and
direct level.

C was designed so that even a relatively naive compiler could generate reasonably good
assembly language code. Consider, for example, the following typical C idiom for copying

11

12 CHAPTER 1. BASIC PHILOSOPHICAL DIFFERENCES

one string value into another:

while (�p++ = �q++)
;

The statement is a while loop with no body, only a test for completion. The test portion
itself seems not to include booleans (the = operator is assignment, not comparison test, a
subtle but vital distinction easily overlooked by the novice programmer), but instead relies
on the fact that arithmetic values can be converted into booleans, an integer zero being
interpreted as false and anything nonzero as true. The test also relies on assignment being
an expression, as well as a side e�ect producing operation. Assignment will return the
updated value of the left hand side, and thus the loop will terminate once a zero value
has been assigned. Both the expression from which the assignment draws values and the
target expression are determined by pointers, the pointers being dereferenced in both cases
to obtain the appropriate memory locations. Finally, the increment operators update the
pointer values, advancing them to the next memory locations, at the same time that they
yield their current contents. The statement implicitly relies on the convention that strings
(in C, arrays of character values) are terminated by a null character, a byte with zero value.
Although great havoc will ensue if this condition is not satis�ed, no run-time checks are
performed to ensure its validity. (For example, there is no limit on how far into memory
the pointer q can travel before it is determined that a null character will not be found).

The increment and decrement operators, compound assignment operators, pointer arith-
metic, and assignments as values, when combined all meant that even relatively complex
statements, such as this one, could be realized by short sequences of assembly language
instructions.

Features such as the explicit use of pointers, the variety of bit-level operations, and a
simple memory model were ideally suited for getting close to the hardware, and creating
programs that ran quickly and required little memory. Compilers for C were soon devel-
oped for a variety of machines, and the language became a popular alternative to assembly
language for systems programming. (Indeed, it is now common to hear C referred to as a
\portable assembly language.")

This is not to say that the language was without controversy. From the �rst, objections
have been raised that the language is too concise for human understanding, and the lack of
run-time checks made programs more error-prone than necessary. Programmers in C were
forced to accommodate themselves to the fact that the typical error message from a running
C program often said little more than \there was an error while your program was in, or
near, the computer".

1.2 The Development of C++

The language C++ started out as a collection of macros and library routines for the CNote

C++ grew
out of an ear-
lier language
named C

1.2. THE DEVELOPMENT OF C++ 13

language.1 Only after a period of use did it evolve into a new language of its own. Never-
theless, the newly renamed language C++was explicitly intended to be more-or-less backward
compatible with C. That is, any legal C program should still be a legal C++ program.2

This decision, to make C++ an extension of the earlier language rather than a totally new
language, was cause for confusion during the early years of the 1980's. While the consequence
of this decision provided a valuable service to the industry by introducing object-oriented
techniques to the large body of C programmers, many people wrongly assumed that it would
be easy to retrain a C programmer to be a C++ programmer. Perhaps almost as easy as
adding two characters to their job title. What this presumption ignored was the fact that
the way one goes about structuring the solution to a problem in the object-oriented fashion
is very di�erent from the way one structures a program in the imperative style of C. Only
with time and experience were these di�erences recognized.

Other rami�cations of this decision remain. For instance, the C programming language
brought with it a rich collection of libraries, for example the standard I/O library. Since C
programs were also C++ programs, C++ had to accommodate these as well, even though they
were not particularly well matched to the new object-oriented features of the language. The
result is that there are now two I/O libraries in common use, the older standard I/O library
from the C world and the newer stream I/O system more adapted to C++ (see Chapter 10).

The underlying philosophy of C; concise representation, pointer arithmetic, omission Note E�-
ciency is held
up as a pri-
mary goal in
C

of run-time checks, the simple memory model, correspondence of arrays and pointers, the
elevation of \uncompromising e�ciency" as a virtue above almost all others, were carried
over into C++. These made their impact on the language in a multitude of ways, both
large and small. The designer of the language has stated that an explicit goal was that the
programmer should not have to pay (in space or execution time) for features they do not
use. To cite one example, it is for this reason that object-oriented polymorphic function
dispatch is provided only if the user explicitly requests it (using the virtual keyword), and
not otherwise. Similarly the language goes to great lengths to store values on the activation
record stack, rather than the heap, because stack-based values are almost always more
quickly managed than heap-based values. But this e�ciency in execution speed is purchased
only at the cost of complications in the language semantics, a topic we will address more
fully in Chapter 4.

This attitude that programmers should not have to pay for features they do not use
permeates the language. Another example will illustrate this in
uence. Imagine that an
integer variable holding a negative number is right shifted by one location. What bit value
should be moved into the topmost position? If we look at the machine level, architectural
designers are divided on this issue. On some machines a right shift will move a zero into

1Classes: An Abstract Data Type Facility for the C Language, Bjarne Stroustrup, ACM Sigplan Notices,
1982.

2This assertion is true in spirit, but not exactly true in fact. The C++ language does necessarily introduce
a few new keywords, and there are a very small number of ways in which the two languages have now diverged.
However, the heritage of C++ from C cannot be questioned, and the impact of that heritage is the issue
being addressed here.

14 CHAPTER 1. BASIC PHILOSOPHICAL DIFFERENCES

the most signi�cant bit position, while on other machines the sign bit (which, in the case
of a negative number, will be one) is extended. Either case can be simulated by the other
using software, by means of a combination of tests and masks.

Given this lack of consensus on the part of hardware systems, one can imagine the
following argument being made that would lead to the resolution we see in C++. \The
situations where the two interpretations di�er is not the common use, in fact it may be
rather rare, as it only arises when negative values are shifted. If we adopt either convention
as a language de�nition, then at least on some machines all right shifts will be impacted,
as every right shift will need to test for the condition. However, it is unnecessarily costly
to penalize all right shift operations because of a rare condition. We can get around this
problem by asserting that the outcome in this situation is not speci�ed by the language,
and thus whatever result is produced by the underlying hardware is correct."

There are a half dozen or so similar cases in the language, where the outcome of anWarning

The result of
some opera-
tions in C++
is purposely
unspeci�ed

operation is left purposely unspeci�ed, largely in order that whatever instruction is provided
by the underlying machine can be used and still be said to satisfy the language speci�cations.
For example, another common situation is the result of dividing or taking the remainder
of a negative integer value { the result is either rounded towards zero or towards negative
in�nity depending upon the platform. Yet another example is the order of execution when
a statement includes two autoincrements of the same variable, as in the following:

a[i++] = i++; // which increment is done �rst?

Java, on the other hand, provides a precise speci�cation in all of these cases, which
means that Java must in some cases correct in software for hardware instructions that do
not match the language de�nition.

Finally, there is a di�erence in attitude towards run-time checks between Java and C++.
Since the beginning of programming countless debugging hours have been spent trackingWarning

C++ per-
forms fewer
run-time
checks than
Java

down problems that were ultimately discovered to be caused by unde�ned pointer values,
or array subscripts out of range; features that Java (with a di�erent philosophical outlook)
would have detected by means of automatically generated run-time checks, but which the
C++ language does not generally uncover. Once more the C++ attitude is that if run-time
checks are important the programmer should explicitly write them, and if not explicitly
called for the language should not impose their cost in situations where they may not be
necessary.

The preceding paragraphs should not be construed to imply that Bjarne Stroustrup
made wrong decisions in designing C++,3 rather that it is important to understand the
forces motivating those decisions in order to understand the language we have today.

3Although some have argued so. Typical is the following quote from Andrew Appel: `Life is too short
to spend time chasing down irreproducible bugs, and money is too valuable to waste on the purchase of

aky software. ... One might say, by way of excuse, \but the language in which I program has the kind of
address arithmetic that makes it impossible to know the bounds of an array." Yes, and the man who shot
his mother and father threw himself upon the mercy of the court because he was an orphan.'[Appel 97]

1.3. THE LEGACY PROBLEM 15

1.3 The Legacy Problem

Much of the di�culty in dealing with C++ programs comes from the problem of dealing with Define

Legacy
code is soft-
ware written
for earlier
systems or li-
braries

legacy code. Even when new code is being developed, it will often incorporate features from
libraries or systems that can be termed legacy. The problem of legacy code is particularly
troublesome in the case of C++ because the language has changed over time, not only evolving
from C, but also having new features added over a period of many years.

The following list describes some of the more common aspects of the problem of legacy
code:

� The use of libraries, such as the Standard I/O library, that predate the development
of C++.

� The use of the preprocessor to create symbolic de�ned constants, rather than const
variables. Tricky use of preprocessor macros to save execution time, rather than in-line
function invocations. (The original C language did not have either constant variables
nor function inlining).

� The use of simple string functions that manipulate arrays of character values, rather
than using the newer string data type.

� The use of various di�erent names and implementation techniques for representing
boolean values, which predate the addition of the bool data type.

� The over use of global variables, which predates the understanding of classes as a
better encapsulation technique.

� The use of various di�erent container libraries, which predate the adoption of the
Standard Template Library.

� The use of various techniques, such as void * pointers, to get around the type system
interfering with general purpose containers in code that predates the introduction of
templates.

Because of the legacy code problem the C++ programmer must not only learn the current
(and hopefully best) practices, but must also be conversant with practices of the past.

1.4 The Language Java

Java was originally envisioned as a language for creating systems to be embedded in con-
sumer products, such as VCRs. It was also developed at a time of increasing processor
speeds and decreasing memory costs. In this context, e�ciency and the ability to generate
compact machine code took a backseat to issues of safety and robustness. James Gosling,
the creator of Java, borrowed much of the basic syntax of the C++ language, thereby assuring

16 CHAPTER 1. BASIC PHILOSOPHICAL DIFFERENCES

that programmers with considerable experience in the older language would feel comfortable
in the new. But instead of e�ciency, the new bywords were simplicity and security.

Even Bjarne Stroustrup, the developer of C++, has stated: \Within C++, there is a much
smaller and cleaner language struggling to get out"4. Some would argue that this language
is Java. Simplicity comes about through the elimination of many of the features of C++. The
table in Chapter 12 that describes some of the features in C++ that have no correspondence
in Java is just one indication of this. In many cases this comes about by eliminating choices
that the C++ programmer has to make; for example all methods in Java are potentially
polymorphic, instead of the programmer having to decide which are and which are not.
This indeed incurs an overhead, but an acceptable one, and so the language comes down
on the opposite side of C++ in the tradeo� between simplicity of language and e�ciency of
execution.

Java eliminates all the situations that in C++ are explicitly left unspeci�ed by the lan-
guage de�nition. These include the meaning of shifts and divisions when negative numbers
are manipulated, the size of primitive values, and several others. This is a conscious trade-o�
on the part of the designers that preserves a consistent behavior on all platforms, paying for
this with the expense of possibly hiding in software di�erences in the underlying hardware.

Run-time checks are another tradeo�, this time between e�ciency of execution and safety.
The C++ attitude is that if safety (say, detecting the use of uninitialized values) is important
the programmer should explicitly code it, and if not the program should not pay (in execution
time) for the feature. But experience has shown that far too few programmers will spend
the e�ort to explicitly check for uninitialized values, or that their array index values are
in range, or that their pointers do point somewhere, and far too many programming errors
result as consequence. Thus, Java comes down on the opposite side of this divide, and will
always verify array index bounds, check for the use of unde�ned variables, and perform
other run-time checkable tests.

Another area of philosophical di�erence is memory management. C++ leaves the man-
agement of dynamically allocated memory to the programmer, few of whom will actually
perform this task correctly. Java, on the other hand, provides a garbage collection system
that will scurry about behind the scenes taking care of memory management tasks for the
programmer. This increases execution time, but results in fewer programming errors.

Java also bene�ted from being developed later, after many years experience with C++.
The problems involved in the explicit manipulation of pointer values were by then legendary.
An appreciation of the importance of object-oriented features as an improvement over im-
perative software development was simply not possible when C++ was being designed, but
was clear by the middle 1990's. And the designer of Java could draw upon many years of
experimentation with libraries and additions to C++, such as with threads packages or with
the exception mechanism, both of which have precursors in the C++ world.

A �nal example of the di�erences in philosophy between the two languages is the memory
model (which is actually distinct from the issue of memory management discussed above).

4[Stroustrup 94], Section 9.4.4.

1.5. THE BETTER LANGUAGE 17

The C++ memory model is very close to the underlying machine, and therefore can be very
e�ciently implemented. But some aspects of this model have very unfortunate consequences
for the object-oriented portions of the language, in particular an interaction between mem-
ory use and polymorphic method binding. Values that are truly polymorphic cannot be
automatic, and values that are automatic cannot be truly polymorphic.5 Since polymor-
phism may or may not be important for any particular problem, the C++ language allows
both types of values. Java simpli�es the language by having only one object format, but
this is purchased only at the expense of always using the more costly heap-based memory
model.

Many people, both authors and users, have remarked that Java programs in execution
are slow.6 There are many reasons for this, but the most important one is the philosophical
di�erences we have been outlining. A Java program in execution is simply doing more work
than is the equivalent C++ program. Garbage collection, multi-thread management, and run-
time checks must use some execution time, regardless of how necessary they are. However,
recent innovations in Java implementation (ideas such as Just-In-Time compilers) have
improved performance dramatically. Whether this rate of improvement can be sustained is
uncertain. On the one hand, there is the run-time cost necessitated by Java. On the other
hand, the simpler Java language provides more opportunities for improvement by a good
optimizing compiler than does C++. How these two forces will balance, and whether Java
run-times can ever consistently come close to C++ performance is an open question.

1.5 The Better Language

It is not the intent of this book to argue that one language is \better" in any sense than
the other; indeed, such a question is almost meaningless since the objectives and intended
purposes of the two languages are so dissimilar. Rather, each language should be appreciated
on its own merits, for the way it goes about addressing the problems of particular concern.
Understanding Java requires knowing that it was intended for developing programs that
would work correctly and securely in systems with minimal interaction (such as embedded
systems), even at the cost of execution time. C++ was designed to facilitate the creation
of e�cient and small executable �les for applications such as systems programming. In the
end, both languages can be appreciated on their merits as tools to address the problems
they were intended to solve, without making any detraction from the other.

1.6 Further Reading

Bjarne Stroustrup has discussed his motivations in designing C++ in several places, notably
in two books [Ellis 90, Stroustrup 94], and in journal articles [Stroustrup 98].

5This will be explained in more detail in Chapter 4.
6See [Tyma 98], for example.

18 CHAPTER 1. BASIC PHILOSOPHICAL DIFFERENCES

James Gosling discussed the development of Java in an invited talk at the 1996 OOPSLA
conference (James Gosling, The Feel of Java, unpublished talk), and in the book that
currently represents the de�nitive description of the language [Arnold 98].

Test Your Understanding

1. True or False:

(a) The language Java is based on an earlier language named J.

(b) The language C was developed in tandem with the Unix operating system.

(c) The value 7 can be used as a boolean in C++.

(d) The language C++ was originally a set of macros called simply Classes.

(e) Any legal C program is a legal C++ program.

(f) In C++ e�ciency is held as a virtual above all else.

(g) The exact meaning of some integer division or remainder operations is left un-
speci�ed by the C++ language.

(h) Java was designed as a language for writing controllers to be embedded in con-
sumer products, such as VCRs.

2. Where was the language C original developed?

3. For what purpose was the language C originally developed?

4. What are some of the reasons C became popular as a systems programming language?

5. What are some of the advantages that C++ derived from being an extension of C?
What were some of the disadvantages?

6. Why is there an inherent con
ict between uncompromising e�ciency and portability?

7. Why is there an inherent con
ict between uncompromising e�ciency and run-time
safety?

8. How many di�erent interpretations are possible for the following sequence of state-
ments:

i = 4;

a[i++] = i++;

9. What are some aspects of the legacy problem?

1.6. FURTHER READING 19

10. What was the original purpose for the language Java? Contrast this with the original
purpose for C++. How are the two di�erent purposes re
ected in the languages?

11. For what types of programs is an emphasis on e�ciency above all other concerns an
appropriate decision? For what types of programs is it not appropriate?

20 CHAPTER 1. BASIC PHILOSOPHICAL DIFFERENCES

Chapter 2

Fundamental Data Types

We begin with a discussion of the fundamental data types, such as integers, characters and

oating point values. In neither Java nor C++ are these values considered to be objects, in the
technical sense of the world. Thus, they lack the glamor and allure currently associate with
the buzzword \object-oriented", and can easily be thought of as ordinary and pedestrian.
Nevertheless, they are the workhorse elements with which all real activity is eventually
performed.

There are also a number of surprising di�erences in the way the two languages handle
these basic data types.

2.1 Integers

Both the C++ and Java languages have the notion that integers can be both short and long,
in addition to their natural representations. In Java a short integer is explicitly a sixteen
bit quantity, an integer a 32 bit quantity, and a long a 64 bit quantity. The C++ standard,
on the other hand, is mute concerning the number of bits assigned to each, except to note
that an integer value must be at least as large as a short integer, and a long integer must be
at least as large as a simple integer. Thus, it would be perfectly legal for a compiler to, for
example, use thirty-two bit quantities for all three. It is not uncommon for either a short or Warning

long
and/or short
may have the
same size as
integer

a long to be the same size as a simple integer.

In C++ the designations long and short are modi�ers for the integer data type, instead of
type names in their own right. Thus it is legal to declare a value as both short and integer.
However, it is also possible to use the modi�ers by themselves, in which case the base type
integer is understood:

short int x; // declare x as a small integer

long y; // declare y as long integer

21

22 CHAPTER 2. FUNDAMENTAL DATA TYPES

The modi�er long can also be applied to double precision values (see Section 2.2).

Another pair of modi�ers that can be applied to integer are signed and unsigned. AnDefine

An unsigned
inte-
ger can only
hold nonneg-
ative values

unsigned value can only hold quantities that are greater than or equal to zero, however
typically they can maintain numbers that are larger than those represented by a signed
quantity that uses the same number of bits. For example, a sixteen bit signed integer
variable can hold values between �32768 and 32767, whereas an unsigned sixteen bit integer
can maintain values between zero and 65535.

The language permits a signed value to be assigned to an unsigned variable without castsWarning

Assign-
ing a negative
value to an
unsigned
variable is
confusing

or warnings. However, if the signed value is negative the result will be an unexpectedly large
number:

int i = -3;

unsigned int j = i;

cout << j << endl; // will print very large positive integer

There is little agreement among machine designers in the exact meaning of integer divi-Note In-
teger division
in-
volving nega-
tive numbers
is platform
dependent

sion when one or both arguments are negative. On some machines the integer division�23=4
will yield �5, the smallest integer greater than the algebraic quotient, while on other ma-
chines the same calculation will yield �6, the largest integer less than the algebraic quotient.
For this reason the C++ language de�nition leaves the meaning in this situation unde�ned,
so that language implementors will be free to use the \natural" instruction provided by the
underlying hardware. The language Java, on the other hand, explicitly states that integer
division truncates towards zero, so that �23=4 will yield �5.

The C++ language de�nition insists that the following equality must always be preserved:

a == (a/b)�b + a%b

Because division involving negative numbers is not completely de�ned, a similar situationRule

Never use the
remainder
operator with
negative val-
ues

holds with respect to the remainder operator %. In C++ the result of the calculation 21 %

�5 is machine dependent, and can either be 1 or �1, matching whatever interpretation is
selected for division. In Java it is speci�ed as �1.

Right shifts are also explicitly underde�ned in the language. A right shift of an signed
quantity can either �ll the high order bits with zero values, or extend the sign bit. Both
choices are permitted by the language de�nition, and on any particular machine the alter-
native elected will probably depend on the interpretation provided by the instruction on
the underlying hardware. A right shift of an unsigned quantity must always �ll with zero
values, and corresponds to the Java >>> operator, which is not part of the C++ language.
The e�ect of either a right or a left shift where the right argument is negative, or where it
is larger than the number of bits in the left argument, is unde�ned.

2.1. INTEGERS 23

The modi�ers signed and unsigned are orthogonal to long and short, thus permitting a
large number of combinations:

unsigned long a; // can hold largest integer value

signed short int b;

C++ does not recognize the Byte data type in Java, instead the data type signed char is Note
signed char-
ac-
ters are often
used to hold
very small in-
teger values

often used to represent byte-sized quantities.

2.1.1 Characters

A character value in C++ is typically only an eight-bit quantity, although again the language
de�nition only provides a minimum length, and a compiler that devoted sixteen bits to
each character (as does Java) would in theory be legal. As in Java, it is legal to perform
arithmetic on characters, and this is indeed much more common in C++ programs than in
Java programs.

The Java Unicode escape format, for example '\u0ABC', is not recognized by C++. How-
ever, arbitrary character literals can be represented using their octal value representation.
The ASCII character 2, for example, is represented as '\062'. Hexadecimal constants can
also be written, by beginning with the text 0x, as in '\0xFF'.

As a type, characters can be signed or unsigned. An explicitly signed character is Note
Wide charac-
ters are a re-
cent addition
to the C++
language

typically used more as a very short integer value than as a true character, as literal character
values are represented the same whether they are signed or unsigned.

A relatively recent addition to the C++ language is the data type w_char, a \wide
character" that is explicitly larger than a normal character.1 Typically the name w_char is
simply an alias for another integer data type, such as short.

2.1.2 Booleans

The boolean data type is named bool in C++, instead of boolean as in Java. This is a Note

Booleans are
a recent addi-
tion to
the C++ lan-
guage

relatively recent addition to the C++ language, and is still somewhat infrequently used.
Historically, integer values were used to represent boolean quantities. A nonzero arithmetic
quantity was interpreted as true, while a zero value was false. It is still legal to use integers
in this fashion, for example to control a while loop:

int i = 10;

while (i) f // will loop until i is zero

...

i--;

1It would perhaps have been more logical to use the name long char to represent sixteen bit characters.
One can conjecture that this was not done because the type name is de�ned as an alias for a short integer
by means of a typedef statement, and therefore cannot be represented by a two word name.

24 CHAPTER 2. FUNDAMENTAL DATA TYPES

g

Needless to say, while legal this usage is somewhat more error prone than the explicit
use of boolean values. For example, should the variable i somehow be negative when the
while loop begins, then it will create an in�nite loop (or at least a very long one).

One place the integer-as-boolean interpretation is widely used is in the manipulation of
string values. The string copy idiom described in the previous chapter is a typical example:

while (�p++ = �q++) ;

Here the program will terminate when a character (that is, an integer) zero value isNote Inte-
ger and
pointer types
can be used
as boolean
values

copied by the assignment. All nonzero values will be interpreted as true, while the zero
value is interpreted as false.

The bool data type reveals its heritage by the fact that it is still considered to be an
explicit integer data type, although it cannot be signed or unsigned. For example, arithmetic
operations can be applied to bool values, which result in the bool value being converted into
an integer (zero for false, one for true). Similarly, integer results can be assigned to bool
variables, in which case a nonzero value is converted to 1:

bool test = true;

int i = 2 + test; // i is now 3

test = test - 1; // test is now 0, or false

Even pointer values can be used as booleans, with the interpretation that the value is
considered false if it is null, and true otherwise. Thus, it is not uncommon to see pointer
variables being tested by an if statement in the following fashion:

aClass � aPtr; // declare a pointer variable

...

if (aPtr) // will be true if aPtr is not null

...

Note that the test to determine if a pointer is non-null is di�erent from a test to see if
the object the pointer references is non-zero, as we saw in the string copy example.

Perhaps more than other features, the boolean data abstraction is an area where theWarning

Legacy
code can con-
tain dif-
ferent boolean
abstractions

programmer can expect to encounter problems with legacy code (see Section 1.3). Because
the bool data type is a relatively recent addition to the language, but one that nevertheless
has obvious application, there were various competing alternative designs for implementing
this data type in the days prior to the C++ standard. For example, some schemes imple-
mented boolean values as simple integers, while other techniques used an enumerated data
type. These alternatives di�ered not only in their implementation, but also in their naming
conventions.

2.2. FLOATING POINT VALUES 25

To cite just one example, users developing code using the MFC classes on Windows
systems will encounter methods that require or return a value of type BOOL. This type is
distinct from the bool data type, and care must be taken in mixing the two. Many other
schemes are still commonly found in di�erent situations.

2.1.3 Bit Fields

A seldom used feature of C++ allows the programmer to specify explicitly the number of
bits to be used in the representation of an integer value. This is often used to pack several
di�erent binary values into small structure, such as an eight-bit byte:

struct infoByte f

int on:1; // one-bit value, 0 or 1

int :4; // four bit padding, not named

int type: 3; // three bit value, 0 to 7

g;

The exact layout of the bits is implementation dependent. As a practical matter the use Rule

Don't use bit
�elds

of bit-�elds often saves neither time nor space, since in the generated assembly language
more complex code is needed to extract or set such �elds.

2.2 Floating Point Values

Floating point quantities are represented in three ranges of magnitude,
oat, double and
long double. The type double is the most commonly used type, for example
oating point
literals are implicitly de�ned as double precision. Similarly all mathematical routines in the
standard library use double instead of
oat. In fact, there is almost no reason why any value Rule

Never
use
oat, use
double
instead

should ever be declared as
oat.

C++ is much more
exible with conversions than is Java. For example, assigning a

oating point value to an integer variable is illegal in Java without a cast, but perfectly
acceptable in C++:

int i;

double d = 3.14;

i = d; // may generate a warning

Better compilers may generate a warning on this statement, but nothing more. When
constructors are used as conversion operators, or when explicit conversion operators are
present (see Section 7.15), the programmer should take great care as these operations can
be invoked implicitly without any indication being given in the program.

26 CHAPTER 2. FUNDAMENTAL DATA TYPES

The standard mathematical library routines (see Section A.6 in Appendix A) will never
throw an exception, and will seldom halt execution unless the underlying hardware throwsWarning

Math
routines will
not throw an
exception on
error

a hardware fault. An integer division by zero will often cause the latter behavior. Instead
of halting execution, the standard routines will set a global variable named errno. It is the
responsibility of the programmer to check this value after each invocation:

Rule

Always check
errno

double d = sqrt(-1); // should generate error

if (errno == EDOM)

... // but only caught if checked

Java supports three
oating point values that are not numbers, these are Nan, NEGA-
TIVE INFINITY, and POSITIVE INFINITY. Such facilities are permitted in a platform de-
pendent fashion in C++, but are not required.

2.3 Enumerated Values

Despite the similar name, an enumerated value has nothing in common with the Enumeration
class in Java. An enum declaration in C++ creates a distinct integer type with named
constants:

enum color fred, orange, yellowg;

The values red, orange and yellow become named constants after the point of this decla-
ration. A value declared as color can only hold values of this type.

The names of enumerated constants must be distinct. The following could generate an
error:

enum fruit fapple, pear, orangeg; // error: orange rede�ned

Enumerated constants can be converted into integers, and can even have their own
internal integer values explicitly speci�ed:

enum shape fcircle=12, square=3, triangleg;

The only operation de�ned for enumerated data types is assignment. An enumerated
constant can be assigned to an integer and incremented, but the resulting value must then
be cast back into the enumerated data type before it can be assigned to a variable. The
validity of the cast is not checked.

fruit aFruit = pear;

int i = aFruit; // legal conversion

2.4. THE VOID TYPE 27

i++; // legal increment

aFruit = fruit(i); // fruit is probably now orange

i++;

aFruit = fruit(i); // fruit value is now unde�ned

Cast operations can be written using either the form type(value) or using the older Note Cast
op-
erations can
be written in
two di�erent
forms

(type)value syntax that is common to both C++ and Java. The latter form is nowdays
generally discouraged, although there are situations where it is still applicable. It is not
legal to change a pointer type, for example, by writing

int � i;

char � c;

c = char �(i); // error: not legal syntax

However, in this situation a static cast (Section 6.3) would be even better.

2.4 The void type

As in Java, the data type void is used to represent a method or function that does not yield a
result. In C++ the type can also be used as a pointer type, to describe a \universal" pointer
that can hold a pointer to any ptype of value. This usage will be discussed in more detail
in Chapter 3, when we discuss pointers.

2.5 Arrays

An array in C++ can be created by simply declaring the type and the number of elements. Note An
array
need not be
allocated us-
ing new

It does not need to be allocated using the new directive, as in Java. When declared in this
form, the number of elements must be a value determined at compile time.

int data[100]; // create an array of 100 elements

The number of elements can often be omitted. This is true, for example, if the array has
an explicit initialization clause:

char text[] = "an array of characters";

int limits[] = f10, 12, 14, 17, 0g;

Note that the square brackets follow the name. It is not legal to place the square brackets
after the type, as in Java:

28 CHAPTER 2. FUNDAMENTAL DATA TYPES

double[] limits = f10, 12, 14, 17, 0g; // legal Java, not C++

The limits can also be omitted when arrays are passed as arguments to a function:

// compute average of an array of data values

double average (int n, double data[])

f

double sum = 0;

for (int i = 0; i < n; i++) f
sum += data[i];

g

return sum / n;

g

Unlike Java, arrays are not objects, and do not possess any methods. They do notWarning

In C++ ar-
rays do
not know how
many
elements they
contain

\know" their extent. The only operation that is normally performed on an array is the
subscript.

There is a close association in C++ between arrays and pointers. We will explore this
later in Section 3.6.

2.6 Structures and Unions

Before the advent of object-oriented languages, many programming languages included the
concept of a structure. A structure is like a class de�nition that includes only data �elds, in
which all access is public, and which does not use inheritance. That is, a structure is simply
a way of packaging a collection of data �elds together as one unit.

The C++ struct data type is heir to this tradition in languages, (in particular, is upward
compatible with the earlier C language), but moves slightly in the direction of the more
complete class facility. In fact, the major di�erence in C++ between a struct and a class
is that the access to members in structures is by default public, rather than private, as in
classes.

// holds an int, a double, AND a pointer

struct myStruct f
int i;

double d;

anObject � p;

g;

2.7. OBJECT VALUES 29

A union is similar to a structure, but the di�erent data �elds all share the same location
in memory. They can be thought of as being laid one on top of another. Obviously, only
one �eld can therefore be used at any one time. Unions were commonly used in pre-object-
oriented days to create a general purpose data area that could hold many di�erent types of
values.

// can hold an int, a double, OR a pointer

union myUnion f
int i;

double d;

anObject � p;

g;

For the most part, unions have been made unnecessary in object-oriented languages by
the introduction of polymorphic variables. That is, rather than a structure that will hold
three di�erent types of values, a programmer can create a polymorphic variable that can
hold values from three di�erent types of subclasses.

2.7 Object Values

Much of the following chapters will be devoted to the di�erences in the interpretation of
classes and objects in Java and C++. However, we begin this discussion with some simple
observations. The �rst is that Java uses reference semantics for assignments. This means
that a variable assigned from another variable will actually share the same value. This can
be seen by creating a class that is nothing more than a simple box:

class box f // Java box

public int value;

g

box a = new box();

box b;

a.value = 7; // set variable a

b = a; // assign b from a

a.value = 12; // change variable a

System.out.println("a value " + a.value);

System.out.println("b value " + b.value);

The result observed will verify that by changing a we have in fact altered the value of b,
since they refer to the same object value.

30 CHAPTER 2. FUNDAMENTAL DATA TYPES

The language C++, on the other hand, normally uses copy semantics for assignment. TheWarning

Java and
C++ use dif-
ferent seman-
tics for as-
signment

equivalent program is super�cially the same, but with di�erent results:

class box f // C++ box

public:

int value;

g;

box a; // note, explicit allocation not required

box b;

a.value = 7;

b = a;

a.value = 12;

cout << "a value " << a.value << endl;

cout << "b value " << b.value << endl;

The output will show that a was assigned the value 7 by the assignment statement,
and this value was then copied into the variable b. Since a copy was made, this value was
independent of the value being held by variable a. The variable a has subsequently been
updated, and now holds the value 12, but unlike Java this change has not modi�ed the value
held by the variable b.

The C++ language does include the concept of a reference variable, which is a variable
declared as a direct alias. We will have more to say about reference variables in Chapter 3.
However, the correspondence is not exact. A reference variable in C++, for example, can
never be reassigned to a new value:

box a = new box(); // java reference assignment

box b = a;

b = new box(); // reassignment of reference

box a; // C++ example

box & b = a; // reference assignment

box c;

b = c; // error: not permitted to reassign reference

2.8 Functions

The C++ language permits the de�nition of functions that are not members of any class.
Such functions are invoked simply by name, without requiring the speci�cation of a receiver:

2.8. FUNCTIONS 31

// de�ne a function for the maximum

// of two integer values

int max (int i, int j)

f
if (i < j) return j;

return i;

g

int x = ...;

int y = ...;

int z = max(x, y);

A prototype declaration simply declares the name of a function and the argument types,
but does not include a function body:

// declare function max de�ned elsewhere

int max(int, int);

Prototypes are necessary in C++ as every function name with its associated parameter- Warning

In C++ ev-
ery function
name must be
known before
it can be used

types must be known to the compiler before it can be used in an invocation.

2.8.1 Order of Argument Evaluation

A subtle di�erence between Java and C++ concerns the order of argument evaluation. The
Warning

Order of ar-
gument
evaluation in
C++ is unde-
�ned

language Java explicitly states that arguments are evaluated left to right. Consider the
following example program:

String s = "going, ";

printTest (s, s, s = "gone ");

...

void printTest (String a, String b, String c)

f
System.out.println(a + b + c);

g

The output will always be \going, going, gone" as the �rst two arguments will be evalu-
ated before the assignment to the third is performed. In C++, on the other hand, the order
of argument evaluation is left implementation dependent. Many systems (but not all) will
evaluate arguments right to left, not left to right. On these systems the output will be \gone
gone gone".

32 CHAPTER 2. FUNDAMENTAL DATA TYPES

2.8.2 The Function Main

As in Java, execution in C++ programs begins in a function named main. Unlike Java, thisNote In
C++ main is a
function out-
side of any
class

function is not part of any class. The function need not, should not, be declared as static.
Earlier versions of the C++ language permitted the return type for main to be declared as
void, and most compilers will still accept this form. However, the C++ language de�nition
now requires that the return type be declared as int, with the integer value indicating the
success or failure of the program. A return value of zero indicates successful execution,
while a nonzero value is interpreted as unsuccessful. (What the operating system does with
a nonzero return value is platform dependent, and not de�ned by the language).

The function can either be written with no arguments, or with two. When written inRule Al-
ways re-
turn zero on
successful
completion of
the main pro-
gram

the two argument form, the �rst argument is an integer value and the second an array of
pointers to character values (that is, strings):

int main (int argc, char �argv[])

f

cout << "executing program " << argv[0] <<
\n
;

return 0; // execution successful

g

The integer argument is a count on the number of entries in the character array. The re-
lationship between pointers and arrays shown in this example will be discussed in Chapter 3.
The manner in which strings are handled in C++ is discussed in Chapter 8.

The Java programmer will notice one di�erence in the command line array, in Java theWarning

The �rst
command
line argu-
ment in C++

is always the
application
name

array values consist entirely of the command line arguments, while in C++ the �rst (that
is, zero indexed) element is the executable program name, and the �rst actual argument is
found at index position 1.

2.8.3 Alternative Main Entry Points

Note that main is the entry point for programs that is speci�ed by the language, but individ-
ual libraries may provide their own version of main and then require a di�erent entry point.
For example, many Windows graphical systems come with their own main routine already
written, which will perform certain initialization before invoking a di�erent function (such
as WinMain). The MFC (Microsoft Foundation Classes) library takes this one step further,
and eliminates the main routine altogether and instead begins execution when an instance
of the application class (a subclass built on top of a MFC-provided class) is created.

Test Your Understanding

1. In what ways are the data types short and long di�erent in C++ than in Java?

2.8. FUNCTIONS 33

2. What is the di�erence between a signed and an unsigned integer value?

3. How is it that integer division can result in di�erent answers on di�erent machines?

4. How many bits does the language specify for a char data type?

5. What value will be assigned to variable i by the following program?

signed char a =
2
 � 4;

int i = a;

6. How many times will the following program loop?

int i = 16;

while (i)

if (! (i % 2)) i += 3;

else i = i >> 1;

7. What will the value of variable i be after the following:

int i = 3;

bool j = i;

i = j;

8. What is the e�ect of the following program?

bool b = true;

for (int i = 0; i < 10; i++)

if (b -= 1)

cout << "yes";

else

cout << "no";

9. What are the three legal types of
oating point values?

10. What are the two varieties of names an enumerated type declaration creates?

11. What are the two di�erent ways a cast operation can be written?

12. Write a declaration for an array of 100 double precision values.

13. Write a declaration for an array of 100 pointers to double precision values.

34 CHAPTER 2. FUNDAMENTAL DATA TYPES

14. What are some ways that a C++ array is di�erent from a Java array?

15. Explain why the procedure average in Section 2.5 requires two arguments, while a
similar procedure in Java could be written with only one argument.

16. In what ways in a structure di�erent from a class? In what ways is the C++ idea of a
structure di�erent from the historical concept of the type found in languages such as
C?

17. What is the danger in the following program fragment?

union f
int i;

double d;

g dataFields;

dataFields.d = 3.14159;

dataFields.i = 7;

double x = 2 � dataFields.d;

18. What is the di�erence between an assignment performed using reference semantics
and one that uses copy semantics?

19. What is a function prototype?

20. How is the main function in C++ di�erent from the main function in Java?

21. Explain the relationship between the values printed by a signed negative integer, and
the value printed when assigned to an unsigned variable.

22. Write a program that will empirically determine the maximum and minimum values
for both the signed and unsigned versions of the integer data types char, short, int and
long.

23. Write a program to test the division and remainder operations with negative integers
on a particular platform, then write a rule that explains your observed results.

24. Empirically investigate the order of evaluation rules for several di�erent platforms.

25. Write a procedure that takes as argument an array of double precision values, and
returns the median value in the array.

