
Chapter 1

Thinking Object Oriented

Object-oriented programming has become exceedingly popular in the past few years. Soft-
ware producers rush to release object-oriented versions of their products. Countless books
and special issues of academic and trade journals have appeared on the subject. Students
strive to be able somehow to list \experience in object-oriented programming" on their re-
sumes. To judge from this frantic activity, object-oriented programming is being greeted
with an even greater popularity than we have seen in the past heralding earlier revolutionary
ideas, such as \structured programming" or \expert systems".

My intent in this �rst chapter is to investigate and explain the basic principles of object
oriented programming, and in doing so to illustrate the following two propositions:

� OOP is a revolutionary idea, totally unlike anything that has come before in program-
ming.

� OOP is an evolutionary step, following naturally on the heels of earlier programming
abstractions.

1.1 Why is Object-Oriented Programming Popular?

To judge from much of the popular press, the following represent a few of the possible
reasons why Object-oriented programming has, in the past decade, become so popular:

� The hope that it will quickly and easily lead to increased productivity and improved
reliability (help solve the software crises).

� The desire for an easy transition from existing languages.

� The resonant similarity to techniques of thinking about problems in other domains.

1

2 CHAPTER 1. THINKING OBJECT ORIENTED

Object-Oriented programming is just the latest in a long series of solutions that have been
proposed to help solve the \software crises". At heart, the software crises simply means that
our imaginations, and the tasks we would like to solve with the help of computers, almost
always nearly outstrip our abilities.

But, while object-oriented techniques do facilitate the creation of complex software sys-
tems, it is important to remember that OOP is not a \silver bullet", (a term made popular
by Fred Brooks [Brooks 87]). Programming a computer is still one of the most di�cult
tasks ever undertaken by humankind; becoming pro�cient in programming requires talent,
creativity, intelligence, logic, the ability to build and use abstractions, and experience { even
when the best of tools are available.

I suspect another reason for the particular popularity of languages such as C++ and
Object Pascal (as opposed to languages such as Smalltalk and Beta) is that managers and
programmers alike hope that a C or Pascal programmer can be changed into a C++ or
Object Pascal programmer with no more e�ort than the addition of two characters to the
programmer's job title. Unfortunately, this hope is a long way from being realized. Object-
Oriented programming is a new way of thinking about what it means to compute, about how
we can structure information inside a computer. To become pro�cient in object-oriented
techniques requires a complete reevaluation of traditional software development techniques.

1.2 Language and Thought

\Human beings do not live in the objective world alone, nor alone in the world
of social activity as ordinarily understood, but are very much at the mercy of
the particular language which has become the medium of expression for their
society. It is quite an illusion to imagine that one adjusts to reality essentially
without the use of language and that language is merely an incidental means of
solving speci�c problems of communication or re
ection. The fact of the matter
is that the `real world' is to a large extent unconsciously built up on the language
habits of the group.... We see and hear and otherwise experience very largely as
we do because the language habits of our community predispose certain choices
of interpretation."

Edward Sapir (quoted in [Whorf 56])

This quote emphasizes the fact that the languages we speak in
uence directly the way in
which we view the world. This is true not only for natural languages, such as the kind studied
by the early 20th century American linguists Edward Sapir and Benjamin Lee Whorf, but
also for arti�cial languages such as those we use in programming computers.

1.2.1 Eskimos and Snow

An almost universally cited example of the phenomenon of languages in
uencing thought,
although also an erroneous one (see [Pullum 91]) is the \fact" that Eskimo (or Inuit) lan-

1.2. LANGUAGE AND THOUGHT 3

guages have many words to describe various types of snow { wet,
u�y, heavy, icy, and so
on. This is not surprising. Any community with common interests will naturally develop a
specialized vocabulary for concepts they wish to discuss.

What is important is to not over generalize the conclusion we can draw from this simple
observation. It is not that the Eskimo eye is in any signi�cant respect di�erent from my
own, or that Eskimos can see things that I can not perceive. With time and training I could
do just as well at di�erentiating types of snow. But the language I speak (namely, English)
does not force me into doing so, and so it is not natural to me. A di�erent language (such
as Inuktitut) thus can lead one (but does not require one) to view the world in a di�erent
fashion.

To make e�ective use of object oriented principles requires one to view the world in a new
fashion. But simply using an object oriented language (such as C++) does not, by itself,
force one to become an object oriented programmer. While the use of an object oriented
language will simplify the development of object oriented solutions, it is true, as it has been
quipped, that \FORTRAN programs can be written in any language."

1.2.2 An Example from Computer Languages

The relationship we noted between language and thought for natural human languages is
even more pronounced in the realm of arti�cial computer languages. That is, the language
in which a programmer thinks a problem will be solved will color and alter, in a basic
fundamental way, the fashion in which an algorithm is developed.

An example will help illustrate this relationship between computer language and problem
solution. Several years ago a student working in genetic research was faced with a task
involved in the analysis of DNA sequences. The problem could be reduced to a relatively
simple form. The DNA is represented as a vector of N integer values, where N is very large
(on the order of tens of thousands). The problem was to discover whether any pattern of
length M, where M was a �xed and small constant (say �ve or ten) is ever repeated in the
vector of values.

ACTCGGATCTTGCATTTCGGCAATTGGACCCTGACTTGGCCA ...

The programmer dutifully sat down and wrote a simple and straightforward FORTRAN
program, something like the following:

DO 10 I = 1, N-M

DO 10 J = 1, N-M

FOUND = .TRUE.

DO 20 K = 1, M

20 IF X[I+K-1] .NE. X[J+K-1] THEN FOUND = .FALSE.

IF FOUND THEN ...

10 CONTINUE

4 CHAPTER 1. THINKING OBJECT ORIENTED

The student was somewhat disappointed when trial runs indicated his program would
need signi�cantly many hours to complete. He discussed his problem with a second student,
who happened to be pro�cient in the programming language APL. The second student
said that she would like to try writing a program for this problem. The �rst student was
dubious. After all, FORTRAN was known to be one of the most \e�cient" programming
languages. It was compiled, after all, and APL was only interpreted. Therefore it was with
a certain amount of incredulity that he discovered the APL programmer was able to write
an algorithm that worked in a matter of minutes, not hours.

What the APL programmer had done was to rearrange the problem. Rather than work-
ing with a vector of N elements, she reorganized the data into a matrix with roughly N
rows and M columns:

A C T C G G positions 1 to M
C T C G G A positions 2 to M + 1
T C G G A T positions 3 to M + 2
C G G A T T positions 4 to M + 3
G G A T T C positions 5 to M + 4
G A T T C T positions 6 to M + 5

. . .
T G G A C C
G G A C C C

. . .

The APL programmer then sorted this matrix by rows. If any pattern was repeated,
then two adjacent rows in the sorted matrix would have identical values.

. . .
T G G A C C
T G G A C C

. . .

It was a trivial matter to check for this condition. The reason the APL program was
faster had nothing to do with the speed of APL versus FORTRAN, but was simply because
the FORTRAN program employed an algorithm that was O(M �N2), whereas the sorting
solution used by the APL programmer required approximately O(M �N logN) operations.

The point of this story is not to indicate that APL is in any way a \better" programming
language than FORTRAN, but to ask why it was that the APL programmer was naturally
led to discover a better solution. The reason, in this case, is that loops are very di�cult
to write in APL, whereas sorting is trivial; it is a built-in operator de�ned as part of the
language. Thus, because the operation is so easy to perform, good APL programmers tend
to look for novel applications for sorting. It is in this manner that the programming language
in which the solution is to be written directs the programmer's mind to view the problem
in one fashion or another.

1.2. LANGUAGE AND THOUGHT 5

1.2.3 Church's Conjecture and the Sapir-Whorf Hypothesis

The assertion that the language in which an idea is expressed can in
uence or direct a line
of thought is relatively easy to believe. It should be noted, however, a stronger conjec-
ture, known in linguistics as the Sapir-Whorf hypothesis, goes much further and remains
controversial [Pullum 91].

The Sapir-Whorf hypothesis asserts that it may be possible for an individual working
in one language to imagine thoughts or utter ideas which cannot in any way be translated,
cannot even be understood, by individuals operating in a di�erent linguistic framework.
According to advocates of the hypothesis, this can occur when the language of the second
individual has no equivalent words, and lacks even concepts or categories for the ideas
involved in the thought. It is interesting to compare this idea with an almost directly
opposite concept from computer science, namely Church's conjecture.

Starting in the 1930's and on through the 40's and 50's there was a great deal of
interest within the mathematical and nascent computing community in a variety of for-
malisms that could be used for the calculation of functions. Examples include the notations
proposed by Church [Church 36], Post [Post 36], Markov [Markov 51], Turing [Turing 36],
Kleene [Kleene 36] and others. Over time a number of arguments were put forth to demon-
strate that many of these systems could be used in the simulation of others. Often, for a
pair of systems, such arguments could be made in both directions; e�ectively showing that
the systems were identical in computation power. The sheer number of such arguments lead
the logician Alonzo Church to pronounce a conjecture that is now associated with his name:

Church's Conjecture: Any computation for which there exists an e�ective
procedure can be realized by a Turing machine.

By nature this conjecture must remain unproven and unprovable, since we have no
rigorous de�nition of the term \e�ective procedure." Nevertheless, no counterexample has
yet been found, and the weight of evidence seems to favor a�rmation of this claim.

Acceptance of Church's conjecture has an important and profound implication for the
study of programming languages. Turing machines are wonderfully simple mechanisms,
and it does not require many features in a language in order to be able to simulate such
a device. In the 1960's, for example, it was demonstrated that a Turing machine could
be emulated in any language that possessed at least a conditional statement and a looping
construct [B�ohm 66]. (This greatly misunderstood result was the major ammunition used
to \prove" that the infamous goto statement was unnecessary.)

If we accept Church's conjecture, then any language in which it is possible to simulate
a Turing machine is su�ciently powerful to perform any realizable algorithm. (To solve
a problem, �nd the Turing machine that produces the desired result, which by Church's
conjecture must exist, then simulate the execution of the Turing machine in your favorite
language). Thus, arguments about the relative \power" of programming languages, if by
power we mean \ability to solve problems," are generally vacuous. The late Alan Perlis had

6 CHAPTER 1. THINKING OBJECT ORIENTED

a term for such arguments, calling them a \Turing Tarpit," since they are often so di�cult
to extricate oneself from, and so fundamentally pointless.

Note that Church's conjecture is, in a certain sense, almost the exact opposite of the
Sapir-Whorf hypothesis. Church's conjecture states that in a fundamental fashion all pro-
gramming languages are identical. Any idea that can be expressed in one language can, in
theory, be expressed in any language. The Sapir-Whorf hypothesis, you will recall, claimed
that it was possible for ideas to be expressed in one language that could not be expressed
in another.

Many linguists reject the Sapir-Whorf hypothesis and instead adopt a sort of \Turing-
equivalence" for natural languages. By this we mean that, with a su�cient amount of work,
any idea can be expressed in any language. For example, while the language spoken by a
native of a warm climatemay not make it instinctive to examine a �eld a snow and categorize
it with respect to di�erent types or uses, with time and training it certainly can be learned.
Similarly, object-oriented techniques do not provide any new computational power which
permits problems to be solved that cannot, in theory be solved by other means. But object-
oriented techniques do make it easier and more natural to address problems in a fashion
that tends to favor the management of large software projects.

Thus, for both computer and natural languages it is the case that the language will direct
thoughts, but cannot proscribe thoughts.

1.3 A New Paradigm

Object-oriented programming is often referred to as a new programming paradigm. Other
programmingparadigms sometimesmentioned include the imperative-programmingparadigm
(languages such as Pascal or C), the logic programmingparadigm (Prolog), and the functional-
programming paradigm (FP or Haskell).

It is interesting to examine the de�nition of the word \paradigm": The following is from
the American Heritage Dictionary of the English Language:

par a digm n. 1. A list of all the in
ectional forms of a word taken as
an illustrative example of the conjugation or declension to which it belongs. 2.
Any example or model. [Late Latin parad��gma, from Greek paradeigma, model,
from paradeiknunai, to compare, exhibit.]

At �rst blush, the conjugation or declension of Latin words would seem to have little
to do with computer programming languages. To understand the connection, we must note
that the word was brought back into the modern vocabulary through an in
uential book
called The Structure of Scienti�c Revolutions, authored by the historian of science Thomas
Kuhn [Kuhn 70]. Kuhn used the term in the second form, to describe a set of theories,
standards and methods that together represent a way of organizing knowledge; that is, a
way of viewing the world. Kuhn's thesis was that revolutions in science occurred when an
older paradigm was reexamined, rejected and replaced by another.

1.4. A WAY OF VIEWING THE WORLD 7

It is in this sense, as a model or example, and as an organizational approach, that Robert
Floyd used the term in his 1979 ACM Turing Award lecture [Floyd 79], which was titled
\The Paradigms of Programming". A programming paradigm is a way of conceptualizing
what it means to perform computation, and how tasks that are to be carried out on a
computer should be structured and organized.

Although new to computation, the organizing technique that lies at the heart of object-
oriented programming can be traced back through the history of science in general at least
as far as Linn�us (1707-1778), if not even further back to the Greek philosopher Plato.
Paradoxically, the style of problem solving embodied in the object-oriented technique is
frequently the method used to address problems in everyday life. Thus, computer novices
are often able to grasp the basic ideas of object-oriented programming easily, whereas those
people who are more computer literate are often blocked by their own preconceptions. Alan
Kay, for example, found that it was usually easier to teach Smalltalk to children than to
computer professionals [Kay 77].

In trying to understand exactly what is meant by the term object-oriented programming,
it is perhaps useful to examine the idea from several alternative perspectives. The next few
sections outline three di�erent aspects of object-oriented programming; each illustrates a
particular reason why this technique should be considered an important new tool.

1.4 A Way of Viewing the World

To illustrate some of the major ideas in object-oriented programming, let us consider �rst
how we might go about handling a real-world situation, and then ask how we could make
the computer more closely model the techniques employed.

Suppose I wish to send some
owers to my grandmother (who is named Elsie) for her
birthday. She lives in a city many miles away, so the possibility of my picking the
owers
and carrying them myself to her door is out of the question. Nevertheless, sending her the

owers is a task easy enough to do; I merely go down to my local
orist (who happens to be
named Flo), describe the kinds and numbers of
owers I want sent, and my grandmother's
address, and I can be assured the
owers will be delivered expediently and automatically.

1.4.1 Agents, Responsibility, Messages and Methods

At the risk of belaboring a point, let me emphasize that the mechanism I used to solve
my problem was to �nd an appropriate agent (namely Flo), and to pass to her a message

containing my request. It is the responsibility of Flo to satisfy my request. There is some
method { that is, some algorithm or set of operations { used by Flo to do this. I do not
need to know the particular method Flo will use to satisfy my request; indeed, often I do
not want to know the details. This information is usually hidden from my inspection.

If I investigated, however, I might discover that Flo delivers a slightly di�erent message
to another
orist in my grandmother's city. That
orist, in turn, makes the arrangement

8 CHAPTER 1. THINKING OBJECT ORIENTED

and passes it, along with yet another message, to a delivery person, and so on. In this
manner my request is �nally satis�ed by a sequence of requests from one agent to another.

So our �rst principle of object-oriented problem solving is the vehicle by which activities
are initiated:

Action is initiated in object-oriented programming by the transmission of a
message to an agent (an object) responsible for the action. The message encodes
the request for an action, and is accompanied by any additional information (ar-
guments) needed to carry out the request. The receiver is the agent to whom the
message is sent. If the receiver accepts the message, it accepts the responsibility
to carry out the indicated action. In response to a message, the receiver will
perform some method to satisfy the request.

We have noted the important principle of information hiding in regard to message passing
{ that is, the client sending the request need not know the actual means by which the
request will be honored. There is another principle, all too human, that we can also observe
is implicit in message passing. That principle is, if there is a task to perform, the �rst
thought of the client is to �nd somebody else whom it can ask to do the work. It is
interesting to note the degree to which this second reaction will often become atrophied in
many programmers with extensive experience in using conventional techniques. Frequently,
a di�cult hurdle to overcome is the idea in the programmers mind that he or she must
write everything themselves, and not use the services of others. An important part of
object-oriented programming is the development of reusable components, and an important
�rst step in the use of reusable components is a willingness to use an already developed
component.

Information hiding is also an important aspect of programming in conventional lan-
guages. In what sense is a message di�erent from, say, a procedure call? In both cases,
there is a set of well-de�ned steps that will be initiated following the request.

There are two important distinctions. The �rst is that in a message there is a designated
receiver for that message; the receiver is some agent to whom the message is sent. In a
procedure call, there is no designated receiver. (Although we could adapt a convention of,
for example, always calling the �rst argument to a procedure the receiver, something that
is very close to how receivers are actually implemented.)

The second is that the interpretation of the message (that is, the method used to respond
to the message) is dependent on the receiver, and can vary with di�erent receivers. I can
give exactly the same message to my wife Beth, for example, and she will understand the
message and a satisfactory outcome will be produced (that is,
owers will be delivered to
my grandmother). However, the method Beth uses to satisfy the request (in all likelihood,
simply passing the request on to Flo), will be di�erent from that performed by Flo in
response to the same request. If I ask Ken, my dentist, to send
owers to my grandmother,
I probably would be making an error, since Ken may not have a method for solving that
problem. If he understood the request at all, he would probably issue an appropriate error
diagnostic.

1.4. A WAY OF VIEWING THE WORLD 9

Let us move our discussion back to the level of computers and programs. There, the
distinction between message passing and procedure calling is that, in message passing, there
is a designated receiver, and the interpretation { that is, the selection of a method to execute
in response to the message { may vary with di�erent receivers. Usually, the speci�c receiver
for any given message will not be known until run time, so the determination of which
method to invoke cannot be made until then. Thus, we say there is late binding between
the message (function or procedure name) and the code fragment (method) used to respond
to the message. This situation is in contrast to the very early (compile-time or link-time)
binding of name to code fragment in conventional procedure calls.

1.4.2 Responsibilities

A fundamental concept in object-oriented programming is to describe behavior in terms of
responsibilities. My request for action indicates only the desired outcome (
owers for my
grandmother). The
orist is free to pursue any technique that achieves the desired objective,
and is not hampered by interference on my part.

By discussing a problem in terms of responsibilities we increase the level of abstraction.
This permits greater independence between agents, a critically important factor in solving
complex problems. In Chapter 2 we will investigate in more detail how we can use an
emphasis on responsibility to drive the software design process. The entire collection of
responsibilities associated with an object is often described by the term protocol.

The di�erence between viewing software in traditional structured terms and viewing
software in an object-oriented perspective can be summarized by a twist on a well-known
quote:

\Ask not what you can do to your data structures,
but rather ask what your data structures can do for you"

1.4.3 Classes and Instances

Although I have only dealt with Flo a few times in the past, I have a rough idea of the
behavior I can expect when I go into her shop and present her with my request. I am able
to make certain assumptions because I have some information about
orists in general, and
I expect that Flo, being an instance of this category, will �t the general pattern. We can
use the term Florist to represent the category (or class) of all
orists. Let us incorporate
these notions into our second principle of object-oriented programming:

All objects are instances of a class. The method invoked by an object in
response to a message is determined by the class of the receiver. All objects of
a given class use the same method in response to similar messages.

One current problem in the object-oriented community is the proliferation of di�erent
terms for similar ideas. Thus, a class is known in Object Pascal as an object type, and a

10 CHAPTER 1. THINKING OBJECT ORIENTED

ancestor class (which we will describe shortly), is known as a superclass or parent class, and
so on. The glossary at the end of this book should be of some help with unusual terms. We
will use the convention, common in object-oriented languages, of always designating classes
by a name beginning with an uppercase letter. Although commonly used, this convention
is not enforced by most language systems.

1.4.4 Class Hierarchies { Inheritance

There is more information I have about Flo { not necessarily because she is a
orist, but
because she is a shopkeeper. I know, for example, that I probably will be asked for money
as part of the transaction, and in return for payment I will be given a receipt. These actions
are true of grocers, of stationers, and of other shopkeepers. Since the category Florist is a
more specialized form of the category Shopkeeper, any knowledge I have of Shopkeepers
is also true of Florists, and hence of Flo.

One way to think about how I have organized my knowledge of Flo is in terms of a
hierarchy of categories (see Figure 1.1). Flo is a Florist, but Florist is a specialized form
of Shopkeeper. Furthermore, a Shopkeeper is also a Human; so I know, for example,
that Flo is probably bipedal. A Human is a Mammal (therefore they nurse their young),
and aMammal is anAnimal (therefore it breathes oxygen), and anAnimal is aMaterial

Object (therefore it has mass and weight). Thus, there is quite a lot of knowledge I have
that is applicable to Flo that is not directly associated with her, or even with her category
Florist.

The principle that knowledge of a more general category is applicable also to the more
speci�c category is called inheritance. We say that the class Florist will inherit attributes
of the class (or category) Shopkeeper.

There is an alternative graphical technique that is often used to illustrate this relation-
ship, particularly when there are many individuals with di�ering lineage's. This technique
shows classes listed in a hierarchical tree-like structure, with more abstract classes (such as
Material Object or Animal) listed near the top of the tree, and more speci�c classes,
and �nally individuals, listed near the bottom. Figure 1.2 shows this class hierarchy for Flo.
This hierarchy also includes Beth, my dog Flash, Phyl the platypus who lives at the zoo,
and the
owers themselves that I am sending to my grandmother.

Information that I possess about Flo because she is an instance of class Human is also
applicable to my wife Beth, for example. Information that I have about her because she
is a Mammal is applicable to Flash as well. Information about all members of Material

Object is equally applicable to Flo and to her
owers. We capture this in the idea of
inheritance:

Classes can be organized into a hierarchical inheritance structure. A child

class (or subclass) will inherit attributes from a parent class higher in the tree.
An abstract parent class is a class (such asMammal) that is used only to create
subclasses, for which there are no direct instances.

1.4. A WAY OF VIEWING THE WORLD 11

'

&

$

%

Material Object

'

&

$

%

Animal

'

&

$

%

Mammal

'

&

$

%

Human'

&

$

%

Shopkeeper

'

&

$

%

Florist

Flo

Figure 1.1: The categories surrounding Flo

12 CHAPTER 1. THINKING OBJECT ORIENTED

Material Objects
������������

Animal Plant

Mammal Flower

Dog Human Platypus

HHHHHHHHHHHH

Shopkeeper Artist Dentist

�
�

��

@
@
@@

XXXXXXXXXXXXXX

�
�

��

B
B
BB

HHHHHHH

Florist Potter

Flash Flo Beth Ken Phyl grandma's
owers

Figure 1.2: A class hierarchy for various material objects

1.4.5 Method Binding, Overriding and Exceptions

Phyl the platypus presents a problem for our simple organizing structure. I know that
mammals give birth to live children, for example, and Phyl is certainly a Mammal, and yet
Phyl (or rather his mate, Phyllis) continues to lay eggs. To accommodate this, we need to
�nd a technique to encode exceptions to a general rule.

We do this by decreeing that information contained in a subclass can override information
inherited from a parent class. Most often, implementations of this approach takes the form
of a method in a subclass having the same name as a method in the parent class, combined
with a rule for how the search for a method to match a speci�c message is conducted:

The search to �nd a method to invoke in response to a given message begins

1.4. A WAY OF VIEWING THE WORLD 13

with the class of the receiver. If no appropriate method is found, the search is
conducted in the parent class of this class. The search continues up the parent
class chain until either a method is found, or the parent class chain is exhausted.
In the former case the method is executed; in the latter case, an error message
is issued.

If methods with the same name can be found higher in the class hierarchy,
the method executed is said to override the inherited behavior.

Even if the compiler cannot determine which method will be invoked at run time, in many
object-oriented languages it can determine whether there will be an appropriate method and
issue an error message as a compile-time error diagnostic, rather than as a run time message.
We will discuss the mechanism for overriding in various computer languages in Chapter 11.

That my wife Beth and my
orist Flo will respond to mymessage by performing di�erent
methods is an example of one form of polymorphism. We will discuss this important part of
object-oriented programming in Chapter 14. As we explained, that I do not, and need not,
know exactly what method Flo will use to honor my message is an example of information

hiding, which we will discuss in Chapter 17.

1.4.6 Summary of Object-Oriented Concepts

Alan Kay, considered by some to be the father of object-oriented programming, has identi�ed
the following characteristics as fundamental to OOP: [Kay 93]

1. Everything is an object.

2. Computation is performed by objects communicating with each other, requesting that
other objects perform actions. Objects communicate by sending and receiving mes-

sages. A message is a request for action bundled with whatever arguments may be
necessary to complete the task.

3. Each object has its own memory, which consists of other objects.

4. Every object is an instance of a class. A class simply represents a grouping of similar
objects, such as integers, or lists.

5. The class is the repository for behavior associated with an object. That is, all objects
that are instances of the same class can perform the same actions.

6. Classes are organized into a singly-rooted tree structure, called the inheritance hier-

archy. Memory and behavior associated with instances of a class are automatically
available to any class associated with a descendent in this tree structure.

14 CHAPTER 1. THINKING OBJECT ORIENTED

&%
'$
���� &%
'$
����

a[1]: a[2]: a[3]: a[4]:

4 6 2 4

x:

47

i: j:

2 3

Figure 1.3: Visualization of Imperative Programming

1.5 Computation as Simulation

The view of programming that is represented by the example of sending
owers to my
grandmother is very di�erent from the conventional conception of a computer. The tradi-
tional model describing the behavior of a computer executing a program is a process-state

or pigeon-hole model. In this view, the computer is a data manager, following some pattern
of instructions, wandering through memory, pulling values out of various slots (memory
addresses), transforming them in some manner, and pushing the results back into other
slots (see Figure 1.3). By examining the values in the slots, we can determine the state
of the machine or the results produced by a computation. Although this model may be a
more or less accurate picture of what takes place inside a computer, it does little to help us
understand how to solve problems using the computer, and it is certainly not the way most
people (pigeon handlers and postal workers excepted) go about solving problems.

In contrast, in the object-oriented framework, we never mentioned memory addresses or
variables or assignments or any of the conventional programming terms. Instead, we spoke
of objects, messages, and responsibility for some action. In Dan Ingalls memoriable phrase:

\Instead of a bit-grinding processor...plundering data structures, we have a
universe of well-behaved objects that courteously ask each other to carry out
their various desires" [Ingalls 81].

Another author has described object-oriented programming as \animistic;" a process

1.5. COMPUTATION AS SIMULATION 15

of creating a host of helpers that forms a community and assists the programmer in the
solution of a problem [Actor 87].

This view of programming as creating a \universe" is in many ways similar to a style
of computer simulation called \discrete event-driven simulation." In brief, in a discrete
event-driven simulation, the user creates computer models of the various elements of the
simulation, describes how they will interact with one another, and sets them moving. This
is almost identical to the average object-oriented program, in which the user describes what
the various entities in the universe for the program are, and how they will interact with one
another, and �nally sets them in motion. Thus, in object-oriented programming, we have
the view that computation is simulation [Kay 77].

1.5.1 The Power of Metaphor

An easily overlooked bene�t to the use of object-oriented techniques is the power ofmetaphor.
When programmers think about problems in terms of behaviors and responsibilities of ob-
jects, they bring with them a wealth of intuition, ideas, and understanding from their
everyday experience. When computing is thought of in terms of pigeon-holes, mailboxes, or
slots containing values, there is little in the average programmer's background to provide
an intuitive insight into how problems should be structured.

Although anthropomorphic descriptions such as the quote by Ingalls given previously
may strike some people as odd, in fact they are a re
ection of the great expositive power
of metaphor. Journalists make use of the power of metaphor every day, as in the following
description of object-oriented programming, from the news magazine Newsweek:

\Unlike the usual programming method { writing software one line at a time
{ NeXT's `object-oriented' system o�ers larger building blocks that developers
can quickly assemble the way a kid builds faces on Mr. Potato Head."

It is possibly this feature, more than any other, that is responsible for the frequently ob-
served phenomenon that it is often easier to teach object-oriented programming concepts to
computer novices than to computer professionals. Novice users quickly adapt the metaphors
with which they are already comfortable from their everyday life, whereas seasoned computer
professionals are blinded by an adherence to more traditional ways of viewing computation.

1.5.2 Avoiding In�nite Regress

Of course, objects cannot always respond to a message by politely asking another object to
perform some action. The result would be an in�nite circle of requests, like two gentlemen
each politely waiting for the other to go �rst before entering a doorway, or like a bureaucracy
of paper pushers, each passing on all papers to some other member of the organization. At
some point, at least a few objects need to perform some work other than passing on requests
to other agents. This work is accomplished di�erently in various object-oriented languages.

16 CHAPTER 1. THINKING OBJECT ORIENTED

In blended object-oriented/imperative languages, such as C++, Object Pascal, and
Objective-C, it is accomplished by methods written in the base (non-object-oriented) lan-
guage. In pure object-oriented languages, such as Smalltalk or Java, it is accomplished by
the introduction of \primitive" or \native" operations that are provided by the underlying
system.

1.6 Coping with Complexity

When computing was in its infancy, most programs were written in assembly language,
by a single individual, and would not be considered large by today's standards. Even
so, as programs became more complex, programmers found that they had a di�cult time
remembering all the information they needed to know in order to develop or debug their
software. Which values were contained in what registers? Did a new identi�er name con
ict
with any other previously de�ned name? What variables needed to be initialized before
control could be transferred to another section of code?

The introduction of higher-level languages, such as Fortran, Cobol and Algol, solved
some di�culties (such as automatic management of local variables, and implicit matching
of arguments to parameters), while simultaneously raising people's expectations of what a
computer could do in a manner that only introduced yet new problems. As programmers
attempted to solve ever more complex problems using a computer, tasks exceeding in size
the grasp of even the best programmers became the norm. Thus, teams of programmers
working together to undertake major programming e�orts became commonplace.

1.6.1 The Nonlinear Behavior of Complexity

As programming projects became larger, an interesting phenomenon was observed. A task
that would take one programmer 2 months to perform could not be accomplished by two
programmers working for 1 month. In Fred Brooks's memorable phrase, \the bearing of a
child takes nine months, no matter how many women are assigned to the task" [Brooks 75].

The reason for this nonlinear behavior was complexity { in particular, the intercon-
nections between software components were complicated, and large amounts of information
had to be communicated among various members of the programming team. Brooks further
said:

\Since software construction is inherently a systems e�ort { an exercise in
complex interrelationships { communication e�ort is great, and it quickly domi-
nates the decrease in individual task time brought about by partitioning. Adding
more men then lengthens, not shortens, the schedule" [Brooks 75].

What brings about this complexity? It is not simply the sheer size of the tasks un-
dertaken, because size by itself would not be a hindrance to partitioning each into several
pieces. The unique feature of software systems developed using conventional techniques that

1.6. COPING WITH COMPLEXITY 17

makes them among the most complex systems developed by people is their high degree of
interconnectedness. Interconnectedness means the dependence of one portion of code on
another section of code.

Consider that any portion of a software system must be performing an essential task, or
it would not be there. Now, if this task is useful to the other parts of the program, there
must be some communication of information either into or out of the component under
consideration. Because of this, a complete understanding of what is going on requires a
knowledge both of the portion of code we are considering and the code that uses it. In
short, an individual section of code cannot be understood in isolation.

1.6.2 Abstraction Mechanisms

Programmers have had to deal with the problem of complexity for a long time in the history
of computer science. To understand more fully the importance of object-oriented techniques,
we should review the variety of mechanisms programmers have used to control complexity.
Chief among these is abstraction, the ability to encapsulate and isolate design and execution
information. In one sense, object-oriented techniques are not revolutionary at all, but can be
seen to be a natural outcome of a long historical progression from procedures, to modules,
to abstract data types and �nally to objects.

Procedures

Procedures and functions were one of the �rst abstraction mechanisms to be widely used in
programming languages. Procedures allowed tasks that were executed repeatedly, or were
executed with only slight variations, to be collected in one place and reused, rather than
the code being duplicated several times. In addition, the procedure gave the �rst possibility
for information hiding. One programmer could write a procedure, or a set of procedures,
that were used by many others. The other programmers did not need to know the exact
details of the implementation - they needed only the necessary interface. But procedures
were not an answer to all problems. In particular, they were not an e�ective mechanism
for information hiding, and they only partially solved the problem of multiple programmers
making use of the same names.

Example { A Stack

To illustrate these problems, we can consider a programmer who must write a set of routines
to implement a simple stack. Following good software engineering principles, our program-
mer �rst establishes the visible interface to his or her work { say, a set of four routines:
init, push, pop, and top. She then selects some suitable implementation technique. Here,
there are many choices, such as an array with a top-of-stack pointer, a linked list, and so
on. Our intrepid programmer selects from among these choices, then proceeds to code the
utilities, as shown in Figure 1.4.

18 CHAPTER 1. THINKING OBJECT ORIENTED

int datastack[100];

int datatop = 0;

void init()

f
datatop = 0;

g

void push(int val)

f
datastack [datatop++] = val;

g

int top()

f
return datastack [datatop - 1];

g

int pop()

f
return datastack [--datatop];

g

Figure 1.4: Failure of procedures in information hiding

It is easy to see that the data contained in the stack itself cannot be made local to any
of the four routines, since they must be shared by all. But if the only choices are local
variables or global variables (as they are in FORTRAN, or in C prior to the introduction
of the static modi�er), then the stack data must be maintained in global variables. But if
the variables are global, then there is no way to limit the accessibility or visibility of these
names. For example, if the stack is represented in an array named datastack, this fact
must be made known to all the other programmers, since they may want to create variables
using the same name and should be discouraged from doing so. This is true even though
these data values are important to only the stack routines, and should not have any use
outside of these four procedures. Similarly, the names init, push, pop, and top are now
reserved, and cannot be used in other portions of the program for other purposes, even if
those sections of code have nothing to do with the stack routines.

1.6. COPING WITH COMPLEXITY 19

Block Scoping

The block scoping mechanism of Algol and its successors, such as Pascal, o�ers slightly
more control over name visibility than does a simple distinction between local and global
names. At �rst, we might be tempted to hope that this ability would solve the information-
hiding problem. Unfortunately, it does not. Any scope that permits access to the four
named procedures must also permit access to their common data. To solve this problem, a
di�erent structuring mechanism had to be developed.

begin

var

datastack : array [1 .. 100] of integer;

datatop : integer;

procedure init;

...

procedure push(val : integer);

...

function pop : integer;

...

...

end;

Modules

In one sense, modules can be viewed simply as an improved technique for creating and
managing collections of names and their associated values. Our stack example is typical,
in that there is some information (the interface routines) that we want to be widely and
publicly available, whereas there are other data values (the stack data themselves) that we
want restricted. Stripped to its barest form, a module provides the ability to divide a name
space into two parts. The public part is accessible outside the module, whereas the private
part is accessible only within the module. Types, data (variables) and procedures can all
be de�ned in either portion.

David Parnas, who popularized the notion of modules, described (in [Parnas 72]) the
following two principles for their proper use:

1. One must provide the intended user with all the information needed to use the module
correctly, and with nothing more.

2. One must provide the implementor with all the information needed to complete the
module, and nothing more.

20 CHAPTER 1. THINKING OBJECT ORIENTED

The philosophy is much like the military doctrine of \need to know;" if you do not need
to know some information, you should not have access to it. This explicit and intentional
concealment of information is known as information hiding.

Modules solve some, but not all, of the problems of software development. For example,
modules will permit our programmer to hide the implementation details of her stack, but
what if the other users want to have two (or more) stacks?

As a more extreme example, suppose a programmer announces that she has developed a
new type of numeric abstraction, calledComplex. She has de�ned the arithmetic operations
for complex numbers - addition, subtraction, multiplication, and so on. She has de�ned
routines to convert from conventional numbers to complex. There is just one small problem:
you can manipulate only one complex number.

The complex number system would not be useful with this restriction, but this is just the
situation in which we �nd ourselves with simple modules. Modules by themselves provide
an e�ective method of information hiding, but do not allow us to perform instantiation,
which is the ability to make multiple copies of the data areas. To handle the problem of
instantiation, computer scientists needed to develop a new concept.

Abstract Data Types

An abstract data type is a programmer-de�ned data type that can be manipulated in a
manner similar to the system-de�ned data types. As with system de�ned types, an abstract
data type corresponds to a set (perhaps in�nite in size) of legal data values and a number
of primitive operations that can be performed on those values. Users can create variables
with values that range over the set of legal values, and can operate on those values using
the de�ned operations. For example, our intrepid programmer could de�ne her stack as an
abstract data type, and the stack operations as the only legal operations that are allowed
to be performed on instances of the stack.

Modules are frequently used as an implementation technique for abstract data types,
although we emphasize that modules are an implementation technique, and the abstract
data type is a more theoretical concept. The two are related, but are not identical. To build
an abstract data type, we must be able:

1. To export a type de�nition

2. To make available a set of operations that can be used to manipulate instances of the
type

3. To protect the data associated with the type so that they can be operated on only by
the provided routines

4. To make multiple instances of the type

Modules, as we have de�ned them, serve only as an information-hiding mechanism, and
thus directly address only abilities 2 and 3, although the others can be accommodated using

1.7. REUSABLE SOFTWARE 21

appropriate programming techniques. Packages, found in languages such as CLU or Ada,
are an attempt to address more directly the issues involved in de�ning abstract data types.

In a certain sense, an object is simply an abstract data type. People have said, for
example, that Smalltalk programmers write the most \structured" of all programs, because
they cannot write anything but de�nitions of abstract data types. Although it is true that
an object de�nition is an abstract data type, the notions of object-oriented programming
build on the ideas of abstract data types, and add to them important innovations in code
sharing and reusability.

Objects { Messages, Inheritance and Polymorphism

The techniques of object-oriented programming add several important new ideas to the
concept of the abstract data type. Foremost among these is the idea of message passing.
Activity is initiated by a request being made to a speci�c object, not by a function using
speci�c data being invoked. In large part, this is merely a change of emphasis; the conven-
tional view places the primary importance on the operation, whereas the object-oriented
view places primary importance on the value itself. (Do you call the push routine with a
stack and a data value, or do you ask a stack to push a value on to itself?) If this were
all there is to object-oriented programming, the technique would not be considered a major
innovation. But added to message passing are powerful mechanisms for overloading names
and reusing software.

Implicit in message passing is the idea that the interpretation of a message can vary with
di�erent objects. That is, the behavior and response that the message elicits will depend
upon the object receiving the message. Thus, push can mean one thing to a stack, and a
very di�erent thing to a mechanical-arm controller. Since names for operations need not be
unique, simple and direct forms can be used, leading to more readable and understandable
code.

Finally, object-oriented programming adds the mechanisms of inheritance and polymor-

phism. Inheritance allows di�erent data types to share the same code, leading to a reduction
in code size and an increase in functionality. Polymorphism allows this shared code to be
tailored to �t the speci�c circumstances of each individual data type. The emphasis on
the independence of individual components permits an incremental development process, in
which individual software units are designed, programmed and tested before being combined
into a large system.

We will describe all of these ideas in more detail in subsequent chapters.

1.7 Reusable Software

People have asked for decades why the construction of software could not mirror more
closely the construction of other material objects. When we construct a building, a car,
or an electronic device, for example, we typically piece together a number of o�-the-shelf

22 CHAPTER 1. THINKING OBJECT ORIENTED

components, rather than fabricating each new element from scratch. Could not software be
constructed in the same fashion?

In the past, software reusability has been a much sought-after and seldom-achieved goal.
A major reason for this is the tight interconnectedness of most software that has been
constructed in a conventional manner. As we discussed in an earlier section, it is di�cult
to extract from one project elements of software that can be easily used in an unrelated
project, because each portion of code typically has interdependencies with all other portions
of code. These interdependencies may be a result of data de�nitions, or may be functional
dependencies.

For example, organizing records into a table and performing indexed lookup operations
on this table are perhaps some of the most common operations in programming. Yet table-
lookup routines are almost always written over again for each new application. Why?
Because, in conventional languages, the record format for the elements is tightly bound
with the more general code for insertion and lookup. It is di�cult to write code that can
work for arbitrary data, for any record type.

Object-oriented techniques provide a mechanism for cleanly separating the essential in-
formation (insertion and retrieval) from the inconsequential information (the format for
particular records). Thus, using object-oriented techniques, we can construct large reusable
software components. Many such packages of commercial software components are now
available, and the developing of such reusable components is a rapidly increasing part of the
software industry.

1.8 Summary

� Object-oriented programming is not simply a few new features added to programming
languages. Rather, it is a new way of thinking about the process of decomposing
problems and developing programming solutions.

� Object-oriented programming views a program as a collection of largely autonomous
agents, called objects. Each object is responsible for speci�c tasks. It is by the interac-
tion of objects that computation proceeds. In a certain sense, therefore, programming
is nothing more or less than the simulation of a model universe.

� An object is an encapsulation of state (data values) and behavior (operations). Thus,
an object is in many ways similar to a module, or an abstract data type.

� The behavior of objects is dictated by the object's class. Every object is an instance
of some class. All instances of the same class will behave in a similar fashion (that is,
invoke the same method) in response to a similar request.

� An object will exhibit its behavior by invoking a method (similar to executing a
procedure) in response to a message. The interpretation of the message (that is, the

1.8. SUMMARY 23

speci�c method performed) is decided by the object, and may di�er from one class of
objects to another.

� Objects and classes extend the concept of abstract data types by adding the notion
of inheritance. Classes can be organized into a hierarchical inheritance tree. Data
and behavior associated with classes higher in the tree can also be accessed and used
by classes lower in the tree. Such classes are said to inherit their behavior from the
parent classes.

� By reducing the interdependency among software components, object-oriented pro-
gramming permits the development of reusable software systems. Such components
can be created and tested as independent units, in isolation from other portions of a
software application.

� Reusable software components permit the programmer to deal with problems on a
higher level of abstraction. We can de�ne and manipulate objects simply in terms of
the messages they understand and a description of the tasks they perform, ignoring
implementation details.

Further Reading

I noted earlier that many consider Alan Kay to be the father of object-oriented programming.
Like most simple facts, this assertion is only somewhat supportable. Kay himself, in [Kay 93]
traces much of the in
uence for his development of Smalltalk to the earlier computer pro-
gramming Simula developed in Scandianavia in the early 1960's [Dahl 66, Kirkerud 89]. A
more accurate history would say that most of the principles of object-oriented programming
were fully worked out by the developers of Simula, but that these would have been largely
ignored by the profession has a whole had they not been rediscovered by Kay in the creation
of the Smalltalk programming language. A widely read issue of Byte magazine in 1981 did
much to popularize the concepts developed by Kay and his team at Xerox PARC.

The term \software crises" seems to have been coined by Doug McIlroy at a 1968 NATO
conference on software engineering. It is curious to note that we have been in a state of
crisis now for more than half the life of Computer Science as a discipline. Despite the end
of the cold war, the end of the software crisis seems to be no closer now than it did in
1968. See, for example, the article \Software's Chronic Crisis" in the September 1994 issue
of Scienti�c American [Gibbs 94].

To some extent, the software crises may be largely illusory. For example, tasks which
were considered exceedingly di�cult �ve years ago seldom seem so daunting today. It is
only the tasks that we wish to solve today that seem, in comparison, to be nearly impossible.
This would seem to indicate that, indeed, the �eld of software development has advanced
steadily year by year.

24 CHAPTER 1. THINKING OBJECT ORIENTED

The quote from the American linguist Edward Sapir is taken from \The Relation of
Habitual Thought and Behavior to Language", by Benjamin Lee Whorf. This article has
been reprinted in the book Language, Thought and Reality [Whorf 56]. This book contains
several interesting papers discussing the relationships between language and our habitual
thinking processes. I urge any serious student of computer languages to read several of these
essays, since some of them have surprising relevance to arti�cial languages.

Another interesting book along similar lines is The Alphabet E�ect, by Robert Lo-
gan [Logan 86], which explains in terms of language why logic and science developed in
the West, while for centuries China in the East has superior technology. In a more con-
temporary investigation of the e�ect of natural language on computer science, J. Marshall
Unger [Unger 87] describes the in
uence of the Japanese language on the much-heralded
Fifth Generation project.

The commonly held observation that Eskimo languages have many words for snow
has been debunked by Geo�rey Pullum in the title article in a book of essays in linguis-
tics [Pullum 91]. In an article in the Atlantic Monthly (\In Praise of Snow", January 1995),
Cullen Murphy points out that the vocabulary used to discuss snow among those English
speakers for whom a distinction between types of snow is important, namely those who
perform research on the topic, is every bit as large or larger than that of the Eskimo.

In any case, the point is largely irrelevant to our discussion. It is certainly true that
groups of individuals with common interests will tend to develop their own specialized
vocabulary; and having done so, the vocabulary itself will tend to direct their thoughts
along paths that may not be natural to those outside the group. Such is the case with
OOP. While Object-oriented ideas can, with discipline, be used without an object oriented
language, the use of object oriented terms will help direct the programmers thought along
lines that may not have been obvious without the OOP terminology.

My history is slightly imprecise with regards to church's conjecture and Turing machines.
Church actually conjectured about partial functions [Church 36]. These were later shown
to be equivalent to computations performed using Turing machines [Turing 36]. Kleene
described the conjecture in the form we have here, also giving it the name by which it
has become known. Rogers [Rogers 67] gives a good summary of the arguments for the
equivalence of various computational models.

It was the Swedish botanist Carolus Linn�us, you will recall, who developed the idea
of Genus, Species, etc. This system is the prototypical hierarchical organization scheme ex-
hibiting inheritance, since abstract classi�cations describe features that are largely common
to all subclassi�cations. Most inheritance hierarchies follow closely the model of Linn�us.

The criticism of procedures as an abstraction technique, because they fail to provide
an adequate mechanism for information hiding, was �rst developed by William Wulf and
Mary Shaw [Wulf 73] in an analysis of many of the problems surrounding the use of global
variables. These arguments were later expanded upon by David Hanson [Hanson 81].

Like most terms that have found their way into the popular jargon, object-oriented is used
with greater regularity than it is de�ned. Thus, the question \what is object-oriented pro-
gramming?" is surprisingly di�cult to answer. Bjarne Stroustrup has quipped [Stroustrup 88]

1.8. SUMMARY 25

that many arguments appear to boil down to the following syllogism:

� X is good

� Object-Oriented is good

� Ergo, X is object-oriented

Roger King has argued (in [Kim 89]), that his cat is object-oriented. After all, a cat ex-
hibits characteristic behavior, responds to messages, is heir to a long tradition of inherited
responses, and manages its own quite independent internal state.

Many authors have tried to provide a precise description of what properties a program-
ming language must possess to be called object-oriented. See, for example, the analysis
by Josephine Micallef [Micallef 88], or Peter Wegner [Wegner 86]. Wegner, for example,
distinguishes object-based languages, which support only abstraction (such as Ada), from
object-oriented languages, which must also support inheritance.

Other authors - notably Brad Cox [Cox 90] - de�ne the term much more broadly. To
Cox, object-oriented programming represents the objective of programming by assembling
solutions from collections of o�-the-shelf subcomponents, rather than any particular tech-
nology we may use to achieve this objective. Rather than drawing lines that are divisively
narrow, we should embrace any and all means that show promise of leading to a new soft-
ware \Industrial Revolution." The book by Cox [Cox 86], although written early in the
development of object-oriented programming and thus now somewhat dated in details, is
nevertheless one of the most readable manifestos of the object-oriented movement.

Exercises

1. In an object-oriented inheritance hierarchy each level is a more specialized form of the
preceding level. Given one more example of a hierarchy found in everyday life that
has this property. There are other types of hierarchy found in everyday life that are
not inheritance hierarchies. Give an example of a non-inheritance hierarchy.

2. Look up the de�nition of the word paradigm in at least three di�erent dictionaries.
Relate these de�nitions to computer programming languages.

3. Take a real-world problem, such as the task of sending
owers described earlier, and
describe the solution to the problem in terms of agents (objects) and responsibilities.

4. If you are familiar with two or more distinct computer programming languages, give
an example of a problem showing how one computer language would direct the pro-
grammer to one type of solution, whereas a di�erent language would encourage an
alternative type of solution.

26 CHAPTER 1. THINKING OBJECT ORIENTED

5. If you are familiar with two or more distinct natural languages, give an example of
a situation that illustrates how one language would direct the speaker in a certain
direction, whereas the other language would encourage a di�erent line of thought.

6. Argue either for or against the position that computing is basically simulation. (You
may want to examine the article by Alan Kay [Kay 77].)

