
Answer Book for

Classic Data Structures in Java

published by Addison-Wesley

Timothy A. Budd

Oregon State University

Corvallis, Oregon, USA

October 4, 2000

1 Chapter 1 { Complexity

1. Inheritance Hierarchy: Biological hierarchies are a good example. Non
inheritance hierarchy: Organizational charts.

2. Many possible answers.

3. Many possible answers

4. This proof given in Chapter 5.

2 Chapter 2 - ADT

1. Many di�erent answers are possible, the instructor needs to look at the
form of the answer. Here is one possible answer:

insert: Post: Places a value into the container. This overwrites any
previously inserted value.

extract: Post: Removes the value most recently inserted into the con-
tainer.

Under this interpretation, the FortyTwoBox would not be said to properly
implement the interface, since it does not remove the most recent value.
To allow FortyTwoBox you need to disassociate the value returned from
any of the values inserted { saying something like it returns an integer
value.

1

2. For Box the conditions are as described in the previous answer. For One-
TimeBox the conditions are as follows:

insert: Post: The �rst time the method is called it places a value into the
container. This method has no e�ect on subsequent calls.

extract: Pre: A call in insert must have already occurred. Post: Removes
the value �rst inserted into the box.

For SuccessorBox the condition for extract is changed to the following:

extract: Pre: increments the value held in the box by one, and returns
the updated value.

3. The interface is something like this:

interface DataBoxInterface f
Enumeration elements ();

int count ();

void add (Object v);

Object find (Object v);

void delete (Object v);

g

3 Chapter 3 { Algorithms

1. Many possible answers

2. Many possible answers

3. The three properties are integer, decreasing, and positve. In�nite se-
quences that satisfy two of the three include:

(a) integer, decreasing, but not positive: negative integers

(b) decreasing, positive, but not integers: 1/n as n increases

(c) integer, positive, but not decreasing: integer numbers

4.
public int gcd (int n, int m) f

if (m != n)

if (m > m) return gcd(n-m, m);

else return gcd(n, m-n);

return n;

g

2

5. move disk from tower a to b

move disk from tower a to c

move disk from tower b to c

move disk from tower a to b

move disk from tower c to a

move disk from tower c to b

move disk from tower a to b

move disk from tower a to c

move disk from tower b to c

move disk from tower b to a

move disk from tower c to a

move disk from tower b to c

move disk from tower a to b

move disk from tower a to c

move disk from tower b to c

move disk from tower a to b

move disk from tower c to a

move disk from tower c to b

move disk from tower a to b

move disk from tower c to a

move disk from tower b to c

move disk from tower b to a

move disk from tower c to a

move disk from tower c to b

move disk from tower a to b

move disk from tower a to c

move disk from tower b to c

move disk from tower a to b

move disk from tower c to a

move disk from tower c to b

move disk from tower a to b

6. First, you must prove by induction that the towers of hanoi requires 2n

steps to move a tower of size n. (In hindsight, this should have been a
separate exercise). The question then amounts to asking for value value
of n is 2n larger than 60� 60. The answer is 12, so that at most 11 disks
can be moved in an hour.

3

4 Chapter 4 { Time Management

1. (a) If f(n) is O(g(n)) it means that there exists a constant, c1, such
that f(n) < c1 � g(n) for all su�ciently large n. But then f(n) +
c < c1 � g(n) + c. Since g(n) is larger than 1, this is smaller than
c1 � g(n) + c� g(n). But the latter is (c1 + c)� g(n). Since (c1 + c)
is constant (call it c2), we have that f(n) + c < c2 � g(n), and hence
f(n) + c is O(g(n)).

(b) If f(n) is O(g(n)) it means that there exists a constant, c1, such that
f(n) < c1 � g(n) for all su�ciently large n. But then c � f(n) <
c� c1 � g(n). Let c2 be c� c1 and we have the result.

(c) Since f1(n) < f2(n), f1(n) + f2(n) < 2 � f2(n). Since f2(n) is
O(g(n)), there exists a constant, c1, such that f2(n) < c1 � g(n) for
all su�ciently large n. Let c2 be 2�c1. Then f1(n)+f2(n) < c2�g(n),
and therefore is O(g(n)).

2. Prove by induction. Base case for j = 0, let a be the constant, and therefore
a � xi is O(xi). Base case for j = 1. For any value x larger than 1
a� xi < a� xi � x, and hence a� xi is O(xi+1). Induction case. Assume
it is true for j = n, prove for n+1. But if we assume a�xi is O(xi+n), it
means that there exists a constant c such that a� xi < c� xi+n. But for
x > 0 the right hand side is less than c� xi+n+1, and hence the function
is O(xi+n+1).

3. Prove by induction on the degree of the polynomial.

4. By de�nition loga(n) is log2(n)=log2(a). Since 1=log2(a) is a constant, we
have the result.

5. Base case of n = 1 is trivial, since they are the same. Assume it is true
for n, prove for n+ 1. But we have that

n+1X

i=1

c� f(i) =

nX

i=1

c� f(i) + c� f(n+ 1) = c� (

nX

i=1

f(i) + f(n+ 1) =

c� (

n+1X

i=1

f(i)

6. This proof is given in Chapter 5.

7. (a) O(n2)

(b) O(n logn)

(c) O(n)

(d) O(n2)

4

(e) O(n)

(f) O(n logn)

8. (a) O(n)

(b) O(n2)

(c) O(n2)

(d) O(log n)

(e) O(n�p
n)

(f) O(n logn)

9. Misprint, the 80 should be a 60. Easiest to work in seconds. This means
the constant of proportinality is about 1. For n = 60 then n logn is about
60� 8, or about 8 minuits.

10. 2 3 7 4 9
2 3 4 7 9
2 3 4 7 9
2 3 4 7 9

11. 2 7 3 9 4
2 3 7 9 4
2 3 7 9 4
2 3 4 7 9

5 Chapter 5 { Correceness

1. From the beginning of program to invariant 1. i is 2, hence i � 1 is 1,
hence n has no factors between 2 and i� 1, since the latter set is empty.

From invariant 1 to invariant 2. Since the condition evaluated to true, the
invariant must be true (actually, independently of 1) and therefore n is
not prime.

From invariant 1 to invariant 3. We only reach invariant 3 if the condition
was false. Since invariant 1 asserted there was no factor between 2 and
i� 1, and since the condition is false we know that i is not a factor of n,
then invariant 3 must be true.

From invariant 3 to invariant 1. The only thing that changes is that i is
incremented by 1, and so the two invariants assert the same thing.

From invariant 3 to invariant 4. Since i is strictly larger than the ceiling
of the square root, and we know that n has no factors smaller than i� 1
(note that i has been increated between the two invariants) then n can
not have any factors.

From the beginning of the program to invariant 4. This only happens if 2
is larger than n, so n must be 2 or 3, which are both prime.

5

2. From the beginning of the program to the loop invariant. Both sets are
empty in the loop invariant, and so the conditions must be true.

From the loop invariant to itself on the next iteration. We divide this
argument into two cases. If data[mid] is smaller than the test value, then
we know that all values with index positions smaller than or equal to mid
are smaller than the test value. If we set low to mid+1, this tells us that
all positions with index values smaller than low-1 are smaller than the
test value, which is the condition we seek. (high hasn't changed, so the
2nd part of the condition is still true). On the other hand, if data[mid]
is larger than or equal to the test value, we know that all elements with
index values larger than or equal to mid are equal to the test value. If we
set high equal to mid, then the 2nd part of the invariant is true. (Since
low hasn't changed, the �rst part remains true).

From the loop invaraint to the end of the program. The �rst clause is the
same as the loop invariant. The second can be proved by contradiction.
Assume it is not true, that is, that testValue is greater than data[low+1].
But we know that all elements with index values larger than high are
greater than or equal to testValue. And we know that high is less than or
equal to low (by the while loop). But these two can't both be true.

Finally, from the precondition to the end assuming the loop is not exe-
cuted. This than can only happen if the array has length zero, and thus
the only legal index to return is zero.

3. Invariant 1. Result is base raised to zero.

Invariant 2. Result is base raised to (i-1).

Invariant 3. Result is base raised to i.

Invariant 4. Result is base raised to n.

4. From invariant 1 to invariant 2. i is 1, i� 1 is zero, and thus invariant 2
asserts the same thing as invariant 1.

From invariant 2 to invariant 3. Result has been multipled by base, and
thus if invariant 2 was true invariant 3 must now be true.

From invariant 3 back to invariant 2. i has been incremented by 1, and
thus the two invariants are asserting the same thing.

From invariant 3 to invariant 4. i must be equal to n on the last iteration,
and thus the two invariants are asserting the same thing,

From invariant 1 to invariant 4. n must be zero, and hence the value held
by result is correct.

5. Invariant 1. sum is sum of value with index positions smaller than 0 (an
empty set)

6

Invariant 2. sum is sum of values with index positions smaller than i-1.

Invariant 3. sum is sum of values with index positions smaller than i.

Invariant 4. sum is sum of values with index positions smaller than n.

6. From beginning of program to invariant 1, sum of an empty set is zero.
From invariant 1 to invariant 2, i must be 0, set is empty and still has sum
zero. From invariant 2 to invariant 3, all that has changed is that the value
data[i] is added to sum, and so invariant 3 must be true. From invariant
3 back to invariant 2, all that changes is that i is incremented by 1, and
so the two invariants are asserting the same thing. From invariant 3 to
invariant 4, i must be equal to the size of the array, and thus invariant 3
asserts that all elements are in sum. Finally, from invariant 1 to invariant
4, this only happens if size is zero, and thus sum is also zero.

7. Invariant 1. result is 0 fac (zero factorial)

Invariant 2. result is (i-1) fac

Invaraint 3. result is i fac

Invariant 4. result is val fac

8. From beginning of program to invariant 1, result is set to 1, which is zero
factorial, so invariant must hold.

From invariant 1 to invariant 2, i is equal to 1, so i-1 is zero, and so
invariant 2 is asserting same thing as invariant 1.

From invariant 2 to invariant 3. Result has been increased by i, and so if
invariant 2 is true then invariant 3 must be true.

From invariant 3 back to invariant 2, i is incremented by 1, and so the two
invariants assert the same thing.

From invariant 3 to invariant 4, i must get incremented past val, and so
the previous value of i must have been val, and so invariant 3 asserts the
same thing as invariant 4.

From invariant 1 to invariant 4. Only happens of value is zero, and so
result is zero factorial, which is correct.

9. Here is the code:
void insertionSort (double [] v) f

int n = v.length;

// inv 1: elements with index positions smaller than 0 are sorted
for (int i = 1; i < n; i++) f

// move element v[i] into place
// inv 2: elements with index positions smaller than i are sorted
double element = v[i];

int j = i - 1;

7

while (j >= 0 && element < v[j]) f
v[j+1] = v[j]; // slide old value up
j = j - 1;

g
// place element into position
v[j+1] = element;

// inv 3: elements with index positions smaller than
// or equal to i are sorted.

g
g
all done?

10. At least one input that causes the loop to execute zero times (say an array
with one element). At least one value that casues the loop to execute more
than once (an array with several values). Elements in which the min is
both the �rst value (so the conditional is always false) and not the �rst
value (so that the conditional is sometimes true). An illegal value (say an
empty array).

11. An input that causes the loop to execute zero times (either values 2 or
3). A value that causes the loop to execute more than once (say 12). A
value in which the condition is always false (say 11). A value in which
the condition is sometimes true (say 12). A value in which the test is true
only on the last iteration (say 25).

12. An input in which the loop is never executed (zero length array). An
input in which the loop is executed, but the test is always true (inserting
at top). Same but always false (inserting at bottom). A loop with the
element in the middle. An array where the element being sought occurrs
several times. An array where the element being sought is in the middle
but does not occur in the array.

13. Chapter 9?? What was I thinking??

6 Chapter 6 { Vectors

1. Table:

8

contents size capacity
(empty vector) 0 5
null, null, null, null 4 5
null, null, null, A 4 5
B, null, null, A 4 5
B, null, null 3 5
B, null, C 3 5
B, null, C, D 4 5
B, null, C, D, null, null 6 10

2. When the size is reduced an internal value is set and the elements above
the new size are set to null. No recallocation occurs.

3. public synchronized void addElementAt (Object val, int index)

f
if ((index < 0) jj (index > elementCount))

throw new ArrayIndexOutOfBoundsException(index);

// inv element has valid index
setSize(elementCount+1);

// there is room for the element
for (int i = elementCount-1; i > index; i--)

elementData[i] = elementData[i-1];

// all elements above index have been moved up, leaving a hole
elementData[index] = val;

// element is inserted into the vector
g
Proof connecting invariants is left as exercise.

4. public synchronized void removeElementAt (int index) f
if ((index < 0) jj (index >= elementCount))

throw new ArrayIndexOutOfBoundsException(index);

// inv index is valid
elementCount--;

// size is one element smaller
for (int i = index; i < elementCount; i++)

elementData[i] = elementData[i+1];

// values with index elements larger than size have been moved down
elementData[elementCount] = null;

// last position is now null
g

9

5.

step size cost
1 10 1
2 10 1
3 10 1
4 10 1
5 10 1
6 10 1
7 10 1
8 10 1
9 10 1
10 20 20
11 20 1
12 20 1
13 20 1
14 20 1
15 20 1
16 20 1
17 20 1
18 20 1
19 20 1
20 40 40
21 40 1
22 40 1
23 40 1
24 40 1
25 40 1

Total 83/25 = 3.32

10

6.

step size cost
1 10 1
2 10 1
3 10 1
4 10 1
5 10 1
6 10 1
7 10 1
8 10 1
9 10 1
10 11 11
11 12 12
12 13 13
13 14 14
14 15 15
15 16 16
16 17 17
17 18 18
18 19 19
19 20 20
20 21 21
21 22 22
22 23 23
23 24 24
24 25 25
25 26 26

Total 289/25 = 11.56

7. class Vector f
public Vector (Collection c) f

setSize(c.size());

int i = 0;

for (Enumeration e = c.elements(); e.hasMoreElements();

)

setElementAt(e.nextElement(), i++);

g
g
Advantage, this form works for copying from other collections. Disadvan-
tage, cannot be assigned to a Cloneable object.

8. Can generate a subscript error on collections of odd sizes

9. Element number 2 will be generated twice.

11

10. Assume the �rst method is inserting a 9 and the second is inserting a 6.
At the point the �rst method is halted the array looks like 2 5 5 8 After
the second halts it looks like 2 6 5 5 8. After the �rst completes again it
will be 2 9 5 5 8. Note that the element 5 has been duplicated, and the
element 6 lost.

11. Typo. Should be 36. The �rst will allocate a new array of size 20, which
will overwrite the bu�er. The second will generate a subscript error.

12. 3 2 4 1 0 5 6 7 8

2 3 1 0 4 5 6 7 8

2 1 0 3 4 5 6 7 8

1 0 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

13. skipped

14. Example doesn't work. In fact, this version of bubble sort IS stable.

15. It is stable, since values move down until they reach a point where they
are less than OR equal to another value. Two equal values will keep their
relative ordering.

16. No it is not. Try sorting the array 4 21 22 6 5. After the sort with gap 2
we will have 22 21 4 6 5, and after the gap with 1 we will have 22 21 4 5
6, with the two elements interchanged.

17. De�ne the idea of \gap sorted" to mean that elements with the given gap
are in order. Then using the proof similar to insertion sort, show that
after each loop the values are gap sorted for the given gap. Once elements
are gap sorted with gap one you are �nished.

18. Assume that the array is held as a data �eld in a class, and we will use
an inner class:
class DNAQuestion f

private Vector data(); // original data values
private Vector indirect(); // indirection values

DNAQuestion () f
int n = data.size();

indirect.setSize(n);

for (int i = 0; i < n; i++)

indirect.setElementAt(new Integer(i), i);

g

12

public class Comp implements Comparator f
public int compare(Object left, Object right) f

Integer iLeft = (Integer) left;

Integer iRight = (Integer) right;

int i = iLeft.intValue();

int r = iRight.intValue();

for (int k = 0; k < m; k++)

if (data.elementAt(i+k) != data.elementAt(j+k)

if (data.elementAt(i+k) < data.elementAt(j+k)

return -1;

else

return 1;

return 0; .// equal
g

g
g
So, sort the array using this comparator, then look at adjacent elements
in the sorted array and see if they are equal.

7 Chapter 7 { Sorting Vectors

1. Here is the table

low high mid
0 15 7
0 7 3
0 3 1
2 3 2
3 3 done

2. log 10,000 or about 14.

3. The �rst, or lowest

4. Search for the lowest index, search for the highest index, return the values
between the two index positions.

5. 3 1 4 1 5 break 9 2 6 5 3 5

3 1 break 4 1 5 break 9 2 6 break 5 3 5

3 break 1 break 4 break 1 5 break 9 break 2 6 break 5 break 3

5

3 break 1 break 4 break 1 break 5 break 9 break 2 break 6 break

5 break 3 break 5 break

1 3 break 4 break 1 5 break 9 break 2 6 break 5 break 3 5

1 3 break 1 4 5 break 2 6 9 break 3 5 5

13

1 1 3 4 5 break 2 3 5 5 6 9

1 1 2 3 3 4 5 5 5 6 9

6. Yes, it is stable. Two items will keep their relative order when they are
merged back together.

7. Here are the invariants:
private void merge (int low, int mid, int high) f
// pre: elements from low to (mid-1) and from mid to high are sorted

stk.setSize(0);

int i = low;

int j = mid;

while ((i < mid) jj (j < high)) f
if (i < mid)

if ((j < high) &&

(test.compare(data.elementAt(j),

data.elementAt(i)) < 0))

// inv: the smallest (and hence next) element is at j
stk.addLast(data.elementAt(j++));

else

// inv: the smallest (and hence next) element is at i
// OR all of the 2nd part has been exhausted

stk.addLast(data.elementAt(i++));

else

// inv: elements in �rst part or exhausted, add elements from second
part

stk.addLast(data.elementAt(j++));

g
j = stk.size(); // copy stack back to original area
for (i = 0; i < j; i++)

data.setElementAt(stk.elementAt(i), low+i);

g
8. If the data is sorted partition yields one group with size zero and another

with size n-1, and repeating this gives the poor O(n2) performance for
quick sort.

9. If the element indexed by low is properly in the �rst group, low is incre-
mented. Otherwise the element indexed by low is larger than or equal to
the pivot value. In that case, low will not be modi�ed, but the 2nd if
statement will be tested. If the element indexed by high is larger than
the pivot element, then high can be decremented. Otherwise the element
with index position high is also out of order, and the two elements can be
swapped.

Remainder of proof is left as exercise.

14

10. private void quickSort (int low, int high) f
// no need to sort zero or one elements

if (low >= high) return;
// select a pivot and partition

int pivotIndex = (low + high) / 2;
pivotIndex = pivot(low, high, pivotIndex);

// inv: elements less than pivotIndex are all smaller than all
// elements with index values larger than pivotIndex

// then sort two subarrays
quickSort(low, pivotIndex);
quickSort(pivotIndex + 1, high);

g
11. No. Consider sorting the following 5 element vector 2 41 42 1 6. After the

�rst partition the elements will be 2 1 42 41 6 and there is no way the two
elements will ever be rearranged.

12. Here are some of the steps
Initially will pivot around the nine,
first moving it to the first location
9 1 4 1 5 3 2 6 5 3 5
then reorganizing, but the 2nd group is empty
and so after the last swap we have
5 1 4 1 5 3 2 6 5 3 9
Now the elements indexed 0 to 9 are sorted, pivot
is in position 4, which is 5. Swap to first location
leaves same array. After partitioning we have two
groups as follows
5 1 4 1 3 3 2 j 6 5 5 9
after final swap we have
2 1 4 1 3 3 j 5 6 5 5 9
Each group is then sorted (we will do it in parallel)
first moving pivot to front
4 1 2 1 3 3 j 5 6 5 5 9
then partitioning (not we get two empty sets)
4 1 2 1 3 3 j (empty) j 5 (empty) j 5 5 6 9
then swapping pivot back
3 1 2 1 3 j 4 j empty j 5 j 5 5 6 9
Again,
2 1 3 1 3 j 4 j j 5 j 5 5 6 9
after partition
2 1 1 j 3 3 j 4 j j 5 j 5 j empty + 5 6 9
after final swap
1 1 j 2 j 3 3 j 4 j j 5 j 5 j j 5 6 9
Last few steps are base case, leaving final answer
1 1 2 3 3 4 5 5 5 6 9

15

13. Quick sort will be O(n2), insertion sort is O(n) Problem is one of the two
partitions is always empty.

14. Quick sort is O(nlogn) in this case would be O(n2) if we selected �rst
element .

15. See question 13.

16. low + high (since either low is incremented or high is decremented)

17. Look for the kth smallest. The lower partition provides the answer. Ex-
pected complexity is O(logn).

18. Finding and removing largest would be both O(1).

8 Chapter 8 { Linked Lists

1. ConsCell lst = new ConsCell(7, null)

list = new ConsCell(2, lst)

lst = new ConsCell(6, lst)

lst = new ConsCell(3, lst)

2. Recursive calls would �nally add 7 to original list of 6 and 3.

3. pictures

4. pictures

5. You get a NoSuchElementException. RemoveLast needs to explicitly
check the condition before it access the element prev.

6. addElement is O(1) always containtsElement is O(n) worst case �ndEle-
ment is O(n) worst case removeelement is O(n) worst case

7. You get a null pointer exception. After hasMoreelements has said there
are more elements, nextElement trys to read it, but by then there is a null
pointer.

8. An enumeration doesn't allow us to get hold of the link we need to delete.

9. public synchronized void removeElement (Object newValue) f
for (DoubleLink p = firstLink; p != sentinel; p = p.next)

f
// inv: have not seen element yet, but maybe it's p
if (newValue.equals(p.value)) f

// have found element, must remove it
p.remove();

return;

16

g
// inv: have not yet seen element

g
throw new NoSuchElementException(newValue.toString());

g
10. class LinkedList f

public boolean equals (Object right) f
Collection rc = (Collection) right;

for (Enumeration e = elements(); e.hasMoreElements();

)

if (! rc.contains(e.nextElement()))

return false;

g
g
It is much harder if elements are not unique, as then you have to count
the occurresnces of elements.

11. Here is elementAt, others are similar, but are all O(n)
class LinkedList f

public Object elementAt (int index) f
for (Enumeration e = elements(); e.hasMoreElements();

) f
Object obj = e.nextElement();

if (index-- = 0) return obj;

g
throw NoSuchElementException();

g
g

9 Chapter 9 { List Variations

1. Since indexing is O(n), searching for an element would take O(N logN),
probably not a good idea since it is even slower than the regular O(N)
search.

2. This is relatively easy if you draw pictures that show the state of the
computation at each point.

3. Can be done in O(n), and doesnt require any restriction on elements in
the lists.
class SortedList f

boolean equals (Object right) f
SortedList sright = (SortedList) right;

if (size() != sright.size()) return false;

17

Enumeration e = elements();

Enumeration f = sright.elements();

while (e.hasMoreElements() && f.hasMoreElements())

if (! e.nextElement().equals(f.nextElement()))

return false;

return true;

g
g

4. Would be O(n2) for a List, O(n2) also for a SortedVector.

5. Can't get access to the undelying links of you use an enumerator

6. Yes, use �ndElement and check if the result is non-null.

7. See chapter 15.

8. O(n logn)

9. Here is the table:

Container Addition Search Removal
SkipList O(log n) Expected O(logn) Expected O(logn) Expected
SortedVector O(n) Worst O(logn) Always O(n) Worst
SortedList O(n) Worst O(n) Worst O(n) Worst
LinkedList O(1) Always O(n) Worst O(n) Worst

10. Lots of di�erent answers, depending upon the toss of the coin. All should
look roughly like the picture in the book.

11. My counts are as follows: 9 8 9 8 9 8 9 8 7 7 6 5 9 8 7 6 6 5 5 5 for a total
of 142 and average of 7.1

10 Chapter 10 { Stacks

1. (a) 3, a = 3, 3 5, 3

(b) 3, 3 4, 3, empty, error

2. Here is the table

Vector LinkedList

addLast O(1) expected O(1) always
getFirst O(1) always O() always
removeFirst O(1) always O(1) always

18

3. class StackAdapter f
public StackAdapter (Stack d) f data = d; g
private Stack data;

public void push (Object obj) f data.addLast(obj); g
public void pop () f data.removeLast(); g
public Object top () f return data.getLast(); g

g
4. private class MouseKeeper extends MouseAdapter f

CardPile sourceDeck = null;

public void mousePressed (MouseEvent e)

f sourceDeck = findDeck(e.getX(), e.getY()); g

public void mouseReleased (MouseEvent e) f
if (sourceDeck == null) return;

if (sourceDeck.isEmpty()) return;

// inv: source deck is a valid deck with at least one card
CardPile toDeck = findDeck(e.getX(), e.getY());

if (toDeck == null) return;

// to deck is a valid card deck
Card playCard = sourceDeck.topCard();

if (playCard == null) return;

if (toDeck.canTake(playCard))

// todeck can take the top card from source deck
toDeck.addCard(playCard);

else

// todeck cannot take top card, so place it
// back on source deck
sourceDeck.addCard(playCard);

repaint();

g
g

5. When you see a left paren, push the corresponding right paren (of the
correct type). When you see a right paren, see if the correspodning item
on the stack is the correct type. If so, pop stack and get next char, if not,
report an error.

6. a b c + * b d / + a *

7. �(7� 5) or 7� (�5)
8. Left as a programming exercise.

19

9. assume there is a number in the display, enter 0, enter 1, enter minus
(leaving -1) enter multiply.

10. O(n2)

11. void shuffle (vector v) f
int n = v.size();

for (int i = 0; I < n; i++) f
int j = (int) (n � Math.random());

Object temp = v.elementAt(i);

v.setElementat(v.elementAt(j), i);

v.setElementAt(temp, j);

g
12. No., if it becomes full then he cannot get all cars. He must leave one less

than the depth of the parking area (depth 3 in the picture, so he must
leave 2 spaces).

13. As cars come from left, if they are not the next car in sequence then push
on to siding, until car is reached. Thereafter, if the next car in sequence
is already on siding, push back to right until it can be moved. Otherwise
keep moving cars from left onto siding. Worst case is O(n2), since N cars
may have to be moved to �nd next one.

14. Certainly if they are either strictly increasing or strictly decreasing they
will work. Also any group that can be divided into parts that are strictly
increasing or strictly descreasing (with no elements out of order within
the group).

15. not done, simple trace of procedure calls.

16. not done, simple trace of procedure calls.

11 Chapter 11 { Deques

1. Put each letter into the deque until all letters are recognized. Then while
the size of the deque is larger than 2, pull items from both front and back.
If they di�er, then word is not palendrome. If you get down to zero or
one letters and have not found any di�erence, then word is palendrome.

2. Here is the table.

20

LinkedList IndexedDeque

addFirst O(1) always O(1) expected
addLast O(1) always O(1) expected
getFirst O(1) always O(1) always
getLast O(1) always O(1) always
removeFirst O(1) always O(1) always
removeLast O(1) always O(1) always

3. Both wrap around. However, one uses a linked list as the underlying data
structure, the other uses an array. One is indexed, one is not.

4. The stack version works in one place until �nished, the deque version
moves around the entire snow
ake doing a little bit at each point until
�nished.

5. Lots of di�erent answers

6. (a) O(1): elementAt, setElementAt O(N): setSize, ensureCapacity, ad-
dElementAt, removeElementAt

(b) The division operator is necessary to wrap around when the �rst�lled
�eld occurrs later than the �rst empty �eld.

(c) i. The elementCount is smaller, but the �rstFilled does not change.

ii. the elementCount becomes larger, but the bu�er is not changed

iii. A new bu�er is created and the �rst �lled position becomes zero,
the elementCount indicates the number of values.

(d) The method simply returns

(e) picture

(f) You could get a capacity that was larger than the bu�er size.

(g) The worst case is O(n), this happens when an insertion forces a
reallocation of a new bu�er.

(h) This allows adding a method at the end of the data area.

(i) Worst case is O(N), occurs when removing the 2nd element and all
values smaller than must be moved down.

(j) Lots of possible answers, all having the characteristic that they leave
the bu�er in an inconsistent state.

7. Doubling the size makes the next few additions O(1). If we simply added
1 one element, each additional increase in size would be O(N).

8. (a) Easy answers modelled on those in text.

(b) because allElementAt is synchronized

21

(c) O(1). using allElementAt would have moved values unnecessarily,
rather than moving the �rstFilled pointer down.

(d) O(1). Using removeElementAt would have made it O(N) worst case.

9. If the last value is removed, the hashMoreElements will have reported
true, but the invocation of nextElement will try to access a value that is
not there.

12 Chapter 12 { Queues

1. (a) que.addLast(new Integer(2));

// queue is 2
Integer a = que.getFirst();

// a is 2, queue is 2
que.addLast(new Integer(3));

// a is 2, queue is 2 3
que.removeFirst();

// a is 2, queue is 3

(b) que.addLast(new Integer(2));

Integer a = que.getFirst();

// a is 2, queue is 2
que.addLast(new Integer(4));

// a is 2, queue is 2 4
que.removeFirst();

// a is 2, queue is 4
que.addLast(new Integer(6));

// a is 2, queue is 4 6
que.removeFirst();

// a is 2, queue is 6

(c) que.addLast(new Integer(2));

// queue is 2
que.getFirst();

// queue is 2
que.addLast(new Integer(3));

// queue is 2 3
que.removeFirst();

// queue is 3
que.removeFirst();

// queue is empty
Integer a = que.getFirst();

// error

2. Here is the table.

22

LinkedList IndexedDeque RingBu�er

addLast O(1) always O(1) expected O(1) always
getFirst O(1) always O(1) always O(1) always
removeFirst O(1) always O(1) always O(1) always

3. The objects are pastries, boxes, machines and queues. not done

4. Remove each element from the front of the queue and place them into the
stack, then remove each element from the stack and push them into the
back of the queue.

5. As each character is read, push the character on to both the stack and
the queue. After the last character, read pop values from both stack and
queue. If they disagree, it is not a palendrome. If you reach the end
without �nding a disgreement, they match.

6. All the elements from 2nd position upwards get moved down.

7. The sum 1 + 2 + 3 + ... + n is still O(n2).

8. public class RingBufferQueue implements Queue f
public Enumeration elements () f return new RingBufferEnumerator();

g

...

private RingBufferEnumerator implements Enumeration f
public RingBufferEnumerator () f ptr = firstFilled; g
private RingBufferNode ptr;

public boolean hasMoreElements()

f return ptr != firstFree; g

public Object nextElement () f
Object result = ptr.value;

ptr = ptr.next;

g
g

g
9. experimental results will di�er depending upon initial conditions.

10. public class RingBufferQueue implements Queue f

RingBufferQueue () f
firstFilled = firstFree = new RingBufferNode(null);

firstFree.next = firstFree;

23

g
private RingBufferNode firstFree, firstFilled;

private count = 0;

public boolean isEmpty () f return count == 0; g

public int size () f return count; g

public synchronized void addLast (Object val) f
count++;

if (firstFree.next == firstFilled)

firstFree.next = new RingBufferNode(firstFree.next);

firstFree.value = val;

firstFree = firstFree.next;

g

public Object getFirst () f
if (count == 0) throw new NoSuchElementException();

return firstFilled.value; g

public synchronized void removeFirst () f
if (count == 0) throw new NoSuchElementException();

count--;

firstFilled = firstFilled.next;

g
g

11. experimental results will di�er depending upon initial conditions.

12. Programming exercise left to reader.

13. experimental results will di�er depending upon initial conditions.

14. This is actually a bit tricky. Requires making double links that point both
forward and backward.

15. Programming exercise left to reader.

13 Chapter 13 { Trees

1. Many di�erent answers

2. picture

3. prefix: � + a b + c � d e

postfix: a b + c d e � + �

24

4. picture

5. preorder: A B D H I E C F G

inorder: H D I B E A F C G

postprder: H I D E B F G C A

level order: A B C D E F G H I

6. Need to compare the precidence of interior nodes.

7. Picture

8. The root has no sibling, so has no right node. The collection can be viewed
as siblings of the root tree.

14 Chapter 14 { Search Trees

1. Minimum is the ceiling of the log, which is 100. Maximum is 100.

2. The tree is pretty unbalanced, with only a couple of 1's hanging down the
left side of the right child. Removing the root doesn't improve balance
any. picture

3. There are 24 di�erent permutations. Of these, only six appear more than
once. (Drawing the trees is left as an exercise, but I've divided into the
equivalance groups).
1 2 3 4

1 2 4 3

1 3 2 4, 1 3 4 2

1 4 2 3

1 4 3 2

2 1 3 4, 2 3 1 4, 2 3 4 1

2 1 4 3, 2 4 3 1, 2 4 1 3

3 1 2 4, 3 1 4 2, 3 4 1 2

3 2 1 4, 3 4 2 1, 3 2 4 1

4 1 2 3

4 1 3 2

4 2 1 3, 4 2 3 1

4 3 1 2

4 3 2 1

4. O(N) simply enumerate the two trees and compare elements. Don't think
it can be done any faster.

5. Left as exercise

6. Opps. Same as question 3.

25

7. I believe it is 1, 2, ... n. (anybody have a proof?)

8. Part a is simple calculation. Here is part b.

Mh+1 = Mh�1 +Mh + 1 (1)

= fh+2 � 1 + fh+3 � 1 + 1 (2)

= fh+2 + fh+3 � 1 (3)

= fh+3 � 1 (4)

(5)

9. Base cases are proved by inspection.

fn+1 = fn�1 + fn (6)

< 2n�1 + 2n (7)

< 2n + 2n (8)

< 2� 2n (9)

= 2n+1 (10)

(11)

10. Since we are fudging, we will use � instead of <. We tosss out the constant
term as it becomes unimportant as h gets large.

Mh � 2h+3 (12)

logMh � (h+ 3) log 2 (13)

logMh � h log 2 + 3 log 2 (14)

logMh � h log 2 (15)

logMh

log 2
� h (16)

(17)

11. (a) for n = 0 we get 1� 1 is 0, and thus FIBn is 0. For n = 1 the inner

formula reduces to 2
p
5

2
, and thus we have FIB2 is 1. For n = 2 we

have 1p
5
(1+2

p
5+5

4
� 1�2

p
5+5

4
), which reduces to 1p

5
(6+2

p
5

4
� 6�2

p
5

4
),

and thus to 1p
5

4
p
5

4
, or 1.

(b) (1+
p
5

2
)2 is 1+2

p
5+5

4
, which is 6+2

p
5

4
, or 4

4
+ 2+2

p
5

4
, or 1 + 1+

p
5

2
.

(c) Fibn+1 =
1p
5
((1+

p
5

2
)n+1 � (1�

p
5

2
)n+1)

= 1p
5
((1+

p
5

2
)n�1(1+

p
5

2
)2 � (1�

p
5

2
)n�1(1�

p
5

2
)2)

26

= 1p
5
((1+

p
5

2
)n�1(1 + 1+

p
5

2
)� (1�

p
5

2
)n�1(1 + 1�

p
5

2
))

= 1p
5
((1+

p
5

2
)n�1 � (1�

p
5

2
)n�1) + 1p

5
((1+

p
5

2
)n � (1�

p
5

2
)n)

= Fibn�1 + Fibn

(d) As the second term is less than 1, as n gets large it gets closer and
closer to zero.

(e) c is approximately 1.618.

(f) log c is approximately 0.694242

(g) 1
log c

is approximately 1.44.

12. (a) We need to examine each case in turn.

i. h(y) = h(z). Therefore the right size has height h(y)+1. Since
we know this is equal to h(x)+2, we have h(y) = h(x)+1. Af-
ter rotation the left child is balanced, since one child has height
h(x)=h(y)-1, and one child height h(y). The height of the left
child is h(y)+1, which is h(z)+1, ahd the right child h(z). There-
fore we have balance.

ii. h(y)+1 = h(z). Therefore the two children of B have heights
h(y) and h(y)+1, and the height of B is h(y)+2. Since h(y)+2
= h(x)+2, we have h(x)=h(y). After rotation the left child is
balanced (they have exactly the same height) and the height
of A is h(y)+1. But this is the same as h(z), so everything is
perfectly balanced.

iii. h(y) = h(z)+1. Using the same logic as in the 2nd case, we
have that h(x) = h(z). After rotation the two children of A will
have heights h(z) and h(z)+1, That's ok. But the height of A is
h(z)+2. This is 2 levels higher than the height of the right child.

(b) Break Y into two subtrees of height Y1 and Y2, then consider the
three cases that h(y1) = h(y2), h(y1)+1 = h(y2) and h(y1) = h(y2)+1.
Analyze each of these three cases in turn and you will see that ev-
erything works �ne.

13. No, it is not stable, the two values will have interchanged in the sort.

15 Chapter 15 { Priority Queues

1. class ListPriorityQueue implements FindMin f
public ListPriorityQueue (Comparator t) f test = t; g

private LinkedList data = new LinkedList();

private Comparator test;

27

public void addElement (Object newElement) f data.addLast(newElement);

g

public Object getFirst () f
Object result = data.getFirst();

Enumeration e = data.elements();

while (e.hasMoreElements()) f
Object obj = e.nextElement();

if (test.compare(result, obj) < 0)

result = obj;

g
return result;

g

public void removeFirst () f
Object result = getFirst();

data.removeElement(result);

g

g
Nothing is said about it being fast!

2. Lots of answers

3. These just involve walking through the code. No paper answers can be
given.

4. The subscript error will throw the exception

5. Solve by induction. For height 0 there is only 1 tree. For height 1 there
are two trees, since the two children can be interchanged. For height 2
there are 8 trees. For height 3 there are 8 (or 23) rearragnements of the
left subtree. For each of these there are 8 rearrangments of the right
subtree. Since these can be done independently of each other, there are 26

possible orderings. But we can also interchange the right and left subtrees,
therefore there are really 27 possible orderings. If we go one level further,
we see that for the next level there are 27�27�2 or 215 possible orderings.

Now the trick here is coming up with an induction hypothesis. To do
that, let us look not at the values themselves, but at their powers (since
they are all powers of two). We have that N(0)=20, N(1)=21, N(2)=23,
N(3)=27, N(4)=215. To a computer scientist, the pattern 0, 1, 3, 7, 15
should have an obvious meaning, namely 2n � 1.

So our induction hypothesis is that for a complete heap of height h there

are 22
h�2 possible di�erent rearrangements that can be made simply by

28

reversing the order of children. Let us call this R(h). (Note that this
isn't all the possible trees, because we haven't considered the possibility
of moving children up or down to di�erent levels).

For a heap of height h + 1 we have R(h+1) rearragnements. But we can
rearrange either child independently, and exchange the children. Thus the
number of rearrangements is R(h)�R(h)�2. By our induction hypothesis

this is 22
n�1 � 22

n�1 � 2, which is 22
n+1�1 and we are done.

6. Its takes more execuition time.

7. The only way is to insert values one by one from the 2nd heap into the
�rst, a O(n log n) process. This is much slower than the O(logn) merge
process for the skew heap.

8. No, they will not be.

9. No heapsort is not stable.

10. Left as exercise, just drawing pictures of execution.

11. This will be O(n logn), but in practice not as fast as heap sort.

12. not done

13. The maximum could potentially be any leaf value. Since for a heap with
N nodes there are N=2 leafs, �nding the correct one must be O(N).

14. Not done, but basically a heapify variation.

15. Decrease the priority of a task every time it is executed. Eventually it will
become low priority, and another task will be performed.

16 Chapter 16 { Hash Tables

1. Because the vector index values, computed by taking the hash value and
computing the remainder after dividing by the vector size, would then be
wrong. In particular, both amy and andy would hash into location 3, and
nobody would hash into location 2.

2. Here is the data

29

name hash value bucket if size 5 bucket if size 11
Abel 4 4 4
Aspen 15 0 4
Albert 1 1 1
Amanda 0 0 0
Angela 6 1 6
Andreas 3 3 3
Abigail 8 3 8
Adrian 17 2 6
Alastair 0 0 0
Alexis 4 4 4
Anita 8 3 8
Arthur 19 4 8
Abraham 17 2 6
Adrienne 17 2 6
Angelique 6 1 6
Andrew 3 3 3
Anne 13 3 2
Audrey 3 3 3
Ada 0 0 0
Agnes 13 3 2
Amina 8 3 8
Alaric 0 0 0
Antonia 19 4 8

For 5 buckets we have element counts 5, 3, 3, 8, 4. For 11 buckets we have
element counts 4 1 2 3 3 0 5 0 5 0 0, which seems hardly random.

3. rank * 4 + suit will do it, although this then messes up getting the suit
values.

4. Because the sin function returns a value between 0 and 1, all the index
values would be zero.

5. Left as an exercise.

6. Too many possible answers depending upon the telephone numbers se-
lected.

7. Experiment. Usually works for any group of 24 or more people.

8. The probability that a single person does not have your birthday is 364
365

.
Since the probability of each person not sharing your birthday is the same,
the total probability is 1� (364

365
)24, which is about 0.07.

9. Use the di�erence between the smallest and largest as the counting array
size, then subtract the smallest from each element to get an zero-based
index.

30

10. Go through the array once to �nd the smallest and largest, then build the
counts.

11. Yes, since equal elements will always hash the same, and their relative
positions are always preserved.

12. Because all the values are in order in the �rst bucket already.

13. Because an element may not hash into the same bucket if the table size is
changed.

14. Count the number of elements examined, when the count reaches zero you
know you have examined the entire table.

15. If C is relative prime with the table size it will examine all elements before
it returns to the same location.

16. The clusters are still there, but just not right next to each other.

17. Even though Anne is in the table you cannot �nd it, because you encounter
a null value in the search before you �nd it.

18. All elements would hash into the same bucket.

17 Chapter 17 { Maps

1. Amy could use the name as the map key and the value as the amount
paid.

2. To determine if a map has a value there is no easy way other than to
search the entire map, O(N).

3. lots of answers.

4. Easy to generate the parse trees.

5. The chance of selecting \I do something" is 1/4. The change of selecting
\love" is 1/3. The change of selecting \computer" is 1/4, for a total of
1/48.

6. Here is the chart.

31

get set containsKey removeKey

LinkedList O(n) O(n) O(n) O(n)
SortedVector O(logn) O(n) O(logn) O(n)
SortedList O(n) O(n) O(n) O(n)
SkipList O(logn) O(logn) O(logn) O(logn)
AVLTree O(logn) O(logn) O(logn) O(logn)
OpenHashtable O(1) O(1) O(1) NA

Hashtable O(1) O(1) O(1) O(1)

7. picture

8. picture

9. This can be done by copying the concordance information into a new set
that is ordered by the word counts.

10. Easy to do by reading in another set and doing set operations.

18 Chapter 18 { Sets

1. public void unionWith (Set aSet) f
for (Enumeration e = aSet.elements(); e.hasMoreElements();

)

addElement(e.nextElement());

// inv: all elements from argument now appear in set
g

public boolean subsetOf (Set aSet) f
for (Enumeration e = elements(); e.hasMoreElements();)

if (! aSet.containsElement(e.nextElement()))

// there exists an element in our set
// that is not in argument set
return false;

// all elements from our set are in argument set
return true;

g
2. Just one symbol di�erent from intersectWith:

public void differenceWith (Set aSet) f
Bag removedItems = new LinkedList();

// �nd elements to be removed
Enumeration e;

for (e = elements(); e.hasMoreElements();) f
Object val = e.nextElement();

32

if (aSet.containsElement(val))

removedItems.addElement(val);

g
for (e = removedItems.elements(); e.hasMoreElements();)

removeElement(e.nextElement());

g
3. The chapter in Table 18.1 makes this easier. Should also ask for worst

case, every case, average, etc.

addElement unionWith intersectionWith di�erenceWith subsetOf

LinkedList O(n) O(n2) O(n2) O(n2) O(n2)
SortedVector O(n) O(n2) O(n2) O(n2) O(n2)
SortedList O(n) O(n) O(n) O(n) O(n)
SkipList O(logn) O(n logn) O(n logn) O(n logn) O(n log n)
AVLTree O(logn) O(n logn) O(n logn) O(n logn) O(n log n)
OpenHashtable (1) O(n) O(n) O(n) O(n)
Hashtable (1) O(n) O(n) O(n) O(n)

4. union : 1 2 5 7 12 36 52

intersection : 1 5 12

difference: 2 7

5. It's the union of the two asymmetric di�erences

6. If A is a subset of B then every element in A is in B, and the interseciton
of A and B will at least have all the elements of A. Now assume that the
inter section of A and B is equal to A. Then every element in A must be
in B, and hence A is a subset of B. But this is a very slow way to compute
the subset.

7. Here is the program augmented with invariants
public void differenceWith (Set newSet) f // assumes newSet is sorted

DoubleLink ptr = elementData.firstLink;

Sorted argSet = (Sorted) newSet;

for (Enumeration e = argSet.elements(); e.hasMoreElements();

) f
Object newElement = e.nextElement();

while (true)

if (ptr == elementData.sentinel)

// have seen all elements in set, can quit
break;

else if (test.compare(ptr.value, newElement) < 0)

// element referenced by pointer does not

33

// occur in argument set, and therefore
// should be maintained in the di�erence
ptr = ptr.next;

else f
if (test.compare(newElement, ptr.value) < 0)

// element referenced by pointer
// does not occur in the argument set,
// and therefore should be maintained
// in the di�erence set
break;

// element referenced by pointer is equal
// to element in the argument set,
// and therefore must be removed from
// the di�erence set
DoubleLink rptr = ptr;

ptr = ptr.next;

rptr.remove();

g
// ptr is either at sentinel or
// ptr is larger than current enumeration element
// so enumeration should be advanced.

g
g

8. Here is the code with invariants:
public void intersectWith (Set newSet) f // assumes newSet is sorted

DoubleLink ptr = elementData.firstLink;

Sorted argSet = (Sorted) newSet;

LinkedList intersect = new LinkedList();

for (Enumeration e = argSet.elements(); e.hasMoreElements();

) f
Object newElement = e.nextElement();

// skip smaller elements
while ((ptr != elementData.sentinel) &&

(test.compare(ptr.value, newElement) < 0))

ptr = ptr.next;

// have either reached the sentinel, or
// element is in both sets
// save if in both sets

if ((ptr != elementData.sentinel) &&

ptr.value.equals(newElement))

// element is in both sets, should be
// added to intersection list
intersect.addLast(ptr.value);

34

g
// change elements to intersection

elementData = intersect;

g
9. Very similar to di�erence and union:

public boolean subsetOf (Set newSet) f // assumes newSet is sorted
DoubleLink ptr = elementData.firstLink;

Sorted argSet = (Sorted) newSet;

for (Enumeration e = argSet.elements(); e.hasMoreElements();

) f
Object newElement = e.nextElement();

if (test.compare(newElement, ptr.value) < 0)

// value referenced by ptr is larger than
// enumeration, advance to next enumeration value
break;

if (test.compare(ptr.value, newElement) < 0)

// value referenced by ptr is smaller than
// enumeration, and therefore cannot occur in
// enueration set (since it is sorted).
// found an element not in enumeration set
return false;

// value referenced is equal to enumeration value
// therefore occurs in both sets, advance both
// pointer and enumeration
ptr = ptr.next;

g
// all values occur in argument set, therefore we are
// a subset of argument set
return true;

g

10. The subset relationship is less-than or equal, not less-than. To determine
less-than the comparitor would have to test both subset and equality in
order to determine which answer to give.

11. If there is an element of A not in B then the union will be larger than B.
But this is a slow way to compute subset.

12. If either has an element not in the other then one of the subsets will fail
{ if neither fails they must be equal.

13. Yes, a skip list would be faster, but would require that elements be ordered
and would require a comparator object.

35

14. Finding the root causes the trees to be wider and more shallow. If you
don't �nd the root you can get deeper trees, which may slow down pro-
cessing depending upon the size of the data.

15. Complexity is determined by the number of integers in the set, not by the
number of values that are 1.

16. The hash value would continually change as the bit set changed.

17. No easy way to record more than whether or not the bit is set.

19 Chapter 19 { Matrices

1. element i; j is found at i �m+ j. Notice that the number of rows has no
impact on this calculation.

2. See errata. This question doesn't make sense if Matrix is an interface and
not a class.

3. Not done

4. Simply check if i < j then reverse and ask for element j; i.

5. The key insight is to see that if you examine the middle-middle element,
either it is smaller than the value you see, in which case you have elimi-
nated the entire upper left quadrant, or it is larger than the element you
seek, in which case you have eliminated the entire lower right quandrant.
However, you know nothing about the other three quandrants. Still, this
can be used to �nd a fast algorithm. Simply make three recursive calls,
and report true if any of them o�er success.

20 Chapter 20 { Graphs

1. Every vertex must have at least one edge, so O(n) is a lower bound.

2. Using a matrix it is O(1). Using an edge list it could be as bad as O(N).
Using a sparse matrix could be O(logn).

3.

0. 1. 2. 3. 4. 5. 6.
0. 0 1 1 0 0 0 0
1. 1 0 0 1 0 0 0
2. 1 0 0 0 1 0 1
3. 0 1 0 0 1 1 0
4. 0 0 1 1 0 1 0
5. 0 0 0 1 1 0 1
6. 0 0 1 0 0 1 0

36

4. 0: edges to 1 and 2
1: edges to 0 and 3
2: edges to 0, 4 and 6
3: edges to 1, 4 and 5
4: edges to 2, 3 and 5
5: edges to 3, 4 and 6
6: edges to 2 and 5

5. Since very subscript is potentially O(logn), then time time would be
O(n2 log n). Uses at most O(n2) space.

6. If there is a loop, snip it out and there is still a path.

7. The question is ambiguous if you don't specify a starting vertex. assume
we start in Pendleton. 1. Pendelton, 2. Phonix, 3. Pittsburg, 4. Pen-
sacola, 5. Peroria, 6. Peueblo, 7. Pierre

8. The assumption is that the elements of the set can be tested in O(1) time.

9. Similar to earlier question.

10. Not done

11. This information can be copied from Table 20.1

12. Yes, the speed with which you can perform the containsKey operation will
impact the running time. But speeding up this operations would require
that WVertices be ordered, something they are not in this version.

13. Assign letters A to E to the vertices starting from the upper left and
moving clockwise. Start from vertex A. Dijkstras algorithm will then
travel from A to B, listing the cost of reaching vertex B as 10. It will
then travel from B to C, and from C to D, yielding costs of 11 and 12,
respectively. It is only then that it will travel from A to E (cost 14), and
�nally from E to B. The latter results in a path with cost 8, which is less
than the previous cost for a path from A to B. So not only is the previously
recorded cost of the path from A to B wrong, but so are the costs of the
paths from A to C and from A to D.

14. Many possible answers

15. Start from a node, and move along edges. If the graph contains n nodes,
then in n steps you must either �nd a node you have visited (therefore the
graph has cycles) or a node with no successor (therefore there is a node
with no edges).

16. O(n logn)

17. Many possible answers.

37

